
Proceedings of the SIGDIAL 2013 Conference, pages 127–131,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

A Prolog Datamodel for State Chart XML

Stefan Radomski
TU Darmstadt

Telekooperation Group
Hochschulstrasse 10

radomski@tk.informatik
.tu-darmstadt.de

Dirk Schnelle-Walka
TU Darmstadt

Telekooperation Group
Hochschulstrasse 10

dirk@tk.informatik
.tu-darmstadt.de

Stephan Radeck-Arneth
TU Darmstadt

Telekooperation Group
Hochschulstrasse 10

arneth@rbg.informatik
.tu-darmstadt.de

Abstract

SCXML was proposed as one description
language for dialog control in the W3C
Multimodal Architecture but lacks the fa-
cilities required for grounding and rea-
soning. This prohibits the application of
many dialog modeling techniques for mul-
timodal applications following this W3C
standard. By extending SCXML with a
Prolog datamodel and scripting language,
we enable those techniques to be em-
ployed again. Thereby bridging the gap
between respective dialog modeling re-
search and a standardized architecture to
access and coordinate modalities.

1 Introduction

Deploying multimodal applications has long been
an activity of custom solutions, each with their
own access to modalities, approaches to sensor fu-
sion and fission and techniques for dialog mod-
eling. With the advent of the W3C MMI archi-
tecture (Bondell et al., 2012), the W3C proposed
a standardized approach to ensure interoperabil-
ity among its constituting components (Schnelle-
Walka et al., 2013; Dahl, 2013).

The architecture proposed by the W3C decom-
poses a multimodal application into a nested struc-
ture of interaction managers for dialog control and
modality components for in- and output. An ap-
plication is conceived as a set of control docu-
ments expressed in SCXML (Barnett et al., 2012)
or CCXML (Auburn et al., 2011) for the interac-
tion managers and a set of presentation documents
with modality-specific markup for the modality
components. A topmost root controller document
describes the global dialog and instantiates modal-
ity components as required. Each modality com-
ponent can, in turn, again be an interaction man-
ager, handling more fine granular concerns of dia-

log control, such as error correction or even sensor
fusion/fission.

As one proposed XML dialect for control doc-
uments, State Chart XML (SCXML) is given the
responsibility to model an applications dialog be-
havior. SCXML as such is a markup language to
express Harel state charts (Harel and Politi, 1998)
with nested and parallel machine configurations.
The transitions between configurations are trig-
gered by events delivered into the interpreter ei-
ther from external components or raised by the
interpreter itself. Whenever an event arrives, the
SCXML interpreter can perform actions described
as executable content. This includes invoking or
sending events to external components, processing
data or updating the datamodel via an embedded
scripting language.

SCXML has been proven to be suitable to de-
couple the control flow and presentation layer
in dialog management (Wilcock, 2007). It has
been used in several applications to express dialog
states (Brusk et al., 2007) or to easily incorporate
external information (Sigüenza Izquierdo et al.,
2011). However, SCXML seems to be suited only
to implement finite state or frame-based/form-
filling dialogue management approaches. Appli-
cations using theses dialog techniques are often-
times inflexible as they lack grounding and rea-
soning. In this regard, Fodor and Huerta (2006)
demand that dialog managers should feature: (i) a
formal logic foundation, (ii) an interference en-
gine, (iii) general purpose planners and (iv) knowl-
edge representation and expressiveness.

Most of these requirements are addressed by
employing Prolog. Embedding it as a scripting
language into SCXML allows multimodal applica-
tions in the W3C MMI Architecture to employ the
more elaborate dialog management techniques, re-
sulting in more natural and flexible interaction. In
this paper we describe our integration of Prolog
as an embedded scripting language in an SCXML

127



datamodel. All of the work described here is im-
plemented as part of our uSCXML interpreter1 by
embedding the SWI Prolog implementation.

2 The Prolog Datamodel

Datamodels in SCXML are more than simple
repositories for storing data. With the exception
of the null datamodel, they provide access to
embedded scripting languages. The datamodels
already specified by the SCXML draft are the
null, the xpath and the ecmascript data-
model. Prolog itself is a declarative language for
logic programming in which facts and rules are
used to answer queries. The result of a query is
either a boolean value or the set of valid assign-
ments for the queries variables.

