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Abstract

Barge-in enables the user to provide input
during system speech, facilitating a more
natural and efficient interaction. Stan-
dard methods generally focus on single-
stage barge-in detection, applying the di-
alogue policy irrespective of the barge-in
context. Unfortunately, this approach per-
forms poorly when used in challenging
environments. We propose and evaluate
a barge-in processing method that uses a
prediction strategy to continuously decide
whether to pause, continue, or resume the
prompt. This model has greater task suc-
cess and efficiency than the standard ap-
proach when evaluated in a public spoken
dialogue system.

Index Terms: spoken dialogue systems, barge-in

1 Introduction

Spoken dialogue systems (SDS) communicate
with users with spoken natural language; the op-
timal SDS being effective, efficient, and natural.
Allowing input during system speech, known as
barge-in, is one approach that designers use to
improve system performance. In the ideal use
case, the system detects user speech, switches off
the prompt, and then responds to the user’s utter-
ance. Dialogue efficiency improves, as the sys-
tem receives information prior to completing its
prompt, and the interaction becomes more natu-
ral, as the system demonstrates more human-like
turn-taking behavior. However, barge-in poses a
number of new challenges; the system must now
recognize and process input during its prompt that
may not be well-formed system directed speech.
This is a difficult task and standard barge-in ap-
proaches often stop the prompt for input that will
not be understood, subsequently initiating a clari-
fication sub-dialogue (“I’m sorry, I didn’t get that.

You can say...etc.”). This non-understood barge-in
(NUBI) could be from environmental noise, non-
system directed speech, poorly-formed system di-
rected speech, legitimate speech recognition diffi-
culties (such as acoustic model mismatch), or any
combination thereof.

This paper proposes and evaluates a barge-in
processing method that focuses on handling NU-
BIs. Our Prediction-based Barge-in Response
(PBR) model continuously predicts interpretation
success by applying adaptive thresholds to incre-
mental recognition results. In our view, predicting
whether the recognition will be understood has far
more utility than detecting whether the barge-in
is truly system directed speech as, for many do-
mains, we feel only understandable input has more
discourse importance than system speech. If the
input is predicted to be understood, the prompt is
paused. If it is predicted or found to be NUBI, the
prompt is resumed. Using this method, the sys-
tem may resume speaking before recognition is
complete and will never initiate a clarifying sub-
dialogue in response to a NUBI. The PBR model
was implemented in a public Lets Go! statistical
dialogue system (Raux et al., 2005), and we com-
pare it with a system using standard barge-in meth-
ods. We find the PBR model has a significantly
better task success rate and efficiency.

Table 1 illustrates the NUBI responses produced
by the standard barge-in (Baseline) and PBR mod-
els. After both prompts are paused, the standard
method initiates a clarifying sub-dialogue whereas
PBR resumes the prompt.

We first provide background on Incremental
Speech Recognition and describe the relevant re-
lated work on barge-in. We then detail the
Prediction-based Barge-in Response model’s op-
eration and motivation before presenting a whole-
call and component-wise analysis of the PBR

1Work done while at AT&T Labs - Research
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Table 1: System response to Non-Understood Barge-In (NUBI)

Baseline Ok, sixty one <NUBI> Sorry, say a bus route like twenty eight x
PBR Ok, sixty one <NUBI> sixty one c. Where are you leaving from?

model. The paper concludes with a discussion of
our findings and implications for future SDS.

2 Background and Related Work

Incremental Speech Recognition: Incremental
Speech Recognition (ISR) provides the real-time
information critical to the PBR model’s continu-
ous predictions. ISR produces partial recognition
results (“partials”) until input ceases and the “fi-
nal” recognition result is produced following some
silence. As partials have a tendency to be revised
as more audio is processed, stability measures are
used to predict whether a given partial hypothe-
sis will be present in the final recognition result
(McGraw and Gruenstein, 2012; Selfridge et al.,
2011). Here, we use Lattice-Aware ISR, which
produces partials after a Voice Activity Detector
(VAD) indicates speech and limits them to be a
complete language model specified phrase or have
guaranteed stability (Selfridge et al., 2011).

