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Abstract
The identification of causal relations be-
tween verbal events is important for
achieving natural language understanding.
However, the problem has proven notori-
ously difficult since it is not clear which
types of knowledge are necessary to solve
this challenging problem close to human
level performance. Instead of employing a
large set of features proved useful in other
NLP tasks, we split the problem in smaller
sub problems. Since verbs play a very im-
portant role in causal relations, in this pa-
per we harness, explore, and evaluate the
predictive power of causal associations of
verb-verb pairs. More specifically, we pro-
pose a set of knowledge-rich metrics to
learn the likelihood of causal relations be-
tween verbs. Employing these metrics, we
automatically generate a knowledge base
(KBc) which identifies three categories
of verb pairs: Strongly Causal, Ambigu-
ous, and Strongly Non-causal. The knowl-
edge base is evaluated empirically. The re-
sults show that our metrics perform signif-
icantly better than the state-of-the-art on
the task of detecting causal verbal events.

1 Introduction

The identification of semantic relations between
events is a mandatory component of natural lan-
guage understanding. In this paper, we focus
on the identification of causal relations between
events represented by verbs. Following Riaz and
Girju (2010), we define a verbal event evi as
“[subjectvi] vi [objectvi]”, where the subject and
object of the verb may or may not be explicitly
present in an instance. Consider the following ex-
amples:
1. Yoga builds stamina because you maintain your poses

for a certain period of time. (CAUSE (emaintain, ebuild))

2. The monster storm Katrina raged ashore along the

Gulf Coast Monday morning. There were early re-

ports of buildings collapsing along the coast. (CAUSE

(erage, ecollapse))

In example 1, the two bold events are causally
connected by an explicit and unambiguous dis-
course marker (because). However, in English,
not all discourse markers unambiguously iden-
tify causality (Prasad et al., 2008) - for exam-
ple, Bethard and Martin (2008) proposed a cor-
pus of 1000 causal and non-causal event pairs con-
joined by the marker and. Even more, causal re-
lations can be encoded by implicit contexts - i.e.,
those where no discourse marker is present (ex-
ample 2). Despite the recent achievements ob-
tained in discourse processing, it is still unclear
what types of knowledge can contribute most to-
wards detecting causality in both explicit and im-
plicit contexts (Sporleder and Lascarides, 2008).
The complexity of the task of detecting causality
between events stems from the fact that there are
many factors involved, such as contextual features
of an instance (e.g., lexical items, tenses of verbs,
arguments of verbs, etc.), semantic and pragmatic
features of events, background knowledge, world
knowledge, common sense, etc. Prior approaches
have employed contextual features of an instance
to identify causality between events or discourse
segments (Bethard and Martin, 2008; Pitler and
Nenkova, 2009; Pitler et al., 2009). Although
contextual features provide important knowledge
about sentence(s) in which events appear, humans
also make use of other information such as back-
ground knowledge to comprehend causality. For
instance, in example 2 we use knowledge about
the causal association between verbal entities rage
and collapse to label it with causality.

This research is motivated by the need to extract
and analyze other type of knowledge necessary for
the identification of causal relations between ver-
bal events. We start from the fact that verbs are the
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main components of language to express events
and semantic relations between events. Thus, in
order to identify and extract causal relations be-
tween events (denoted by (evi , evj )), it is critical
for a model to employ knowledge about the ten-
dency of a verb pair (vi, vj) to encode causation.
For example, the pair (kill, arrest) has a high ten-
dency to encode a cause relation irrespective of the
context in which it is used, thereby a good indica-
tor of causality. The state-of-the-art resources on
verb semantics, such as WordNet, VerbNet, Prop-
Bank, FrameNet, etc. (Miller, 1990; Kipper et al.,
2000; Kingsbury et al., 2002; Baker et al., 1998),
provide information about the semantic classes,
thematic roles and selectional restrictions of verbs.
Among these, WordNet is the only resource which
provides information about the cause relation be-
tween verbs, but it has very limited coverage.
For VERBOCEAN, a semi-automatically generated
resource, Chklovski and Pantel (2004) have used
explicit lexical patterns (e.g., “verb * by verb”) as
means of mining enablement (cause-effect) rela-
tions between verbs. Such approaches help detect-
ing causality with high precision but suffer from
limited coverage due to the highly implicit na-
ture of language. Moreover, such resources do
not provide any information about the likelihood
of a causal relation in verb pairs - e.g., (kill, ar-
rest) has a high tendency to encode cause rela-
tion as compared with the pair (build, maintain).
The pair (build, maintain) seems ambiguous be-
cause it can encode both cause and non-cause re-
lations depending on the context, as shown by ex-
amples 1 and 3. Thus, causality detection models
should employ knowledge about which verb pairs
are strongly causal (non-causal) in nature and for
which pairs the context plays an important role to
signal causality.