In the following sections, we will describe our
integration of Prolog as a datamodel in SCXML.
The structure of the description loosely follows the
existing descriptions for datamodels already found
in the SCXML draft.

2.1 Assignments

In an SCXML document, there are two elements
which will assign values to variables in the data-
model. These are <data> for initial assignments
and <assign> itself. In Prolog, variable assign-
ment is only available in the scope of a query. To
realize variable assignment nevertheless, we in-
troduce the variables as predicates, with their as-
signed data as facts. Listing 1 exemplifies some
assignments followed by their resulting Prolog
facts.
<data id="father">

bob, jim.
bob, john.

</data>
% father(bob, jim).
% father(bob, john).

<data id="">
mother(martha, jim).
mother(martha, john).

</data>
% mother(martha, jim).
% mother(martha, john).

<assign location="">
retract(father(bob, jim)).
assert(father(steve, jim)).

</assign>
% father(bob, john).
% father(steve, jim).

<data id="childs">
<child name="john" father="bob" />
<child name="jim" father="bob" />

</data>
% childs([
% element(child,
% [father=bob, name=john], []),

1https://github.com/tklab-tud/uscxml

% element(child,
% [father=bob, name=jim], [])]).

<data id="household">
{
name: "The Bobsons",
members: [’bob’, ’martha’, ’jim’, ’john’]

}
</data>
% household({
% name:’The Bobsons’,
% members:[bob, martha, jim, john]}).

Listing 1: Assignments and their results in Prolog.

If given, the id or location attribute iden-
tifies the predicate for which the content is to be
asserted as fact, otherwise the content is assumed
to be a dot-separated list of prolog queries or ex-
pressions. The content might also be loaded per
URL in the element’s src attribute. In the con-
text of SCXML, it is important to support XML
and JSON data as shown in the last two examples.
Not only enables this an application developer to
load data from existing XML and JSON files, it is
also important to support these representations for
incoming events as we will see in the next section.

There is no standardized representation for
XML DOMs or JSON data in Prolog. We prag-
matically settled upon the structure returned by the
SWI-Prolog SGML parser and the JSON converter
as de-facto standards respectively.

With the Prolog datamodel, having an id
or location attribute at assignment elements
seems superfluous. We do keep them as the
SCXML draft specifies these as required at-
tributes.

2.2 Structure of Events

Whenever an event is received by the SCXML in-
terpreter, it has to be transformed into a suitable
representation in order to operate on its various
fields and content as defined by the SCXML draft.
We choose to represent an event as the single pred-
icate event/1 with its facts as compound terms
reflecting the event’s fields as shown in listing 2.
event(name(’foo’)).
event(type(’external’)).
event(sendid(’s1.bar’)).
event(origin(’http://host/path/basichttp’)).
event(origintype(’http://www.w3.org/TR/scxml

/#BasicHTTPEventProcessor’)).
event(invokeid(’’)).
event(data(...)).
event(param(...)).
event(raw(...)).

Listing 2: Example facts for event/1.

This representation enables access to the events
individual fields by simple queries such as
event(name(X)), which will resolve X to the

128



event’s name foo. Whenever the interpreter is
about to process a new event, all old facts about
event/1 are retracted and reasserted with regard
to the new event.

The event’s data field may contain a space nor-
malized string as an atomic term, an XML DOM
or, optionally, data from a JSON structure. The
structure of JSON and XML DOMs is the same as
with assignments in listing 1.

2.3 Scripting
The <script> element either contains Prolog
expressions as they would be written in a Prolog
file or references such a file directly via its src at-
tribute. Together with <assign> and <data>,
this element is the third available to load Prolog
files into the SCXML interpreter. This is some-
what undesirable and we would propose to use
(i) <data> to establish initial a-priori knowledge
as facts, (ii) <assign> for subsequent changes
and additions to facts and (iii) <script> to in-
troduce new rules or load Prolog files containing
primarily rules.

It is important to note that we do provide a full
ISO-Prolog implementation at runtime. This en-
ables an application developer to load arbitrary
Prolog files with all their facts and rules.