Barge-In: Using the standard barge-in model,
the system stops the prompt if barge-in is detected
and applies the dialogue logic to the final recogni-
tion result. This approach assumes that the barge-
in context should not influence the dialogue pol-
icy, and most previous work on barge-in has fo-
cused on detection: distinguishing system directed
speech from other environmental sounds. Cur-
rently, these methods are either based on a VAD
(e.g. (Ström and Seneff, 2000)), ISR hypothe-
ses (Raux, 2008), or some combination (Rose and
Kim, 2003). Both approaches can lead to detection
errors: background speech will trigger the VAD,
and partial hypotheses are unreliable (Baumann et
al., 2009). To minimize this, many systems only
enable barge-in at certain points in the dialogue.

One challenge with the standard barge-in model
is that detection errors can initiate a clarifying sub-
dialogue to non-system directed input, as it is un-
likely that this input will be understood (Raux,
2008). Since this false barge-in, which in most
cases is background speech (e.g. the television), is
highly indicative of poor recognition performance
overall, the system’s errant clarifying response can
only further degrade user experience.

Strom and Seneff (2000) provide, to our knowl-

edge, the only mature work that proposed deviat-
ing from the dialogue policy when responding to
a barge-in recognition. Instead of initiating a clar-
ifying sub-dialogue, the system produced a filled-
pause disfluency (’umm’) and resumed the prompt
at the phrase boundary closest to the prompt’s sus-
pension point. However, this model only operated
at the final recognition level (as opposed the incre-
mental level) and, unfortunately, they provide no
evaluation of their approach. An explicit compar-
ison between the approaches described here and
the PBR model is found in Section 3.5.

3 Prediction-based Barge-in Response

The PBR model is characterized by three high-
level states: State 1 (Speaking Prediction), whose
goal is to pause the prompt if stability scores pre-
dict understanding; State 2 (Silent Prediction),
whose goal is to resume the prompt if stability
scores and the incremental recognition rate pre-
dict non-understanding; and State 3 (Completion),
which operates on the final recognition result, and
resumes the prompt unless the recognition is un-
derstood and the new speech act will advance the
dialogue. Here, we define “advancing the dia-
logue” to be any speech act that does not start a
clarifying sub-dialogue indicating a NUBI. Tran-
sitions between State 1 and 2 are governed by
adaptive thresholds — repeated resumptions sug-
gest the user is in a noisy environment, so each
resumption increases the threshold required to ad-
vance from State 1 to State 2 and decreases the
threshold required to advance from State 2 to State
1. A high-level comparison of the standard model
and our approach is shown in Figure 1; a complete
PBR state diagram is provided in the Appendix.

3.1 State 1: Speaking Prediction

In State 1, Speaking Prediction, the system is both
speaking and performing ISR. The system scores
each partial for stability, predicting the probability
that it will remain “stable” – i.e., will not be later
revised – using a logistic regression model (Self-
ridge et al., 2011). This model uses a number of
features related to the recognizer’s generic confi-
dence score, the word confusion network, and lat-
tice characteristics. Table 2 shows partial results
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Table 2: Background noise and User Speech ISR

Background Noise User Utterance
Partial Stab. Scr. Partial Stab. Scr.
one 0.134 six 0.396
two 0.193 sixty 0.542
six 0.127 fifty one 0.428
two 0.078 sixty one a 0.491

and stability scores for two example inputs: back-
ground noise on the left, and the user saying “sixty
one a” on the right.

State 1 relies on the internal threshold param-
eter, T1. If a partial’s stability score falls below
T1, control remains in State 1 and the partial re-
sult is discarded. If a stability score meets T1, the
prompt is paused and control transitions to State 2.
T1 is initially set to 0 and is adapted as the dialogue
progresses. The adaptation procedure is described
below in Section 3.4. If a final recognition result
is received, control transitions directly to State 3.
Transitioning from State 1 to State 2 is only al-
lowed during the middle 80% of the prompt; oth-
erwise only transitions to State 3 are allowed.1

3.2 State 2: Silent Prediction

Upon entering State 2, Silent Prediction, the
prompt is paused and a timer is started. State 2 re-
quires continuous evidence (at least every T2 ms)
that the ISR is recognizing valid speech and each
time a partial result that meets T1 is received, the
timer is reset. If the timer reaches the time thresh-
old T2, the prompt is resumed and control returns
to State 1. T2 is initially set at 1.0 seconds and is
adapted as the dialogue progresses. Final recogni-
tion results trigger a transition to State 3.

