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Abstract

A coherently related group of sentences
may be referred to as a discourse. In
this paper we address the problem of pars-
ing coherence relations as defined in the
Penn Discourse Tree Bank (PDTB). A
good model for discourse structure anal-
ysis needs to account both for local depen-
dencies at the token-level and for global
dependencies and statistics. We present
techniques on using inter-sentential or
sentence-level (global), data-driven, non-
grammatical features in the task of parsing
discourse. The parser model follows up
previous approach based on using token-
level (local) features with conditional ran-
dom fields for shallow discourse parsing,
which is lacking in structural knowledge
of discourse. The parser adopts a two-
stage approach where first the local con-
straints are applied and then global con-
straints are used on a reduced weighted
search space (n-best). In the latter stage
we experiment with different rerankers
trained on the first stage n-best parses,
which are generated using lexico-syntactic
local features. The two-stage parser yields
significant improvements over the best
performing model of discourse parser on
the PDTB corpus.

1 Introduction

There are relevant studies on the impact of global
and local features on the models for natural
language understanding. In this work we ad-
dress a similar problem in the context of dis-
course parsing. Although a good number of
the papers in this area heavily rely on local
classifiers (Grosz et al., 1995; Soricut et al., 2003;
Lapata, 2003; Barzilay et al., 2005), there are still

some important works using global and local
informations together to form a model of dis-
course (Grosz et al., 1992; Barzilay et al., 2004;
Soricut et al., 2006).

One of the main issues is the basis of the choice
between a global or local or a joint model for dis-
course parsing: it all depends on the criteria to be
able to capture maximum amount of information
inside the discourse model. The policy for dis-
course segmentation plays a big role to formulate
the maximizing criteria (Grosz et al., 1992). We
study in the literature that defining a discourse seg-
ment is mostly a data-driven process: some argue
for prosodic units, some for intentional structure
and some for clause-like structures. We work with
PDTB 2.0 annotation framework, therefore use a
clause-like structure. Soricut et al. (2003) empiri-
cally showed that at the sentence level, there is a
strong correlation between syntax and discourse,
Ghosh et al. (2011b) found the same. Since the
discourse structure may span over multiple sen-
tences, intersentential features are needed to im-
prove the performance of a discourse parser.

Linguistic theory suggests that a core argument
frame (i.e. a pair of the Arg1 and the Arg2 con-
nected with one and only one connective) is a joint
structure, with strong dependencies between ar-
guments (Toutanova et al., 2008). Following this,
Ghosh et al. (2011a) also injected some structure-
level information through the token-level features,
for eg. the previous sentence feature. Still there
is a room for improvement with more structure-
level information to that discourse model; though
it is cost-intensive to modify this discourse model.
Therefore in this paper we re-use the model
(Ghosh et al., 2011a) and optimize the current loss
function adding the global features through re-
ranking of the single-best model.

Reranking has been a popular technique
applied in a variety of comparable NLP
problems including parsing (Collins, 2000;
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Charniak and Johnson, 2005), semantic
role labeling (Toutanova et al., 2008), NP
Bracketing (Daume III et al., 2004), NER
(Collins, 2002), opinion expression detection
(Johansson and Moschitti, 2010), now we employ
this technique in the area of discourse parsing.

In the next sections, we detail on the back-
grounds and motivations of this work, before this
we also add a short discussion on PDTB (Penn
Discourse TreeBank), i.e. the data we used to train
the system. Then we proceed to the reranking ap-
proaches and results sections after describing our
global feature set. Finally we state and analyze the
results.

2 The Penn Discourse Treebank 2.0

The Penn Discourse Treebank (PDTB) is a re-
source containing one million words from the Wall
Street Journal corpus (Marcus et al., 1993) anno-
tated with discourse relations.

Connectives in the PTDB are treated as dis-
course predicates taking two text spans as ar-
guments (Arg), i.e. parts of the text that de-
scribe events, propositions, facts, situations. Such
two arguments in the PDTB are called Arg1 and
Arg2, with the numbering not necessarily corre-
sponding to their order in text. Indeed, Arg2 is
the argument syntactically bound to the connec-
tive, while Arg1 is the other one.