3. Republicans had not cut the funds for maintaining the

levee and building up the ecological protections. (NON-

CAUSE)

We propose a fully automated procedure to learn
the likelihood of causal relations in verb pairs. In
this process, we create three categories of verb
pairs: Strongly Causal (Sc), Ambiguous (Ac) and
Strongly Non-causal (S¬c). The result is a knowl-
edge base (KBc) of causal associations of verbs.
In KBc, the category Sc (S¬c) contains the verb
pairs which have the greatest (least) likelihood to
encode a causal relation, respectively. However,
the category Ac contains ambiguous verb pairs

which have the likelihood to encode both causal
and non-causal relations. The information about
such causal associations provides a rich knowl-
edge source to causality detection models.

The main contributions of our research are as
follows:
• We propose a set of novel metrics (i.e., Explicit

Causal Association (ECA), Implicit Causal As-
sociation (ICA) and Boosted Causal Associa-
tion (BCA)) to identify the likelihood of verb
pairs to encode causality. Our metrics exploit
the information available from a large number
of unlabeled explicit and implicit instances of
verb pairs for this purpose.
• We introduce an automated procedure to build

a training corpus of causal and non-causal
event pairs. This prevents us from the trou-
ble of annotating a large number of event pairs
for cause and non-cause relations. Our metrics
make use of supervision from the training cor-
pus to identify causality in verb pairs. We also
provide a mechanism to determine causal verb
pairs which remain undiscovered due to the is-
sue of training data sparseness.
• We revisit recent approaches employing distri-

butional similarity methods to predict causal-
ity between events (Riaz and Girju, 2010;
Do et al., 2011). The state-of-the-art met-
ric Cause-Effect Association (CEA) (Do et
al., 2011) identifies causality mainly based on
probabilities of verb-verb, verb-argument, and
argument-argument pairs. In comparison with
CEA, our metrics perform significantly better
by improving the prior knowledge about the
causal associations from CEA’s components.

After a brief review of related work in next sec-
tion, we describe our approach for acquisition of
training corpus in section 3. The model for the ex-
traction of causal associations is presented in sec-
tion 4, followed by the evaluation and discussion
in section 5 and conclusion in section 6.

2 Related Work

Causality has long been studied from various
perspectives by philosophers, data-mining re-
searchers and computer scientists (Menzies, 2008;
Woodward, 2008; Suppes, 1970; Silverstein et al.,
2000; Pearl, 2000).

In NLP, the problem of detecting causality be-
tween events is a very challenging but less re-
searched topic. Previously, researchers have stud-
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ied this task by focusing on supervised classifi-
cation models for both verbal and nominal events
(Girju, 2003; Bethard and Martin, 2008). Bethard
and Martin (2008), for example, have focused
mainly on the contextual features available in test
instances of verbal event pairs to predict causality.
They have relied on a small scale dataset of 1000
instances (697 training and 303 test) for this task.
Unlike above models, recently some researchers
have employed unsupervised causality detection
metrics and minimal supervision for this task. For
example, Riaz and Girju (2010) have proposed an
unsupervised metric Effect-Control Dependency
(ECD) to determine causality between events in
news scenarios. Following their model, Do et al.
(2011) introduced an improved metric CEA which
uses PMI and some components of ECD to pre-
dict the causal relation in verbal and nominal event
pairs in a text document. They also proposed a
minimally supervised method using explicit dis-
course markers. For example, they used ILP
framework to assign a non-causal relation to all the
event pairs appearing in two discourse segments
connected by a non-causal marker. They evalu-
ated their model on a set of 20 documents, a highly
skewed evaluation set with around 2-3% causal
instances and 58% human inter-annotator agree-
ment on cause-effect relations. On verbal events,
they reported 38.3% F-score with CEA and 1-2%
improvement using minimally supervised method.
As compared with above mentioned metrics, we
introduce knowledge rich association measures
which employ supervision from the automatically
generated training corpus to learn causality.