The resumption prompt is constructed using the
temporal position of the VAD specified speech
start to find the percentage of the prompt that was
played up to that point. This percentage is then
reduced by 10% and used to create the resump-
tion prompt by finding the word that is closest to,
but not beyond, the modified percentage. White
space characters and punctuation are used to deter-
mine word boundaries for text-to-speech prompts,
whereas automatically generated word-alignments
are used for pre-recorded prompts.

1We hypothesized that people will rarely respond to the
current prompt during the first 10% of prompt time as over-
laps at the beginning of utterances are commonly initiative
conflicts (Yang and Heeman, 2010). Users may produce
early-onset utterances during the last 10% that should not
stop the prompt as it is not an “intentional” barge-in.

Figure 1: The Standard Barge-in and PBR Models

3.3 State 3: Completion

State 3, Completion, is entered when a final recog-
nition result is received and determines whether
the current dialogue policy will advance the dia-
logue or not. Here, the PBR model relies on the
ability of the dialogue manager (DM) to produce a
speculative action without transitioning to the next
dialogue state. If the new action will not advance
the dialogue, it is discarded and the recognition
is NUBI. However, if it will advance the dialogue
then it is classified as an Understood Barge-In
(UBI). In the NUBI case, the system either contin-
ues speaking or resumes the current prompt (tran-
sitioning to State 1). In the UBI case, the system
initiates the new speech act after playing a short
reaction sound and the DM transitions to the next
dialogue state. This reaction sound precedes all
speech acts outside the barge-in context but is not
used for resumption or timeout prompts. Note that
by depending solely on the new speech act, our
model does not require access to the DM’s internal
understanding or confidence scoring components.

3.4 Threshold adjustments

States 1 and 2 contain parameters T1 and T2 that
are adapted to the user’s environment. T1 is the
stability threshold used in State 1 and State 2 that
controls how stable an utterance must be before
the prompt should be paused. In quiet environ-
ments — where only the user’s speech produces
partial results — a low threshold is desirable as
it enables near-immediate pauses in the prompt.
Conversely, noisy environments yield many spu-
rious partials that (in general) have much lower
stability scores, so a higher threshold is advan-
tageous. T2 is the timing threshold used to re-
sume the prompt during recognition in State 2. In
quiet environments, a higher threshold reduces the
chance that the system will resume its prompt dur-
ing a well-formed user speech. In noisy environ-
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Figure 2: Example dialogue fragment of PBR Model

ments, a lower threshold allows the system to re-
sume quickly as the NUBI likelihood is greater.

Both T1 and T2 are dependent on the number of
system resumptions, as we view the action of re-
suming the prompt as an indication that the thresh-
old is not correct. With every resumption, the pa-
rameter R is incremented by 1 and, to account for
changing environments, R is decremented by 0.2
for every full prompt that is not paused until it
reaches 0. Using R, T1 is computed by T1 = 0.17·
R, and T2 by T2 = argmax(0.1, 1 − (0.1 · R)).2

3.5 Method Discussion
The motivation behind the PBR model is both the-
oretical and practical. According to Selfridge and
Heeman (2010), turn-taking is best viewed as a
collaborative process where the turn assignment
should be determined by the importance of the
utterance. During barge-in, the system is speak-
ing and so should only yield the turn if the user’s
speech is more important than its own. For many
domains, we view non-understood input as less
important than the system’s prompt and so, in this
case, the system should not release the turn by
stopping the prompt and initiating a clarifying sub-
dialogue. On the practical side, there is a high
likelihood that non-advancing input is not system
directed, to which the system should neither con-
sume, in terms of belief state updating, nor re-
spond to, in terms of asking for clarification. In
the rare case of non-understood system directed
speech, the user can easily repeat their utterance.
Here, we note that in the event that the user is
backchanneling, the PBR model will behave cor-
rectly and not release the turn.

