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Abstract

Determining the quality of an ongoing in-
teraction in the field of Spoken Dialogue
Systems is a hard task. While existing
methods employing automatic estimation
already achieve reasonable results, still
there is a lot of room for improvement.
Hence, we aim at tackling the task by es-
timating the error of the applied statistical
classification algorithms in a two-stage ap-
proach. Correcting the hypotheses using
the estimated model error increases per-
formance by up to 4.1 % relative improve-
ment in Unweighted Average Recall.

1 Introduction

Evaluating the quality of Spoken Dialogue Sys-
tems (SDSs) has long since been a challenging
task. While objective metrics like task completion
and dialogue duration are not human-centered,
subjective measures compensate for this by mod-
eling the user’s subjective experience. This infor-
mation may be used to increase the dialogue sys-
tem’s performance (cf. (Ultes et al., 2012b)).

In human-machine dialogues, however, there is
no easy way of deriving the user’s satisfaction
level. Moreover, asking real users for answering
questions about the system performance requires
them to spend more time talking to the machine
than necessary. It can be assumed that a regular
user does not want to do this as human-machine
dialogues usually have no conversational charac-
ter but are task oriented. Hence, automatic ap-
proaches are the preferred choice.

Famous work on determining the satisfaction
level automatically is the PARADISE framework
by Walker et al. (1997). Assuming a linear depen-
dency between objective measures and User Satis-
faction (US), a linear regression model is applied
to determine US on the dialogue level. This is not

only very costly, as dialogues must be performed
with real users, but also inadequate if quality on a
finer level is of interest, e.g., on the exchange level.

To overcome this issue, work by Schmitt et
al. (2011) introduced a new metric for measuring
the performance of an SDS on the exchange level
called Interaction Quality (IQ). They used statisti-
cal classification methods to automatically derive
the quality based on interaction parameters. Qual-
ity labels were applied by expert raters after the di-
alogue on the exchange level, i.e., for each system-
user-exchange. Automatically derived parameters
were then used as features for creating a statistical
classification model using static feature vectors.
Based on the same data, Ultes et al. (2012a) put
an emphasis on the sequential character of the IQ
measure by applying temporal statistical classifi-
cation using Hidden Markov Models (HMMs) and
Continuous Hidden Markov Models (CHMMs).

However, statistical classifiers usually do not
achieve perfect performance, i.e., there will al-
ways be misclassification. While most work fo-
cuses on applying different statistical models and
improving them (Section 2), learning the error to
correct the result afterwards represents a different
approach. Therefore, we present our approach on
estimating the error of IQ recognition models to
correct their hypothesis in order to eventually yield
better recognition rates (Section 4). The definition
of IQ and data used for the evaluation of our ap-
proach (Section 5) is presented in Section 3. Our
approach is also compared to a simple hierarchical
approach also discussed in Section 5.

2 Related Work on Dialogue Quality

Besides Schmitt et al., other research groups have
performed numerous work on predicting subjec-
tive quality measures on an exchange level, all not
incorporating any form of error correction.

Engelbrecht et al. (2009) presented an approach
using Hidden Markov Models (HMMs) to model
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Figure 1: The three different modeling levels rep-
resenting the interaction at exchange en.

the SDS as a process evolving over time. Perfor-
mance ratings on a 5 point scale (“bad”, “poor”,
“fair”, “good”, “excellent”) have been applied by
the users during the dialogue.

Higashinaka et al. (2010) proposed a model for
predicting turn-wise ratings for human-human dia-
logues analyzed on a transcribed conversation and
human-machine dialogues with text from a chat
system. Ratings ranging from 1 to 7 were ap-
plied by two expert raters labeling for smoothness,
closeness, and willingness.

Hara et al. (2010) derived turn level ratings from
overall ratings of the dialogue which were applied
by the users afterwards on a five point scale. Us-
ing n-grams to model the dialogue, results for dis-
tinguishing between six classes at any point in the
dialogue showed to be hardly above chance.