Several other NLP researchers have studied
related topics e.g., identifying events, building
of temporal chain of events sharing a common
protagonist (participant), predicting future events
and identifying hidden links in news articles to
build a coherent chain (Chambers and Jurafsky,
2008; Chambers and Jurafsky, 2009; Radinsky
and Horvitz, 2013; Shahaf and Guestrin, 2010).
Unlike these tasks, our focus is on identifying
causality between events.

3 Acquisition of Training Corpus

In this section, we propose a fully automated pro-
cedure to build a training corpus of event pairs
which encode cause and non-cause relations. This
training corpus is used in our model to identify the
likelihood of cause relations in verb pairs. As dis-

cussed earlier, previous researchers have worked
with a small scale dataset of annotated event pairs.
The current task requires us to use a large train-
ing corpus to learn the pervasive relation of causal-
ity and the manual generation of such corpus is a
laborious task. Therefore, we decided to depend
on the unambiguous discourse markers because
and but to automatically collect training instances
of cause and non-cause event pairs, respectively.
For example, the marker because in the instance
1 of section 1 encodes a cause relation between
the events ebuild and emaintain. Some researchers
have utilized unambiguous discourse markers to
acquire training instances of semantic relations be-
tween discourse segments (Marcu and Echihabi,
2001; Sporleder and Lascarides, 2008). However,
the process is not simple for the current problem
since it is not always clear how to create a causal
instance of an event pair. Consider the following
meta instance I:

I : <s>/m1 . . . v1 . . . v2 . . . vk . . . because . . . vk+1

. . . vk+2, . . ., vr, . . .m2/</s>.

It is composed of main verbs (v1, v2, . . .,
vr), discourse markers (m1, m2), and sentence
boundaries (<s>, </s>). Here, we assume that
the discourse markers or the sentence boundaries
whichever appear first in I represent the bound-
aries of discourse segments for the marker because
(appendix A contains a table of notations used in
this paper). In I , there are k and r − k main verbs
appearing before and after because, respectively.
The problem here is to determine the event pair en-
coding causality out of k× (r− k) choices. Here,
we consider that the most dependent pair among
all choices in I is the best candidate to encode
causality.

In this work, we propose the following function
f(I) to pick the most dependent pair:

f(I) = argmax
(vi≺mc ,vj�mc )

CD(vi, vj)× PSI(vi, vj) (1)

Here, i (j) refers to all verbs that appear be-
fore (after) the causal marker (i.e., mc) because in
I . CD (equation 2) is a component of predicate-
predicate association of CEA (Do et al., 2011)
to determine causal dependency of a pair (vi, vj).
Do et al. (2011) used the score CD to determine
causality in an unsupervised fashion but here we
employ this to build a training corpus of causal
event pairs.

CD(vi, vj) = PMI(vi, vj)×max(vi, vj)× IDF (vi, vj) (2)
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The functions PMI, max and IDF depend on co-
occurrence probabilities and idf scores to deter-
mine causal dependency. Due to space limitations,
for details we refer the reader to Do et al. (2011).

Next, we define a novel penalization factor PSI

for the verbs of a pair appearing at greater distance
from the causal marker because. For example, this
assumes the verbs in the pair (v2, vk+2) are less
likely to be in a cause relation as compared with
(vk, vk+1) in I . We came up with this idea because
our initial experiments revealed that the causal in-
stances obtained by penalizing CD with PSI pro-
vide better training for our model as compared to
using only CD for this purpose. The similar be-
havior of reduction in the likelihood of causality
with respect to increase in distance between two
events was observed by Riaz and Girju (2010).

PSI(vi, vj) = − log
pos(vi) + pos(vj)

2.0× (C(vp) + C(vq))
(3)

Here, C(vp) (C(vq)) is the count of the main
verbs appearing before (after) because, respec-
tively. The distance of the verb is measured in
terms of its position (i.e., pos(vi)) with respect to
because. The position is 1 for the verb closest to
because and 2 for the verb next to the closest verb.
PSI has maximum value for (vk, vk+1) and it re-
duces for other pairs with verbs at greater distance
from because in instance I .

In order to extract non-causal event pairs, we
utilized instances with two discourse segments
conjoined by the marker but which represents
comparison (non-causal) relation. Any event pair
collected from the two discourse segments in non-
causal relation encodes non-causality. Therefore,
we depend on selecting the closest verb pair from
the instances of form I with marker but instead of
because.