The PBR approach differs from standard barge-
in approaches in several respects. First, standard
barge-in stops the prompt (i.e., transitions from
State 1 to State 2) if either the VAD or the partial
hypothesis suggests that there is speech; our ap-
proach — using acoustic, language model, and lat-
tice features — predicts whether the input is likely
to contain an interpretable recognition result. Sec-

2The threshold update values were determined empiri-
cally by the authors.

ond, standard barge-in uses a static threshold; our
approach uses dynamic thresholds that adapt to
the user’s acoustic environment. Parameter adjust-
ments are straightforward since our method auto-
matically classifies each barge-in as NUBI or UBI.
In practice, the prompt will be paused incorrectly
only a few times in a noisy environment, after
which the adaptive thresholds will prevent incor-
rect pauses at the expense of being less responsive
to true user speech. If the noise level decreases,
the thresholds will become more sensitive again,
enabling swifter responses. Finally, with the ex-
ception of Strom and Seneff, standard approaches
always discard the prompt; our approach can re-
sume the prompt if recognition is not understood
or is proceeding poorly, enabling the system to
resume speaking before recognition is complete.
Moreover, resumption yields a natural user expe-
rience as it often creates a repetition disfluency
(“Ok, sixty - sixty one c”), which are rarely no-
ticed by the listener (Martin and Strange, 1968).

An example dialogue fragment is shown in Fig-
ure 2, with the state transitions shown above. Note
the transition from State 2 to State 1, which is the
system resuming speech during recognition. This
recognition stream, produced by non-system di-
rected user speech, does not end until the user says
“repeat” for the last time.

4 Evaluation Results

The PBR model was evaluated during the Spoken
Dialog Challenge 2012-2013 in a live Lets Go!
bus information task. In this task, the public can
access bus schedule information during off hours
in Pittsburgh, PA via a telephonic interaction with
a dialogue system (Raux et al., 2005). The task
can be divided into five sub-tasks: route, origin,
destination, date/time, and bus schedules. The last
sub-task, bus schedules, provides information to
the user whereas the first four gather information.
We entered two systems using the same POMDP-
based DM (Williams, 2012). The first system, the
“Baseline”, used the standard barge-in model with
VAD barge-in detection and barge-in disabled in
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Figure 3: Estimated success rate for the PBR and Baseline systems. Stars indicate p<0.018 with χ2 test.

a small number of dialogue states that appeared
problematic during initial testing. The second sys-
tem used the PBR model with an Incremental In-
teraction Manager (Selfridge et al., 2012) to pro-
duce speculative actions in State 3. The pub-
lic called both systems during the final weeks of
2011 and the start of 2012. The DM applied a lo-
gistic regression based confidence measure to de-
termine whether the recognition was understood.
Both systems used the AT&T WATSONSM speech
recognizer (Goffin et al., 2005) with the same
sub-task specific rule-based language models and
standard echo cancellation techniques. The beam
width was set to maximize accuracy while still
running faster than real-time. The PBR system
used a WATSON modification to output lattice-
aware partial results.

Call and barge-in statistics are shown in Table
3. Here, we define (potential) barge-in (some-
what imprecisely) as a full recognition that at
some point overlaps with the system prompt, as
determined by the call logs. We show the calls
with barge-in before the bus schedule sub-task was
reached (BI-BS) and the calls with barge-in during
any point of the call (BI All). Since the Baseline
system only enabled barge-in at specific points in
the dialogue, it has fewer instances of barge-in
(Total Barge-In) and fewer barge-in calls. Regret-
fully, due to logging issues with the PBR system,
recognition specific metrics such as Word Error
Rate and true/false barge-in rates are unavailable.

4.1 Estimated Success Rate

We begin by comparing the success rate and
efficiency between the Baseline and PBR sys-

Table 3: Baseline and PBR call/barge-in statistics.