In the PDTB, discourse relations can be either
overtly or implicitly expressed. However, we fo-
cus here exclusively on explicit connectives and
the identification of their arguments, including the
exact spans. This kind of classification is very
complex, since Arg1 and Arg2 can occur in
many different configurations (see Table 1).

Explicit connectives (tokens) 18, 459
Explicit connectives (types) 100

Arg1 in same sentence as connective 60.9%
Arg1 in previous, adjacent sentence 30.1%
Arg1 in previous, non adjacent sentence 9.0%

Table 1: Statistics about PDTB annotation from Prasad et
al(2008).

In PDTB the senses are assigned according to a
three-layered hierarchy: the top-level classes are
the most generic ones and include TEMPORAL,
CONTINGENCY, COMPARISON and EXPANSION

labels. We used these four surface senses only in
our task.

2.1 Backgrounds & Motivation

Currently we are using the single-best discourse
parser by Ghosh et al. (2011a). This discourse
parser can automatically extract of discourse ar-
guments using a pipeline, illustrated in Fig 1.
First, we input the explicit discourse connec-
tives (with senses) to the system. These can
be the gold labeled or automatically identified
(Pitler and Nenkova, 2009); for simplicity here we
use Penn Discourse TreeBank (PDTB 2.0) gold-
standard connectives (cf. see 2). Then a cascaded
module is applied extracting the Arg2 arguments,
then the Arg1s are extracted.

Figure 1: Pipeline for argument detection given a connec-
tive.

The Arg2 and Arg1 extractors are imple-
mented as conditional random field sequence la-
belers, which use a set of syntactic and structural
features (cf. Ghosh et al. (2011a)). In order to re-
duce the complexities, the sentence containing the
connective, and a context window of up to two
sentences before and after are supplied to the se-
quence labelers.

We present a passage of 6 sentences from a nu-
trition journal article parsed with that parser 1.:
<Conn id=1,sense=Comparison>
Although</Conn id=1> <ARG2 id=1>
the mechanism of obesity development
is not fully understood, it is confirmed
<ARG1 id=2>that obesity occurs</ARG1 id=2>
<Conn id=2,sense=Temporal>when</Conn id=2>
<ARG2 id=2>energy intake exceeds energy
expenditure</ARG2 id=2> </ARG2 id=1>.
There are multiple etiologies
for this imbalance, hence,
<Conn id=3, sense=Expansion>
and </Conn id=3> <ARG2 id=3>the rising
prevalence of obesity cannot be addressed
by a single etiology</ARG2 id=3>.
<ARG1 id=4>Genetic factors influence
the susceptibility of a given child to an
obesity-conducive environment</ARG1 id=4>.
<Conn id=4, sense=Comparison>However

1we used best model of (Ghosh et al., 2011b;
Ghosh et al., 2011a) and Stanford lexicalized parser
(Klein and Manning, 2003) to parse the text also used
AddDiscourse tool to parse the connective and the senses
(Pitler and Nenkova, 2009);parser took 17 second to parse
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</Conn id=4>, <ARG2 id=4>environmental
factors, lifestyle preferences, and
cultural environment seem to play major
roles in the rising prevalence of obesity
worldwide</ARG2 id=4>. In a small number
of cases, childhood obesity is due to
genes such as leptin deficiency or
medical causes such as hypothyroidism
and growth hormone deficiency or side
effects due to drugs (e.g. - steroids).
Most of the time, <Conn id=5, sense=
Comparison> however </Conn id=5>,
<ARG2 id=5>personal lifestyle choices
and cultural environment significantly
influence obesity</ARG2 id=5>.

In the evaluations of Ghosh et al. (2011a), it
states that recall was much lower than preci-
sion for both the arguments, especially in case of
Arg1. The system often failed to predict Arg1. It
is harder to identify since it is not always syntac-
tically bound to the connective, like Arg2, more-
over it is typically more distant than the Arg2s.