In this paper, we present the results produced
using a training corpus of 240K instances (50%
for each class) from the English Gigaword Cor-
pus. In order to prepare this corpus, we identified
discourse markers (i.e., m1, m2), if available, be-
fore and after because/but in each instance I and
assumed that only those markers which have dis-
course usage in I define boundaries of discourse
segments of because/but. We used the list of 100
explicit discourse markers provided by Prasad et
al. (2008) and the supervised approach of Pitler
and Nenkova (2009) to detect markers and the dis-
course versus non-discourse usage of these mark-
ers. We use this training corpus to identify cau-

sation for both explicit and implicit instances of
event pairs. Using this training corpus, a model
tends to give higher causal weights to those in-
stances in which events are connected by the ex-
plicit causal marker because as compared to im-
plicit instances of causation. Thus, to provide fair
supervision to both explicit and implicit instances
of event pairs, we remove the cue words because
and but which were used to automatically label the
training instances.

4 Causal Associations of Verb Pairs

In this section, we explain our approach to learn
the likelihood of causal relations in verb pairs by
exploiting information available from both explicit
and implicit instances of these pairs. We extracted
around 12, 000 documents from the English Gi-
gaword corpus to collect instances of verb pairs
from single sentences (intra-sentential) and adja-
cent sentences (inter-sentential) of text. In this set,
we added instances from 3, 000 articles on news
stories “Hurricane Katrina” and the “Iraq war”.
These articles were collected and used to iden-
tify causal relations in news scenarios by Riaz and
Girju (2010). We used these collections because
natural disaster and war-related news articles are
rich in causal events and chains of such events.
In order to identify the causal associations with
high confidence, we decided to apply our model on
those verb pairs which have at least 30 instances
in the above mentioned documents. We acquired
10, 455 such verb pairs. The set of intra- and inter-
sentential instances of these verb pairs is referred
to as the development set for our model.

4.1 Explicit Causal Association (ECA)
In order to find the likelihood of a verb pair to en-
code causal relations, we define our novel metric
Explicit Causal Association (ECA) as follows:

ECA(vi, vj) =
1

| V P |
∑

I(vi,vj)
∈V P

(CD(vi, vj)× CI) (4)

where V P is the set of intra- and inter-sentential
instances (denoted by I(vi, vj)) of the verb pair
(vi, vj), CD determines the causal dependency of
the verb pair in unsupervised fashion (equation 2),
and CI finds the tendency of instance I of (vi, vj)
to belong to the cause class as compared to the
non-cause class using training corpus of event
pairs. The goal of ECA is to combine the unsu-
pervised causal dependency (i.e., CD) with the su-
pervised score of instance I of belonging to cause
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class than the non-cause one (i.e., CI ). Here, CD
represents the prior knowledge about the causal
association based on co-occurrence probabilities
and idf scores (equation 2). It can discover lots
of false positives because the co-occurrence prob-
abilities can fail to differentiate causality from any
other type of correlation. Therefore, we improve
this prior knowledge with the help of supervision
from the training corpus containing instances of
both cause and non-cause relations. The global
decision of the causal association is made by tak-
ing the average of scores on all the instances con-
taining that verb pair. Notice that CD can also be
moved out from the summation function in equa-
tion 4.

We define the function CI as follows:

CI =
n∑

k=1

log(
P (fk | c)
P (fk | ¬c)

) (5)

Here, the notations c and ¬ c represent cause
and non-cause class, respectively. The notation
fk represents the feature of an instance I . In this
work, we use some language features of events
and context of an instance I which are defined
later in this section. P(fk | c) and P(fk | ¬c) are
the smoothed probabilities of feature fk given the
cause and non-cause training instances. The value
of CI is positive only when the instance I has more
tendency to encode a cause relation than a non-
cause one. To avoid negative values, we map CI

scores to the range [0, 1] using CI−Cmin
Cmax−Cmin

where
Cmin (Cmax) is the minimum (maximum) value of
CI obtained on our development set, respectively.
Also, we add a small value ε to CI to avoid 0 value.
Similarly, to avoid negative scores of PMI in equa-
tion 2 we can map it to the range [0,1].