3 The LEGO Corpus

For estimating the Interaction Quality (IQ), the
LEGO corpus published by Schmitt et al. (2012)
is used. IQ is defined similarly to user satisfac-
tion: While the latter represents the true disposi-
tion of the user, IQ is the disposition of the user as-
sumed by an expert rater. The LEGO corpus con-
tains 200 calls (4,885 system-user-exchanges) to a
bus information system (cf. (Raux et al., 2006)).
Labels for IQ on a scale from 1 (extremely un-
satisfied) to 5 (satisfied) have been assigned by
three expert raters with an inter-rater agreement of
κ = 0.54. In order to ensure consistent labeling,
the expert raters had to follow labeling guidelines
(cf. (Schmitt et al., 2012)).

Parameters used as input variables for the IQ
model have been derived from the dialogue sys-
tem modules automatically for each exchange on
three levels: the exchange level, the dialogue level,
and the window level (see Figure 1). As parame-
ters like the confidence of the speech recognizer
can directly be acquired from the dialogue mod-
ules, they constitute the exchange level. Based on
this, counts, sums, means, and frequencies of ex-
change level parameters from multiple exchanges

are computed to constitute the dialogue level (all
exchanges up to the current one) and the window
level (the three previous exchanges). A complete
list of parameters is listed in (Schmitt et al., 2012).

Schmitt et al. (2011) performed IQ recognition
on this data using linear SVMs. They achieved an
Unweighted Average Recall (UAR) of 0.58 based
on 10-fold cross-validation. Ultes et al. (2012a)
applied HMMs and CHMMs using 6-fold cross
validation and a reduced feature set achieving an
UAR of 0.44 for HMMs and 0.39 for CHMMs.

4 Error Estimation Model

Error correction may be incorporated into the sta-
tistical classification process by a two-stage ap-
proach, which is depicted in Figure 2.

At the first stage, a statistical classification
model is created using interaction parameters as
input and IQ as target variable. For this work,
a Support Vector Machine (SVM) and a Rule
Learner are applied. At the second stage, the er-
ror er of the hypothesis h0 is calculated by

er = h0 − r , (1)

where the reference r denotes the true IQ value.
In order to limit the number of error classes, the
signum function is applied. It is defined as

sgn(x) :=





−1 if x < 0 ,

0 if x = 0 ,

1 if x > 0 .

(2)

Therefore, the error is redefined as

er = sgn(h0 − r) . (3)

Next, a statistical model is created similarly to
stage one but targeting the error er. The difference
is that the input parameter set is extended by the IQ
hypothesis h0 of stage one. Here, two approaches
are applied: Creating one model which estimates
all error classes (−1,0,1) and creating two mod-
els where each estimates positive (0,1) or negative
error (−1,0). For the latter variant, the error of
the class which is not estimated by the respective
model is mapped to 0. By this, the final error hy-
pothesis he may be calculated by simple addition
of both estimated error values:

he = he−1 + he+1 . (4)

Combining the hypothesis of the error estima-
tion he with the hypothesis of the IQ estimation h0
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Figure 2: The complete IQ estimation process including error correction. After estimating IQ in Stage 1
(upper frame), the error is estimated and the initial hypothesis is corrected in Stage 2 (lower frame).

at stage one produces the final hypothesis hf de-
noting the Interaction Quality estimation corrected
by the estimated error of the statistical model:

hf = h0 − he . (5)

As the error estimation will not work perfectly,
it might recognize an error where there is none or
– even worse – it might recognize an error contrary
to the real error, e.g., −1 instead of +1. Therefore,
the corrected hypothesis might be out of range. To
keep hf within the defined bounds of IQ, a lim-
iting functions is added to the computation of the
final hypothesis resulting in

hf = max(min(h0 − he), bu), bl) , (6)

where bu denotes the upper bound of the IQ labels
and bl the lower bound.

5 Experiments and Results

All experiments are conducted using the LEGO
corpus presented in Section 3. By applying 5-fold
cross validation, hypotheses for each system-user-
exchange which is contained in the LEGO corpus
are estimated. Please note that some textual inter-
action parameters are discarded due to their task-
dependent nature leaving 45 parameters1.

For evaluation, we rely on two measures: The
unweighted average recall (UAR) and the root

1Removed parameters: Activity, LoopName, Prompt,
RoleName, SemanticParse, SystemDialogueAct, UserDia-
logueAct, Utterance

mean squared error (RMSE). UAR represents the
accuracy corrected by the effects of unbalanced
data and is also used by cited literature. RMSE is
used since the error correction method is limited
to correcting the results only by one. For bigger
errors, the true value cannot be reached.