We notice the same in the parser output. The
parser found all five Arg2s for all five connec-
tives, though there may be disagreement on the se-
lected boundaries; the number of parsed Arg1s is
only two, whereas the second one with id of 4 is a
previous sentence argument.

To improve the recall, (Ghosh et al., 2012)
implemented a weighted constraint-based
handcrafted postprocessor to force the
Ghosh et al. (2011a) system to output argu-
ments of each type abiding the requirements
defined by the PDTB annotation guidelines.

In order to find the best solution with a min-
imum of constraint violations, the top k analy-
ses output are generated by the CRF (Conditional
Random Field) (Lafferty et al., 2001) for every
sentence; these analyses can then be combined to
form the k top analyses for the whole 5-sentence
window around the connective. This combina-
tion is most efficiently carried out using a prior-
ity queue similar to a chart cell in the k-best pars-
ing algorithm by Huang and Chiang (2005). (see
Ghosh et al. (2012) for details)

2.2 Feature Set of Baseline System

We summarize the feature set of the base system
(Ghosh et al., 2011a) to emphasize the distinction
between the local and global feature set for this
work.

The token-level (local) feature set in the Table 2
can be divided into four categories:

Features used for Arg1 and Arg2 segmentation and labeling.
F1. Token (T)
F2. Sense of Connective (CONN)
F3. IOB chain (IOB)
F4. PoS tag
F5. Lemma (L)
F6. Inflection (INFL)
F7. Main verb of main clause (MV)
F8. Boolean feature for MV (BMV)
F9. Previous sentence feature (PREV)

Additional feature used only for Arg1
F10. Arg2 Labels

Table 2: Feature sets for Arg1 and Arg2 segmentation and
labeling in base system (Ghosh et al 2011a).

1. Syntactic. {F3, F4, F6} 2

2. Semantic. {F2}

3. Lexical {F5, F7, F8}

4. Structure related token-level features.
{F9, F10}

The remaining one (F1) is the token itself. The
sense of the connective feature (F2) extracted from
PDTB for the base system, though for the fully au-
tomatic one (Ghosh et al., 2011b) it needs the PTB
(Penn TreeBank)-style syntactic parse trees as in-
put (Pitler and Nenkova, 2009). The IOB(Inside-
Outside-Begin) chain (F3) 3 (F3) is extracted from
a full parse tree and corresponds to the syntactic
categories of all the constituents on the path be-
tween the root note and the current leaf node of
the tree. Experiments with other syntactic fea-
tures proved that IOB chain conveys all deep syn-
tactic information needed in the task, and makes
all other syntactic information redundant, for ex-
ample clause boundaries, token distance from the
connective, constituent label, etc.

In order to extract the morphological
features needed, we use the morpha tool
(Minnen et al., 2001), which outputs lemma (F5)
and inflection information (F6) of the candidate
token. The latter is the ending usually added to
the word root to convey inflectional information.
It includes for example the -ing and -ed suffixes
in verb endings as well as the -s to form the plural
of nouns.

As for features (F7) and (F8), they rely on in-
formation about the main verb of the current sen-
tence. More specifically, feature (F7) is the main
verb token , extracted following the head-finding

2Infection can be defined as morpho-syntactic feature.
3We extracted this feature using the Chun-

klink.pl script made available by Sabine Buchholz at
ilk.uvt.nl/team/sabine/chunklink/README.html
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strategy by Yamada and Matsumoto (2003), while
feature (F8) is a boolean feature that indicates for
each token if it is the main verb in the sentence or
not.4

The structure related token-level features do
not use any parse tree. The Arg2 label (F10)
features are generated from the word sequence
index in PDTB for the base system (for au-
tomatic system it is generated by the pipeline
(Ghosh et al., 2011b)); this feature is used to clas-
sify Arg1 . The previous sentence feature “Prev”
(F9) is a connective-surface feature and is used
to capture if the following sentence begins with
a connective. This is meant for the classification
of the Arg1 that resides in the previous sentence
of the connective. The feature value for each can-
didate token of a sentence corresponds to the con-
nective token that appears at the beginning of the
following sentence, if any. Otherwise, it is equal
to 0.