We present below the features for the calcula-
tion of CI . We use lexical, syntatic and semantic
features on verbs and verb phrases of both events
of a pair. These features include words, lemmas,
part-of-speech tags, all senses from WordNet for
the verbs and the lexical items of verb phrases.
These features were introduced by Bethard and
Martin (2008) (for an in-depth description of these
features see Bethard and Martin (2008)). Next, we
describe the set of features which are the contribu-
tions of this research.
1. Verbs Arguments: Words, lemma, part-of-

speech tags and all senses from WordNet for
subject and object of verbs of both events.

2. Verbs and Arguments Pairs: For this fea-

ture, we take the cross product of both
events of a pair (evi ,evj ) where evi =
[subjectvi] vi [objectvi] and evj = [subjectvj ]
vj [objectvj ]. Some examples of this fea-
ture are (subjectvi ,subjectvj ), (subjectvi ,vj),
(subjectvi ,objectvj ), etc. In this work, we use
unordered pairs as features (i.e., (vi,vj)) is
same as (vj ,vi)) because the temporal order of
events is unknown for the unlabeled develop-
ment set instances. In future, this feature can
be improved by adding temporal information.

The next three features are taken from the min-
imum relevant context (mincontext) of a verb
pair which we define as follows. mincontext of
a pair (vi, vj) in an intra-sentential instance is
<s>/m1 . . . vi . . . vj . . .m2/</s> – i.e., words be-
tween the discourse markers (i.e., m1, m2) or sen-
tence boundaries (i.e., <s>, </s>) whichever ap-
pear first in the sentence. The mincontext for the
pair (vi, vj) in an inter-sentential is given below:

<s> / m1 . . . vi . . .m2 / </s>
<s> / m1 . . . vj . . .m2 / </s>

3. Context Words: Lemmas of all words from
mincontext. This feature captures words other
than two events.

4. Context Main Verbs: All main verbs and their
lemmas from mincontext. It collects informa-
tion about all verbs that appear with the causal
and non-causal event pair.

5. Context Main Verb Pairs: The pairs of main
verbs from mincontext. The lemmas are taken
from the feature “Context Main Verbs” and
then the pairs on these lemmas are used as this
feature. For example, for lemmas of verbs (i.e.,
v1, v2, . . . , vk), pairs (i.e., (v1, v2), (v1, vk),
etc.) are used for this feature. This feature
is used to get information about the interest-
ing causal chains of verbs that may appear in
causal instances.

We propose next a novel metric ICA to avoid
the problem of training data sparsity.

4.2 Implicit Causal Association (ICA)

In order to determine the causal associations us-
ing ECA, we depend on explicit cause and non-
cause training instances for supervision. However,
it is possible that some strongly causal verb pairs
may frequently appear in implicit causal contexts.
Therefore, the causality of such pairs can remain
uncaptured by ECA which merely relies on ex-
plicit training instances. For example, a pair (fall,
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break) seems strongly causal, but it does not ap-
pear often in our explicit training corpus due to
training data sparsity. Thus, in order to handle
this problem, we propose a new metric called ICA.
This metric makes use of functions for the identi-
fication of roles of events in a cause relation. After
briefly describing the roles of events in causal re-
lations below, we continue with the description of
ICA.

4.2.1 Roles of Events in Cause Relation
Each of the two events in a cause relation can be
assigned either cause or effect role. For example
for the following training instance, the verb ap-
pearing after because represents cause event and
the verb before because represents effect event.
1. Yoga builds stamina because you maintain your poses

for a certain period of time. (Role: rC )

2. Yoga builds stamina because you maintain your poses for

a certain period of time. (Role: rE)

The notation rC and rE represents the classes of
cause and effect role of events, respectively. We
use core features of events to determine the like-
lihood of their roles in causation. These features
include lemma, part-of-speech tag, all senses from
WordNet of both verbs and their arguments (i.e.,
subject and object). Next, we use these features to
handle training data sparseness.

4.2.2 Handling of Training Data Sparsity
To deal with the problem of training data sparsity,
we define the metric ICA as follows:

ICA(vi, vj) =
1

| V P |
∑

I(vi,vj)
∈V P

(CD(vi, vj)× CI

×ERM(evi ,evj )
) (6)

where CD and CI are defined earlier and ERM
determines the likelihood of roles of the events in
the cause relation. We remind the reader that CD
is the unsupervised causal dependency of verb pair
and CI is the likelihood of instance I of the verb
pair to belong to the cause class than the non-cause
one using full set of features from section 4.1.