2.4 System Variables
The SCXML draft requires the datamodel to ex-
pose various platform specific values to the data-
model. These are the identifier of the current ses-
sion, the name of the document and the available
I/O processors to send and receive events. Follow-
ing the approach of defining predicates to provide
access to information in the datamodel, we intro-
duced predicates as given in listing 3.
% name/1:
name("foo").

% sessionid/1:
sessionid("bar").

% ioprocessors/1:
ioprocessors(

basichttp(
location(’http://host/path/basichttp’))).

ioprocessors(
scxml(location(’http://host/path/scxml’))).

% ioprocessors/2:
ioprocessors(

name(basichttp),
location(’http://host/path1’)).

ioprocessors(
name(’http://www.w3.org/TR/scxml/#

BasicHTTPEventProcessor’),
location(’http://host/path1’)).

...

Listing 3: Predicates for system variables.

Defining two predicates for ioprocessors is sim-
ply a matter of convenience as their short names
(e.g. basichttp or scxml) are suited as functors
for compound terms, where their canonic names
are not. Therefore ioprocessors/1 will only
contain the short names, and ioprocessors/2
contains both. This allows us to send events, e.g
with the basichttp ioprocessor via:
<send type="basichttp"

targetexpr="ioprocessors(basichttp(
location(X)))"

event="foo">

Listing 4: Sending ourself an event via basichttp.

2.5 Conditional Expressions

Conditional expressions in SCXML are used
to guard transitions and as part of <if> and
<elseif> elements in executable content. They
consist of a single, datamodel specific expression
that ought to evaluate to a boolean value. In the
case of our Prolog datamodel, these expressions
can take the form of an arbitrary query (see list-
ing 5). If there exists at least one solution to the
query, the conditional expression will be evaluated
to true, and false otherwise.
% Is there someone who is not the father
% of Jim and older than bob?
<if cond="not(father(X, jim)),

older(X, bob).">

% Was the current event received from an
% external component?
<transition
target="s3"
cond="event(type(X)), X=’external’"/>

% Does the JSON structure in the event’s
% data contain a household whose name
% is ’The Bobsons’?
<transition
target="s5"
cond="event(data(household(name:X))),

X=’The Bobsons’"/>

Listing 5: Boolean expressions in cond attribute.

2.6 Evaluating as String

There are several situations in the SCXML draft,
where an element from the datamodel needs to
be represented as a string. These are usually at-
tributes of elements that equal or end in expr, e.g.
log.expr or send.targetexpr.

In these contexts, the interpreter will allow for
queries with a single free variable that has to re-
solve to an atomic term. The actual value of the
expression is then the string representation of the
variable from the last solution to the query (see
listing 6).

129



% This query only has a single solution
<log label="Event Name"

expr="event(name(X))" />

% This query has multiple solutions, only the
% last is used when evaluating as string
<log label="Bob’s youngest son"

expr="father(bob, X)" />

Listing 6: Evaluating an expression as string.

2.7 Foreach
The <foreach> element in SCXML allows to
iterate over values as part of executable content.
Its attributes are array as an iterable expres-
sion, item as the current element in the array and
index as the current iteration index.

In our Prolog datamodel, this element is avail-
able to iterate over all solutions of a query as
shown in listing 7.
<foreach array="father(bob, X)"

item="child"
index="index">

<log label="child" expr="child(X)" />
<log label="index" expr="index(X)" />

</foreach>

% results in the following log output
child: jim
index: 0
child: john
index: 1
child: jack
index: 2

Listing 7: Foreach expressions.

3 Example

Listing 8 exemplifies some of the language fea-
tures of the Prolog datamodel. We start by intro-
ducing two predicates with the <data> element,
the first defined as dot seperated facts, the second
one as inline Prolog expressions. In the first state
s1, we iterate all children of bob and log their
names. Transitioning to the next state is performed
if bob and martha have a common child. In s2, we
send ourself an event containing a XML snippet
using the basichttp I/O processor. Then we tran-
sition to the final state if there is an element with
a tagname of p in the received XML document.
In the final state we print all facts we established
via Prolog’s listing/1 predicate and the inter-
preter stops.
<scxml datamodel="prolog">

<datamodel>
<data id="father">

bob, jim.
bob, john.