Although both of the structure-related features
are strong features according to the feature analy-
sis in Ghosh et al. (2011a), the base system is not
able to capture all available global features inside
the 5-sentence discourse context, merely uses 2-
sentence context. This is due to the fact that CRF
classifier uses a narrow window, that can only cap-
ture the information nearby the token under con-
sideration. Therefore it becomes impossible to
inject more information about the 5-sentence dis-
course window structure.

3 Global Feature Set

We use a global feature-set. The global features
are defined as the data-driven, hand-crafted rule
generated and non-grammatical (i.e. no syntactic
parse tree is used to generate this features) fea-
tures.

The model of Ghosh et al. (2011a) is based on
Conditional Random Fields (CRF), and incorpo-
rating a set of structural and lexical features. At
the core part of the model lies a local classi-
fier, which labels each token sequentially with one
of the possible argument labels or OTHER in a
pipeline. Now global information can be inte-
grated into the model using global features at a
longer-distance context, by defining a small set of
global constraints (if too many dependencies are
encoded, the model will over-fit the training data

4We used the head rules by Yamada & Matsumoto
(http://www.jaist.ac.jp/˜h-yamada/)

and will not generalize well).
The global features are computed using each

list of k-best lists, in contrast to the lexico-
syntactically generated local features for each to-
ken item for each sentence of n-best lists. The
usage of global feature is meant for exploring the
yet undiscovered dimension of the each 5-sentence
discourse window. Global feature set consists of
the eight features that works on a full 5-sentence
discourse window (cf. sec. 2.1). The first six (i.e.
GF0-GF5) of these are same with the constrained
system 2.1.

None of the features are extracted from any
parse tree. All the seven features (GF1-GF7) are
derived from the generated Arg tags of the n-
best lists, the first one is the logarithm of poste-
rior probability computed from the CRF posterior
probability output for each list of the n-best lists.
The finer description of each feature is given be-
low.

GF0. logarithm of Posterior Probability. this
feature is generated by the base CRF classifier.
The CRF generates probability per sentence, for
each list of the n-best lists. We calculate sum of
the log of each probability during generation of k-
best lists forming 5-sentence discourse window.

GF1. Overgeneration. It is possible for an ar-
gument to be split into more than one part in same
sentence, we found these cases several times in
PDTB. This constraint is violated if an Arg1 or
Arg2 is split over multiple sentences. This is a
predominant problem for those lists of the n-best
lists those are generated with low posteriors. This
feature exhibits the problem of overgeneration to
the reranker with the counts.

GF2. Undergeneration. According to PDTB
annotation scheme every connective must have ar-
guments of each type, this constraint is violated if
an argument is missing. This is the prevalent prob-
lem in the single-best system, especially for the
Arg1 classification. This feature works to spec-
ify where a discourse structure missing the argu-
ment(s) - one of the main problems that motivated
this work.

GF3. Intersentential Arg2 (used only for Arg2
reranker). Count of Arg2, if any, occurs classified
outside connective sentence - this way the system
is constrained to have any inter-sentential Arg2.
This is a hypothetically motivated feature to re-
duce the complexity of the classification problem;
although in fact in PDTB 2.0, there are a few cases
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of Arg2 of explicit connective (i.e. the 114 out
of 18459), where it extends beyond the connec-
tives sentence to include additional sentences in
the subsequent discourse (Prasad et al., 2008).

GF4. Arg1 after the connective sentence. Count
of Arg1, if any, occurs classified after connec-
tive sentence. Through this feature we attempt to
constrain the system to have Arg1s always occur-
ring in the previous sentence or before the previ-
ous sentence of the connective sentence.

GF5. Argument overlapping with the connec-
tive. Count of the cases if there is any token over-
lap between Args and connective tokens. This is
also not possible for the PDTB-style annotation,
so we intend to constrain the overlapping, if any.

GF6. Argument begins with -I tag. Count of
the cases if the generated Arg chunks begins with
the -I (inside) tag, violating the principle of IOB
tags for chunking. This is only possible if the CRF
chunker fails to tag the boundaries properly.