Events Roles Matching (ERM(evi ,evj )
) (equa-

tions 7 and 8) is the negative log-likelihood of
events evi and evj appearing as cause or effect role
determined using the explicit causal instances of
the training corpus and the core features of events
defined in section 4.2.1.
ERM(evi ,evj )

= −1.0×max(S(evi , rC) + S(evj , rE),

S(evi , rE) + S(evj , rC)) (7)

S(evi , rC) =

n∑

k=1

log(P (fk | rC)) (8)

S(evj , rE) =

n∑

k=1

log(P (fk | rE))

Here, S(evi , rC) is the score of evi being the
cause event and S(evj , rE) is the score of evj be-
ing the effect event. These scores are computed
using smoothed probabilities – i.e., P(fk | rC) and
P(fk | rE). Similarly, S(evi , rE) and S(evj , rC)
are calculated and max is taken. The high value
of ERM represents low matching of an event pair
(verbs and their arguments) in the explicit causal
instances of the training corpus. The high value
of ERM of an event pair can have one of the fol-
lowing two interpretations: (A) it is a non-causal
event pair, or (B) it is a causal event pair but this
pair and the pairs which are semantically closer to
it hardly appear in explicit causal contexts. In the
metric ICA, CI× CD(vi, vj) is used as a guiding
score to interpret ERM as follows:
1. If CI× CD(vi, vj) has high score then the value

of ERM is not penalized by this guiding score
because ERM’s value can be interpreted using
(B) above.

2. If CI× CD(vi, vj) has low score then the value
of ERM is penalized by this guiding score be-
cause (evi , evj ) can be a non-causal pair ac-
cording to the interpretation (A) above.

ICA is a boosting factor to determine causal
verb pairs which remain undiscovered because of
training data sparseness. We also define a Boosted
Causal Association (BCA) metric by adding ICA
to original ECA metric as follows:

BCA(vi, vj) =
1

| V P |
∑

I(vi,vj)
∈V P

(CD(vi, vj)× CI +

CD(vi, vj)× CI × ERM(evi ,evj )
) (9)

To build the knowledge base of causal asso-
ciations (KBc), we generate a ranked list of all
verb pairs based on the likelihood of causality en-
coded by these pairs. Here, we assume that verb
pairs are uniformally distributed across three cat-
egories - i.e., top one-third and bottom one-third
ranked verb pairs belong to Strongly Causal (Sc)
and Strongly Non-Causal (S¬c) categories and rest
of the pairs are considered Ambiguous (Ac). Fol-
lowing our assumption, we evaluate this catego-
rization in next section, but in future researchers
can perform empirical study of how to automat-
ically cluster verb pairs into three or more cate-
gories with respect to causation.
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5 Evaluation and Discussion

In this section, we present our evaluation of
knowledge base to identify causality between ver-
bal events. Specifically we performed experiments
to evaluate (1) the ranking of verb pairs based on
their likelihood of encoding causality, and (2) the
quality of the three categories of verb pairs inKBc

(i.e., Sc, Ac and S¬c). For this purpose, we col-
lected two test sets. For each test set, we randomly
selected 50 verb pairs from the list of 10, 455 verb
pairs in KBc. For each verb pair, we selected
randomly 3 intra- and 3 inter-sentential instances
from the English Gigaword corpus and the “Hur-
ricane Katrina” and “Iraq war” articles. In order
to keep the development set different from the test
sets, we automatically traversed the development
set to determine if any test instance is available in
it. In case of finding any such test instance, we
removed it from the development set to perform
evaluation on unseen test instances. Two annota-
tors were asked to provide Cause or Non-Cause
labels for each instance. They were provided with
annotation guidelines from the manipulation the-
ory of causality (Woodward, 2008). Given these
guidelines have been successfully used by Riaz
and Girju (2010), we use them here as well. For
ease of annotation, we randomly selected inter-
sentential instances such that the length of each
sentence is at most 40 words.

The human inter-annotator agreement achieved
on Test-set1 (Test-set2) is 90% (88.3%) and the
agreement on the cause class is 70% (62.7%), re-
spectively. The kappa score on Test-set1 (Test-
set2) is 0.75 (0.69), respectively. The Test-set1
(Test-set2) contains 25% (22%) causal instances,
respectively.

We employed Spearman’s rank correlation co-
efficient (equation 10) to compare the ranked list
of verb pairs based on the scores of our metrics
and the rank given by the human annotators. The
score P ranges from +1 to −1 where +1 and −1
show strong and negative correlation, respectively.