Baseline PBR
Total Calls 1027 892
BI-BS 228 (23%) 345 (39%)
BI All 281 (27%) 483 (54%)
Total Barge-In 829 1388

tems. Since task success can be quite difficult to
measure, we use four increasingly stringent task
success definitions: Bus Times Reached (BTR),
where success is achieved if the call reaches the
bus schedule sub-task; List Navigation (List Nav.),
where success is achieved if the user says ‘’next”,
“previous”, or “repeat” — the intuition being that
if the user attempted to navigate the bus sched-
ule sub-task they were somewhat satisfied with
the system’s performance so far; and Immediate
Exit (BTR2Ex and ListNav2Ex), which further
constrains both of the previous definitions to only
calls that finish directly after the initial visit to the
bus times sub-task. Success rate for the defini-
tions were automatically computed (not manually
labeled). Figure 3 shows the success rate of the
PBR and Baseline systems for all four definitions
of success. It shows, from left to right, Barge-In,
No Barge-In (NBI), and All calls. Here we restrict
barge-in calls to those where barge-in occurred
prior to the bus schedule task being reached.

For the calls with barge-in, a χ2 test finds sig-
nificant differences between the PBR and Base-
line for all four task success definitions. However,
we also found significant differences in the NBI
calls. This was surprising since, when barge-in
is not triggered, both systems are ostensibly the
same. We speculate this could be due to the Base-
line’s barge-in enabling strategy: an environment
that triggers barge-in in the Baseline would always
trigger barge-in in the PBR model, whereas the
converse is not true as the Baseline only enabled
barge-in in some of the states. This means that
there is a potential mismatch when separating the
calls based on barge-in, and so the fairest compar-
ison is using All the calls. This is shown on the far
right of Figure 3. We find that, while the effect is
not as large, there are significant differences in the
success rate for the PBR model for the most and
least stringent success definition, and very strong
trends for the middle two definitions (p < 0.07 for
BTR2Ex and p < 0.054 for List Nav.). Taken as
a whole, we feel this offers compelling evidence
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Figure 4: Seconds from beginning of dialogue to
reaching the Bus Schedule Information sub-task

that the PBR method is more effective: i.e. yields
higher task completion.

Next, we turn our attention to task efficiency.
For this, we report the amount of clock time from
the beginning of the call to when the Bus Schedule
sub-task was reached. Calls that do not reach this
sub-task are obviously excluded, and PBR times
are adjusted for the reaction sound (explained in
Section 3.3). Task efficiency is reported by cu-
mulative percentage in Figure 4. We find that,
while the NBI call times are nearly identical for
both systems, the PBR barge-in calls are much
faster than the Baseline calls. Here, we do not
feel the previously described mismatch is partic-
ularly problematic as all the calls reached the goal
state and the NBI are nearly identical. In fact, as
more NUBI should actually reduce efficiency, the
potential mismatch only strengthens the result.

Taken together, these results provide substantial
evidence that the PBR model is more effective and
more efficient than the Baseline. In order to ex-
plain PBR’s performance, we explore the effect of
prediction and resumption in isolation.

4.2 State 1: Speaking Prediction

State 1 is responsible for pausing the prompt, the
goal being to pause the prompt for UBI input and
not to pause the prompt for NUBI input. The
prompt is paused if a partial’s stability score meets
or exceeds the T1 threshold. We evaluate the ef-
ficacy of State 1 and T1 by analyzing the statis-
tics of NUBI/UBI input and Paused/Not Paused
(hereafter Continued) prompts. Since resuming
the prompt during recognition affects the recog-
nition outcome, we restrict our analysis to recog-
nitions that do not transition from State 2 back
to State 1. For comparison we show the overall
UBI/NUBI percentages for the Baseline and PBR
systems. This represents the recognition distri-

Table 4: Evaluation of T1, off-line PBR, and Base-
line VAD. For T1 we respectively (‘-’ split) show
the UBI/NUBI % that are Paused/Continued, the
Paused/Continued % that are UBI/NUBI, and the
percentage over all recognitions

T1 (%) VAD (%)
Paused Continued PBR BL

UBI 72-40-26 28-29-10 36 54
NUBI 61-60-39 39-71-25 64 46

bution for the live Baseline VAD detection and
off-line speculation for the PBR model. Recall
PBR does have VAD activation preceding partial
results and so the off-line PBR VAD shows how
the model would have behaved if it only used the
VAD for detection, as the Baseline does.