GF7. Argument begins with -E tag. Count of
the cases if the generated Arg chunks begins with
the -E (end) tag instead of a -B(begin) tag. This is
also possible if only the CRF chunker fails to tag
the chunk boundaries properly.

We attempt to categorize this feature set accord-
ing to the properties they bear: {GF0} is the in-
trinsic global feature - it is the evidence of confi-
dence on decisions made by the single-best model;
{GF1, GF2} check the prevalent problems seen
through the evaluation of decisions by the sin-
gle best model; {GF3, GF4, GF5} are the hy-
pothetical global features those reduce classifica-
tion complexities, they are inspired by the general
trends or rules for annotation in PDTB. {G6, G7}
check the mistakes in IOB tagging by the CRF
chunker.

4 Reranking Approaches

We formalize the reranking algorithm as follows:
for a given sentence s, a reranker selects the best
parse ŷ among the set of candidates candidate(s)
according to some scoring function:

ŷ = argmaxy∈candidate(s)score(y) (1)

In n-best reranking, candidate(s) is simply a set
of n-best parses from the baseline parser, that is,
candidate(s) = {y1, y2, ..., yn}.

In this paper we followed two approaches for
the reranking task:

1. Structured Learning Approach: in this case

the reranker learns directly from a scoring func-
tion that is trained to maximize the performance of
the reranking task (Collins and Duffy, 2002). We
also investigate two popular and efficient online
structured learning algorithms: the structured
voted perceptron by Collins and Duffy (2002)
and Passive-Aggressive(PA) algorithm by
Crammer et al. (2006). The weight-vectors
observed from the training phase are averaged
following Schapire and Freund (1999). In case of
structured perceptron for each of the candidate in
a ranked list the scoring function of equation 1 is
computed as follows:

score(yi) = w · Φ(xi,j) (2)

where w is the parameter weight-vector and Φ is
the feature representing function of xi,j ; xi,j de-
notes the j-th token of the i-th sentence. Since
the PA algorithm is based on the theory of large-
margin, it attempts find a score that violates the
margin maximally by adding an extra cost i.e.√

ρ(xi,j) to the basic score function for structured
perceptron i.e. equation 2. Here ρ is computed
as 1 − F (xi.j), F: F-measure. The online PA also
takes care of the learning rate of perceptron, which
is considered as 1 in structured perceptron. The
learning rate in online PA is min-value between a
regularization constant and normalized score func-
tion value.

2. Best vs. rest Approach: in the prefer-
ence kernel approach (Shen and Joshi, 2003) the
reranking problem is reduced to a binary classi-
fication task on pairs. This reduction enables even
a standard support vector machine to optimize the
problem. We use a component of this task. We
define the best scored discourse window (section
4.1) as a positive example and the rest are the neg-
atives to the system. We use a standard support
vector machine (Vapnik, 1995) with linear kernel.

3. Preference Kernel Approach: we also inves-
tigated the classical approach of preference ker-
nel, as it is introduced by (Shen and Joshi, 2003).
In this method, the reranking problem learning to
select the correct candidate h1 from a candidate
set {h1, · · · , hk} is reduced to a binary classifi-
cation problem by creating pairs: positive training
instances 〈h1, h2〉, · · · , 〈h1, hk〉 and negative in-
stances 〈h2, h1〉, · · · , 〈hk, h1〉. The advantage of
using this approach is that there are abundant tools
for binary machine learning.

If we have a kernel K over the candidate
space T , we can construct a preference kernel
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(Shen and Joshi, 2003) PK over the space of pairs
T × T as follows:

PK = K(h1
1, h

1
2) + K(h2

1, h
2
2)

− K(h1
1, h

2
2) − K(h2

1, h
1
2) (3)

In our case, we make pair from the n-best
hypotheses hi as 〈h1

i , h
2
i 〉 generated by the base

model. We used linear kernel to train the reranker.
Thus we create the feature vectors extracted

from the candidate sequences using the features
described in Section 3. We then trained linear
SVMs (Support Vector Machine) using the LIB-
LINEAR software (Fan et al., 2008), using L1 loss
and L2 regularization.