The performances of two different statistical
classification methods are compared, both applied
for stage one and stage two: Support Vector Ma-
chine (SVM) (Vapnik, 1995) using a linear ker-
nel, which is also used by Schmitt et al. (2011),
and Rule Induction (RI) based on Cohen (1995).
Furthermore, a normalization component is added
performing a range normalization of the input pa-
rameters in both stages. This is necessary for using
the implementation of the statistical classification
algorithms at hand.

For error estimation, two variants are explored:
using one combined model for all three error
classes (−1,0,+1) and using two separate models,
one for distinguishing between −1 and 0 and one
for distinguishing between +1 and 0 with com-
bining their results afterwards. While using RI for
error estimation yields reasonable performance re-
sults for the combined model, it is not suitable for
error estimation using two separate models as all
input vectors are mapped to 0. Hence, for the two
model approach, only the SVM is applied .

Results for applying error correction (EC) are
presented in Table 1. Having an SVM at stage one
(column SVM), recognition performance is rela-
tively improved by up to 4.6 % using EC. With RI
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Table 1: Results for IQ recognition: UAR and
RMSE for IQ recognition without stage two, with
error correction at stage two, and with a simple hi-
erarchical approach.

UAR RMSE
stage two SVM RI SVM RI

none 51.1% 60.3% 0.97 0.88
error correction

SVM 50.7% 59.6% 0.97 0.83
RI 52.5% 58.1% 0.88 0.85

2xSVM 53.2% 60.6% 0.88 0.85
simple hierarchical approach

SVM 50.2% 57.6% 0.97 0.85
RI 58.9% 58.7% 0.88 0.88

at stage one, performance is only increased by up
to 0.5 % which has shown to be not significant us-
ing the Wilcoxon test. The relative improvements
in UAR are depicted in Figure 3.

Furthermore, these results are compared to a
simple hierarchical approach (SH) where the hy-
pothesis h0 of the stage one classifier is used as
an additional feature for the stage two classifier
targeting IQ directly. Here, the performance of
the stage two classifier is of most interest since
this approach can be viewed as one stage classi-
fication with an additional feature. The results in
Table 1 show that RI does not benefit from addi-
tional information (comparison of last row with
one stage RI recognition). SVM recognition at
stage two, though, shows better results. While its
performance is reduced using the SVM hypothe-
sis as additional feature, adding the RI hypothesis
improved UAR up to 12.6 % relatively. However,
there is no reasonable scenario where one would
not use the better performing RI in favor of using
its results as additional input for SVM recognition.

The question remains why SVM benefits from
Error Correction as well as from adding additional
input parameters while RI does not. It remains un-
clear if this is an effect of the task characteristics
combined with the characteristics of the classifi-
cation method. It may as well be caused by low
classification performance. A classifier with low
performance might be more likely to improve its
performance by additional information or EC.

6 Conclusion

In this work, we presented an approach for im-
proving the recognition of Interaction Quality by
estimating the error of the classifier in order to cor-
rect the hypothesis. For the resulting two-staged
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Figure 3: The relative improvement of EC in UAR
grouped by stage one classifiers SVM and RI.

approach, two different statistical classification al-
gorithm were applied for both stages, i.e., SVM
and Rule Learner. Performance could be improved
for both stage one classifiers using separate er-
ror models relatively improving IQ recognition by
up to 4.1 %. The proposed error correction ap-
proach has been compared to a simple hierarchi-
cal approach where the hypohtesis of stage one
is used as additional feature of stage two classi-
fication. This apprach relatively improved SVM
recognition by up to 12.6 % using a Rule Learner
hypothesis as additional feature. However, as one-
stage Rule Learner classification already provides
better results than this hierarchical approach, is
does not seem reasonable to employ this config-
uration. Nonethelesse, why only the SVM could
benefit from additional information (error correc-
tion or simple hierarchical appraach) remains un-
clear and should be investigated in future work.

Moreover, some aspects of the error correc-
tion approach have to be discussed controversially,
e.g., applying the signum function for calculating
the error. While the obvious advantage is to limit
the number of error classes a statistical classifica-
tion algorithm has to estimate, it also prohibits of
being able to correct all errors. If the absolute er-
ror is bigger than one it can never be corrected.
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