P =
n(

∑
xiyi)− (

∑
xi)(

∑
yi)√

n(
∑

x2
i )− (

∑
xi)2

√
n(

∑
y2i )− (

∑
yi)2

(10)

Here, n is the total number of verb pairs in the
test set, xi is the human annotation rank and yi is
the metric’s rank of verb pair i of the test set. The
values of xi and yi are determined as follows. For
each verb pair, Ch is calculated which is the num-
ber of cause labels given by both human annota-

Metric CEA ECA ICA BCA
Test-set1 -0.077 0.144 0.427 0.435
Test-set2 0.167 0.217 0.353 0.338

Table 1: The Spearman’s rank correlation coeffi-
cient for the metrics CEA, ECA, ICA and BCA.

Figure 1: The percentage of causal (%c) and non-
causal (%¬c) test instances in Sc,Ac and S¬c gen-
erated by the metrics CEA, ECA, ICA and BCA.

tors out of 6 instances of a verb pair. The pairs are
ranked in descending order according to the score
Ch s.t. the top scored pair(s) gets rank 50 and the
next to the top pair(s) gets rank 49 and so on. Sim-
ilarly, ranks are given to the verb pairs according
to the metric’s scores. This way of evaluation was
also used by Beamer and Girju (2009) for tempo-
rally ordered adjacent verb pairs. But here, we are
working with verb pairs appearing in any temporal
order in both intra- and inter-sentential instances.

We used ECA, ICA and BCA scores to gener-
ate the ranked list of all verb pairs. In this work,
we also used the state-of-the-art causality iden-
tifier CEA (Do et al., 2011) as baseline metric.
For each verb pair, we computed the likelihood of
causality by taking the average of CEA scores on
all instances of that pair in the development set.

The results with Spearman’s rank correlation
coefficient in Table 1 show that CEA is not very
capable of matching the human ranked list of pairs
as compared with our metrics (i.e., ECA, ICA and
BCA). Specifically, the difference is significant
for Test-set1 where the correlation coefficient with
CEA goes below 0. This behavior of CEA makes
sense because it is unsupervised and requires more
knowledge to perform well. As compared with
ECA, both ICA and BCA perform significantly
better to match human ranking. The Spearman’s
score gain by BCA on Test-set1 is of about 30
(52) points over ECA (CEA) and the gain by ICA
on Test-set2 is of about 13 (18) points over ECA
(CEA), respectively.

In order to explain the behavior of our metrics
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more clearly, we performed an evaluation of three
categories of verb pairs as follows. We generated
three categories of verb pairs using our metrics and
CEA. We combined two test sets to show the per-
centage of total causal and non-causal instances of
verb pairs that lie in Sc, Ac and S¬c using follow-
ing procedure. If a verb pair belongs to Sc and has
3 causal and 2 non-causal instances after human
agreement, then these 5 instances are considered
members of Sc. This step is performed for all verb
pairs in the test set. After this the percentage of
total causal and non-causal test instances are cal-
culated for each category (see Figure 1).

Figure 1 reveals that ICA, BCA and CEA are
successful in pulling more causal instances in Sc
as compared to ECA. But, CEA has a hard time
distinguishing cause from non-cause instances be-
cause it also brings the highest percentage of non-
causal instances in Sc. The reason is the depen-
dence of CEA on PMI scores of pairs of verbs and
arguments to make decision for causality where
PMI is not good enough to distinguish a simple
correlation from an asymmetric relation of causal-
ity. However, ICA and BCA work better by plac-
ing less non-causal instances in Sc as compared
with CEA. ICA and BCA also work better be-
cause by pulling more causal instances in Sc and
Ac, these metrics are keeping least percentage of
causal instances in S¬c. Also, ICA and BCA
bring more causal instances in Sc as compared
with ECA by handling training data sparseness.

Another important line of research is the con-
struction of a classifier on top of the component
of knowledge base for the classes of cause and
non-cause relations. This allows us to evaluate our
model in terms of standard evaluation measures -
i.e., precision, recall and F-score. These measures
can also be used to compare our model with su-
pervised classifier depending merely on shallow
contextual features with no information from the
knowledge base. Due to space limitations, we plan
to present such classifiers and evaluation in the fu-
ture.