4.1 Experiments
We use PennDiscourse TreeBank
(Prasad et al., 2008) and Penn TreeBank
(Marcus et al., 1993) data through this entire
work. We keep the split of data as follows:
02 − 22 folders of PDTB (& PTB) are used for
training, 23 − 24 folders of the same are used
for testing; remaining 00-01 folders are meant
for development split, it is used only to study the
impact of feature (cf. 5).

We prepare the n-best outputs of sentences from
the base system (cf. 2.1). The training data is pre-
pared from the input of n-best lists of the train
split, using a oracle module, which generates k-
best oracle lists from the n-best single outputs. We
procure k-best lists from oracle using the evaluator
module (see section 4.2), ordered by the highest to
the lowest probability score. Each of the list of the
k-best list is a 5-sentence discourse window.

We prepare the test data given the n-best lists
of the test split. We obtain k-best list for test-
ing, prepared with the module described in sec-
tion 2.1. We re-integrate the sentences con-
nected with the same discourse connective id
into the 5-sentence discourse window keeping the
connective-bearing sentence in the middle. This
re-integration done using a priority queue in the
style of Huang and Chiang (2005). Each of the list
from the k-best list are ordered by the highest to
the lowest score with sum of the log of posterior
probabilities of each sentence in the n-best list.

Therefore, in short, the n-best list is the list of
sentence-level analyses whereas the k-best list is
the list of 5-sentence discourse window-level anal-
yses.

Baseline: we consider the performance of the
single-best output from the base implementation
(cf. 2.1) as the baseline.

4.2 Evaluation
We present our results using precision,
recall and F1 measures. Following
Johansson and Moschitti (2010), we use three
scoring schemes: exact, intersection (or partial),
and overlap scoring. In the exact scoring scheme,
a span extracted by the system is counted as
correct if its extent exactly coincides with one
in the gold standard. We also include two other
scoring schemes to have a rough approximation
of the argument spans. In the overlap scheme,
an expression is counted as correctly detected if
it overlaps with a gold standard argument. The
intersection scheme assigns a score between 0 and
1 for every predicted span based on how much it
overlaps with a gold standard span, so unlike the
other two schemes it will reward close matches.

4.3 Classifier Results

ARG1 Results ARG2 Results
Exact P R F P R F
Baseline 69.88 48.51 57.26 83.44 75.14 79.07
Online PA 66.10 53.92 59.39(16) 82.59 76.39 79.37(4)
Struct Per 67.18 52.64 59.03(4) 82.96 76.28 79.48(8)
BestVsRest 66.19 52.83 58.94(8) 81.69 77.14 79.35(4)
Pref-Linear 66.54 53.31 59.20(4) 82.82 76.28 79.42(4)

Table 3: Exact Match Results for four classifiers. Baseline
scores in the first row. Used n-best list numbers in parenthe-
sis. The best performances are boldfaced.

We observe that reranking with global features
improved the F1 scores for Arg1 significantly, al-
though for Arg2 the improvement is insignificant
5. Since in most of the cases the Arg2 is syntacti-
cally bound with the connective, it is obvious that
lexico-syntactically motivated local features help
the classification of Arg2. On the other hand, the
classification of Arg1 is considerably dependent
on non-grammatical, hand-crafted rule generated
features. If we compare to our reranking clas-
sification results of Arg1 with that one without
previous sentence feature in Ghosh et al. (2011a)
then we observe that the global and globally moti-
vated structural feature improved the classification

5Throughout this work the permutation test is used
to compute the significance of difference, whereas to
compute the confidence interval bootstrap resampling is
used(Hjorth, 1993). We determined the significant digits for
presenting results using the methods illustrated by Weisstein
E. W. (Weisstein, 2012)
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of Arg1 by more than 10 points.
We also notice from the table for both the argu-

ment classification cases that we achieve balanced
scores in terms of the precision and the recall with
the structured global features. In fact there is a
good improvement of recall without much loss
in terms of precision.There is not any significant
improvement in case of Arg2 reranking because
the problem of the classification mostly resides on
boundary detection of Arg2; also we know that
estimation of position of an Arg2 is pretty easy
task given the connective is correctly identified.