Table 4 provides a number of percentages, with
three micro-columns separated by dashes (’-’) for
T1. The first micro-column shows the percent-
age of UBI/NUBI that either Paused or Contin-
ued the prompt (sums to 100 horizontally). The
second micro-column shows the percentage of
Paused/Continued that are UBI/NUBI (sums to
100 vertically). The third micro-column shows
the percentage of each combination (e.g. UBI and
Paused) over all the barge-in recognitions. The
VAD columns show the percentage of UBI/NUBI
that (would) pause the prompt.

We first look at UBI/NUBI percentage that are
Paused/Continued (first micro-column): We find
that 72% of UBI are paused and 28% are Contin-
ued versus 61% of NUBI that are Paused with 39%
Continued. We now look at the Paused/Continued
percentage that are UBI/NUBI (second micro-
column): We find that 40% of Paused are UBI
and 60% are NUBI, whereas 29% of Continued
are UBI and 71% are NUBI. So, while T1 sus-
pends the prompt for the majority of NUBI (not
desirable, though expected since T1 starts at 0),
it has high precision when continuing the prompt.
This reduces the number of times that the prompt
is paused erroneously for NUBI while minimizing
incorrect (UBI) continues. This is clearly shown
by considering all of the recognitions (third micro-
column). We find that PBR erroneously paused
the prompt for 39% of recognitions, as opposed to
64% for the off-line PBR and 46% for the Base-
line. This came at the cost of reducing the number
of correct (UBI) pauses to 26% from 36% (off-line
PBR) and 54% (Baseline VAD).

The results show that the T1 threshold had
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Figure 5: Secs from Speech Start to Final Result

modest success at discriminating UBI and NUBI;
while continuing the prompt had quite a high
precision for NUBI, the recall was substantially
lower. We note that, since erroneous pauses lead
to resumptions and erroneous continues still lead
to a new speech act, there is minimal cost to these
errors. Furthermore, in our view, reducing the per-
centage of recognitions that pause and resume the
prompt is more critical as these needlessly disrupt
the prompt. In this, T1 is clearly effective, reduc-
ing the percentage from 64% to 39%.

4.3 State 2: Silent Prediction
State 2 governs whether the prompt will remain
paused or be resumed during incremental recogni-
tion. This decision depends on the time parameter
T2, which should trigger resumptions for NUBIs.
Since the act of resuming the prompt during recog-
nition changes the outcome of the recognition, it
is impossible to evaluate how well T2 discrimi-
nated recognition results. However, we can evalu-
ate the effect of that resumption by comparing UBI
percentages between the PBR and Baseline sys-
tems. We first present evidence that T2 is most ac-
tive during longer recognitions, and then show that
longer Baseline recognitions have a lower UBI
percentage than longer PBR recognitions specif-
ically because of T2 resumptions. “Recognitions”
refer to speech recognition results, with “longer”
or “shorter” referring to the clock time between
speech detection and the final recognition result.

We first report the PBR and Baseline response
and recognition time. We separate the PBR barge-
in recognitions into two groups: State 2→State 3,
where the system never transitions from State 2
to State 1, and State 2→State 1, where the sys-
tem resumes the prompt during recognition, tran-
sitioning from State 2 to State 1. The cumulative
percentages of the time from speech detection to
final recognition are shown in Figure 5. We find
that the State 2→State 3 recognitions are far faster

Figure 6: UBI % by minimum recognition time

than the Baseline recognitions, which in turn are
far faster than the State 2→State 1 recognitions.
The difference between PBR and Baseline recog-
nitions implies that T2 has greater activation dur-
ing longer recognitions. Given this, the overall
barge-in response time for PBR should be faster
than the Baseline (as the PBR system is resum-
ing where the Baseline is silent). Indeed this is
the case: the PBR system’s overall mean/median
response time is 1.58/1.53 seconds whereas Base-
line has a mean/median response time of 2.61/1.8
seconds.