</data>
<data id="">

mother(martha, jim).
mother(martha, john).

</data>
</datamodel>

<state id="s1">
<onentry>
<foreach array="father(bob, X)"

item="child"
index="index">

<log label="index" expr="index(X)" />
<log label="child" expr="child(X)" />

</foreach>
</onentry>
<transition target="s2"

cond="mother(martha, X),
father(bob, X)"/>

</state>
<state id="s2">
<onentry>
<send type="basichttp"

targetexpr="ioprocessors(
basichttp(location(X)))"

event="foo">
<content>
<p>Snippet of XML</p>

</content>
</send>

</onentry>
<transition
cond="member(element(’p’,_,_), X),

event(data(X))" />
</state>
<state final="true">
<log label="Listing" expr="listing." />

</state>
</scxml>

Listing 8: Example SCXML document.

4 Conclusion

Providing a Prolog datamodel for SCXML enables
applications in the W3C MMI architecture to em-
ploy grounding and reasoning for facts established
during a prior to a dialog. It even enables develop-
ers to load complete, existing Prolog programs to
to be used during event processing. This extends
SCXML to fulfill the requirements for dialog man-
agement as defined by Fodor and Huerta (2006).

There are multiple variations to the integration
of Prolog and more experience is needed still to
determine whether the approach presented here is
optimal.

References

RJ Auburn, Paolo Baggia, and Mark
Scott. 2011. Voice browser call control
(CCXML). W3C recommendation, W3C,
July. http://www.w3.org/TR/2011/REC-ccxml-
20110705/.

Jim Barnett, Rahul Akolkar, RJ Auburn, Michael
Bodell, Daniel C. Burnett, Jerry Carter, Scott
McGlashan, Torbjörn Lager, Mark Helbing,
Rafah Hosn, T.V. Raman, Klaus Reifenrath,
and No’am Rosenthal. 2012. State chart XML
(SCXML): State machine notation for con-
trol abstraction. W3C working draft, W3C,
February. http://www.w3.org/TR/2012/WD-scxml-
20120216/.

130



Michale Bondell, Deborah Dahl, Ingmar Kliche, Jim
Larson, Brad Porter, Dave Raggett, T.V. Raman,
Bertha Helena Rodriguez, Muthuselvam Selvari,
Raj Tumuluri, Andrew Wahbe, Piotr Wiechno, and
Moshe Yudkowsky. 2012. Multimodal Architecture
and Interfaces. W3C recommendation, W3C, Oc-
tober. http://www.w3.org/TR/2012/REC-mmi-arch-
20121025/.

Jenny Brusk, Torbjörn Lager, Anna Hjalmarsson, and
Preben Wik. 2007. Deal: dialogue management in
scxml for believable game characters. In Proceed-
ings of the 2007 conference on Future Play, pages
137–144. ACM.

Deboraha Dahl. 2013. The w3c multimodal architec-
ture and interfaces standard. Journal on Multimodal
User Interfaces, pages 1–12.

Paul Fodor and Juan M Huerta. 2006. Planning and
logic programming for dialog management. In Spo-
ken Language Technology Workshop, 2006. IEEE,
pages 214–217. IEEE.

David Harel and Michal Politi. 1998. Modeling Re-
active Systems with Statecharts: The Statemate Ap-
proach. McGraw-Hill, Inc., August.

Dirk Schnelle-Walka, Stefan Radomski, and Max
Mühlhäuser. 2013. Jvoicexml as a modality com-
ponent in the w3c multimodal architecture. Journal
on Multimodal User Interfaces, pages 1–12.

Álvaro Sigüenza Izquierdo, José Luis Blanco Murillo,
Jesús Bernat Vercher, and Luis Alfonso
Hernández Gómez. 2011. Using scxml to integrate
semantic sensor information into context-aware user
interfaces.

Graham Wilcock. 2007. SCXML and voice interfaces.
In 3rd Baltic Conference on Human Language Tech-
nologies, Kaunas, Lithuania. Citeseer.

131