ARG1 Results ARG2 Results
Exact P R F P R F
Baseline 82.90 61.65 70.72 93.40 84.20 88.56
Online PA 80.11 69.43 74.39(16) 92.94 85.73 89.19(4)
Struct Per 81.18 67.03 73.43(4) 93.20 85.50 89.17(8)
BestVsRest 81.25 66.46 73.11(8) 93.03 85.16 89.1(4)
Pref-linear 80.55 68.49 74.03(4) 93.12 85.56 89.18(4)

Table 4: Partial Match Results for four classifiers. Baseline
scores in the first row. Used n-best list numbers in parenthe-
sis. The best performances are boldfaced.

We mark an improvement of the Arg1 in table
4, with softer partial evaluation metrics; we also
observe the same trend in results for Arg2 classi-
fication as in the table 3.

4.3.1 Candidate Set Size
We conduct experiments to study the influence of
candidate set size on the quality of reranked out-
put. In addition we also attempt to notice the
upper-bound of reranker performance, i.e. the ora-
cle performance. We choose the reranker based on
online PA among the four classifier. Since all the
four classifiers performed comparably the same
way, it is enough to study the performance of one
of them on candidate set size, that will reflect the
performance of the other classifiers. We also de-
scribe and discuss the results on the exact partial
measures only, as we notice from the previous sec-
tion that the effect of reranking is comparable with
the exact measure and softer measures.

Reranked ARG1 Oracle
k P R F P R F
1 69.88 48.51 57.26 69.88 48.51 57.26
2 67.26 52.34 58.87 81.26 61.70 70.14
4 66.39 53.56 59.29 88.35 71.91 79.29
8 66.11 53.86 59.36 92.47 79.09 85.26
16 66.10 53.92 59.39 93.80 83.77 88.50

Table 5: Oracle and reranker performance as a function of
candidate set size of Arg1.

In both the tables (5, 6) we notice that the ora-

Reranked ARG2 Oracle
k P R F P R F
1 83.44 75.14 79.07 83.44 75.14 79.07
2 82.90 75.69 79.13 90.13 82.43 86.11
4 82.59 76.39 79.37 92.27 86.53 89.31
8 82.41 76.44 79.32 92.81 88.13 90.41
16 83.41 76.44 79.32 92.82 88.54 90.63

Table 6: Oracle and reranker performance as a function of
candidate set size of Arg2.

cle performance is steadily increasing with 16-best
lists. We observe that the performance of classi-
fication of both Arg1 and Arg2 increases at the
level of 2-best list then it stagnates after 4-best per-
formance. This nature of increment is may be re-
lated to the simple but high-level feature set used
in this task of the discourse parsing; and it can also
be some issues involved with local feature set, as
we observed a huge difference of posterior proba-
bilities between the single-best and the each of the
(n − 1) lists of a n-best decision by CRF.

4.3.2 Reranked Intersentential ARG1
We also attempt to observe the effect with respect
to inter-sentential classification in case of Arg1,
with the results obtained with online PA percep-
tron. As expected, the change we notice the ef-
fects in the table 7 is a fraction of potential im-
provement. We find comparing the inter-sentential
vs. overall classification results of Arg1 that the
increment in inter-sentential Arg1 classification
considerably contribute to the overall Arg1 clas-
sification.

P R F1

Baseline Exact 52.87 27.80 36.44
Partial 68.93 41.06 51.48
Overlap 79.62 41.88 54.88

Best Reranked ARG1 Exact 50.41 30.04 37.56
Partial 66.51 44.95 53.78
Overlap 76.13 44.54 56.23

Table 7: Inter-sentential Reranked Arg1 Results.

5 Impact of Feature on ARG1

We study the impact of global features on the per-
formance on Arg1 reranker with the development
set (cf. Section 4.1). We are leaving behind the
feature performance of the Arg2, as the improve-
ment by the reranker for this case is not significant.