5.1 Analysis

In this work, we have focused on determining the
predictive power of knowledge of causal associ-
ations of verb pairs to identify causality between
events. Our results reveal that our best metrics
(i.e., ICA and BCA) bring desired behavior of
keeping least percentage of total causal instances

in category S¬c. However, there is need to build a
classifier on top of knowledge base which can help
detection of non-causal instances for verb pairs lie
in Sc and Ac. Here, we state some brief details
of our test set which can help building such clas-
sifier in future. An important aspect to consider
is the highly skewed nature of real distribution of
test set. There are only 23.69% causal instances
in the test set and majority of these instances (i.e.,
56.7%) are intra-sentential instances. Therefore, a
classifier should have mechanism to decide why
inter-sentential instances of event pair are non-
causal most of the time. For example, some inter-
sentential events may not even be directly relevant
at first place because they appear in different sen-
tences. Another critical point to consider is the en-
coding of non-causal instances by strongly causal
verb pairs. For example, we asked one of the an-
notators to identify strongly causal verb pairs out
of 100 verb pairs of the test set. There are 22
such verb pairs determined by our annotator and
each of these pairs contain 43% causal instances
on the average. There are many factors (e.g., tem-
poral information, arguments of verbs) which can
make an instance of strongly causal verb pair non-
causal. For example, (call, respond) may encode
causality only if ecall temporally precedes erespond
as demonstrated by the following instances.
1. Deputies spotted the truck parked at the home of the sus-

pect’s father and called for assistance. The Border Patrol

agents and others responded. (CAUSE)

2. Prime Minister of Israel promptly responded to the

widespread unrest in the West Bank and Gaza, saying that

he would call a timeout to rethink Israel’s commitment to

peace talks. (NON-CAUSE)

In future, the above issues need to be addressed
to improve performance for the current task.

6 Conclusion

In this research, we have developed a knowledge
base (KBc

1) of causal associations of verb pairs
to detect causality. This resource provides the
causal associations in terms of three categories of
verb pairs (i.e., Strongly Causal, Ambiguous and
Strongly Non-Causal). We have proposed a set of
knowledge rich metrics to learn these associations.
Our analysis of results reveals the biases of differ-
ent metrics and brings important insights into the
future research directions to address the challenge
of detecting causality between verbal events.

1We will make the resource available.
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Appendix A. Notations

This appendix presents the details of important notations used in this paper.

Notation Equation(s) Explanation
evi 6, 7, 8, 9 Verbal event represented by the verb vi

KBc – Knowledge base of causal associations of verb pairs

Sc – Strongly Causal category of verb pairs

Ac – Ambiguous category of verb pairs

S¬c – Strongly Non-Causal category of verb pairs

mi – Discourse marker

mc 1 Causal marker (e.g., because)

f(I) 1 Function to select the most dependent pair from two dis-
course segments conjoined with causal marker

CD(vi, vj) 1, 2, 4, 6, 9 Causal dependency of the verb pair (vi, vj)

PSI(vi, vj) 1, 3 Penalization factor for the verbs of the pair (vi, vj) with
respect to their distance from the causal marker

pos(vi) 3 Distance of verb in terms of its position with respect to
causal marker

C(vp) 3 Count of main verbs appearing before causal marker

C(vq) 3 Count of main verbs appearing after causal marker

ECA(vi, vj) 4 Explicit Causal Association of the verb pair (vi, vj)

V P 4, 6, 9 Set of intra- and inter-sentential instances of a verb pair

I(vi, vj) 4, 6, 9 Instance of the verb pair (vi, vj)

CI 4, 5, 6, 9 Tendency of the instance I to belong to cause class than
the non-cause one

c 5 Cause class

¬c 5 Non-cause class

Cmin – Minimum value of CI obtained on the development set

Cmax – Maximum value of CI obtained on the development set

rC 7, 8 Class of cause role

rE 7, 8 Class of effect role

ICA(vi, vj) 6 Implicit Causal Association of the verb pair (vi, vj)

ERM(evi , evj ) 6, 7 Events Roles Matching (ERM) determines the negative
log-likelihood of events to belong to class of cause or
effect role

S(evi , rC) 8 Score of evi to belong to the class of cause role

S(evj , rE) 8 Score of evj to belong to the class of effect role

P (fk|.) 5, 8 Probability of feature fk given some class

BCA(vi, vj) 9 Boosted Causal Association of the verb pair (vi, vj)

Table 2: Details of notations.
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