The Table 8 shows the results of investigation
through an incremental greedy-search based fea-
ture selection. All the performance steps are eval-
uated with a k of 16.
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This impact table starts with the log posterior
only (GF0). This results to the best result achieved
by Ghosh et al. (2011a) through the hill-climbing
feature analysis. Beside this, we also checked that
if we run the reranker with this feature only, then
it results to the baseline performance with the test
split.

Then the undergeneration feature (GF2) is cho-
sen through greedy search among the other fea-
tures. It gives us, jointly with the log posterior,
a significant improvement over the baseline. The
impact is predictable as GF2 addresses the basic
problem that has driven us to the current task.

The addition of the overgeneration (GF1) fea-
ture also increased the performance, though non-
significantly; this feature is important for the
reranker because this is meant for fixing a predom-
inant overgeneration problem in the n-best lists.

We observe that the F1 measure increases sig-
nificantly after adding the next important feature:
Arg1 after the connective sentence (GF4); in this
case the recall increases more in comparison to the
increment in the precision.

In the next step, the feature: Argument over-
lapping with connective (GF5) is added. This de-
creases the F1 score a bit, though it increases the
precision lowering the recall.

We reach to the second-best performance of the
Arg1 reranker after adding the feature: Argument
begins with -I tag (GF6).

The addition of the feature: Argument begins
with -E tag (GF7) does not improve the perfor-
mance much. It is possible that there was no such
mistake by CRF inside the test data.

The scores with partial and overlap matches
show the same trend so we leave the discussion
with them in order to avoid the redundancy.

Additionally, we also perform the individ-
ual effect of each of features from the set
(GF1,GF2,GF4,GF5,GF6,GF7), jointly with the
intrinsic feature GF0, but none other than the un-
dergeneration feature increased the performance
over the baseline.

The intrinsic GF0 is contributing to achieve the
baseline performance; the undergeneration (GF2)
feature is also contributing significantly. In sum-
mary, the combination of features optimizes the
performance of system in terms of F1-measure by
decreasing the value of precision and raising the
value of recall.

System P R F1

GF0 (Posterior Only) 73.12 50.36 59.64
GF0+GF2 69.62 55.34 61.67
GF0+GF2+GF1 69.92 55.21 61.70
GF0+GF2+GF1+GF4 70.12 56.05 62.30
GF0+GF2+GF1+GF4+GF5 72.36 53.72 61.66
GF0+GF2+GF1+GF4+GF5+GF6 71.10 55.28 62.20
GF0+GF2+GF1+GF4+GF5+GF6+GF7 71.84 54.82 62.19

Table 8: Exact Match Results for Arg1 through Incremen-
tal Feature Selection.

6 Conclusion

We note a significant improvement over the best
performing model of discourse parser on the
PDTB corpus. This is mostly contributed by the
better performance in Arg1 classification.

We also find that global features have greater
impact on Arg1 classification than that of Arg2.
We investigate that that the performance of Arg1
improved by more than 10 points in terms of F1
measure using the global (see Section 3) and struc-
ture related features (see Ghosh et al. (2011a)).
This happens perhaps due to the fact Arg2 is syn-
tactically bound to the connective, whereas Arg1
is not. Arg2 depends more on local features (cf.
Section 2.1) than global one. Basically this nature
of dependency of Arg1 on both local and global
features are inherited through the PDTB annota-
tion corpus, as well the local feature dependency
of Arg2 are completely data-driven.

The motivation of the paper is to make a bal-
anced classification for both the Arg1 and Arg2,
achieved by implementing the constrained-system
with global features. This enables to increase a
huge recall without losing much in terms of preci-
sion.

It is also observed that while the performances
of oracle of Arg1 and Arg2 are increasing
steadily, the performances of both the rerankers
stagnate at or before the point of 16-best lists; this
is perhaps due to our effective, simple and small
feature set.

In this task we emphasized on and studied the
data-driven, global and non-grammatical feature
set. This syntactic parse tree independent feature
set may also be effective with the dialogue data
annotated with PDTB annotation style.
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