The goal of T2 is for the system to resume when
recognition is proceeding poorly, and we have
shown that it is primarily being activated during
longer recognitions. If T2 is functioning properly,
recognition length should be inversely related to
recognition performance, and longer recognitions
should be less likely to be understood. Further-
more, if T2 resumption improves the user’s expe-
rience then longer PBR recognitions should per-
form better than Baseline recognitions of compa-
rable length. Figure 6 presents the UBI percent-
age by the minimum time for recognitions that
reach State 2. We find that, when all recogni-
tions are accounted for (0 second minimum), the
Baseline has a higher rate of UBI. However, as
recognition time increases the Baseline UBI per-
centage decreases (suggesting successful T2 func-
tioning) whereas the PBR UBI percentage actu-
ally increases. Since longer PBR recognitions are
dominated by T2 resumptions, we speculate this
improvement is driven by users repeating or initi-
ating new speech that leads to understanding suc-
cess, as the PBR system is responding where the
Baseline system is silent.

4.4 Resumption
The PBR model relies on resumption to recover
from poor recognitions, either produced in State 2
or State 3. Instead of a resumption, the Baseline
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Figure 7: Sub-Task Abandonment Rate. NUBI is
different at p < 0.003

system initiates a clarifying sub-dialogue when a
barge-in recognition is not understood. We com-
pare these two behaviors using the call abandon-
ment rate — the user hangs-up — of sub-tasks
with and without NUBI. Here, we exclude the Bus
Schedule sub-task as it is the goal state.

Figure 7 shows the call abandonment rate for
sub-tasks that either have or do not have NUBI.
We find that there is a significant difference in
abandoned calls for NUBI sub-tasks between the
two systems (33% vs 48%, p < 0.003 using a χ2

test), but that there is no difference for the calls
that do not have NUBI (7.6% vs 8.4%). This re-
sult shows that prompt resumption is viewed far
more favorably by users than initiating a clarify-
ing sub-dialogue.

5 Discussion and Conclusion

The above results offer strong evidence that the
PBR model increases task success and efficiency,
and we found that all three states contribute to
the improved performance by creating a more ro-
bust, responsive, and natural interaction. T1 pre-
diction in State 1 reduced the number of spurious
prompt suspensions, T2 prediction in State 2 led to
improved understanding performance, and prompt
resumption (States 2 and 3) reduced the number of
abandoned calls.

An important feature of the Prediction-based
Barge-in Response model is that, while it lever-
ages incremental speech processing for barge-in
processing, it does not require an incremental di-
alogue manager to drive its behavior. Since the
model is also domain independent and does not
require access to internal dialogue manager com-
ponents, it can easily be incorporated into any ex-
isting dialogue system. However, one limitation of
the current model is that the prediction thresholds
are hand-crafted. We also believe that substan-

tial improvements can be made by explicitly at-
tempting to predict eventual understanding instead
of using the stability score and partial production
rate as a proxy. Furthermore, the PBR model does
not distinguish between the causes of the non-
understanding, specifically whether the input con-
tained in-domain user speech, out-of-domain user
speech, or background noise. This case is specifi-
cally applicable in domains where system and user
speech are in the same channel, such as interact-
ing via speaker phone. In this context, the system
should be able to initiate a clarifying sub-dialogue
and release the turn, as the system must be more
sensitive to the shared acoustic environment and
so its current prompt may be less important than
the user’s non-understood utterance.

The results challenge a potential assumption re-
garding barge-in: that barge-in indicates greater
user pro-activity and engagement with the task.
One of the striking findings was that dialogues
with barge-in are slower and less successful than
dialogues without barge-in. This suggests that,
for current systems, dialogues with barge-in are
more indicative of environmental difficulty than
user pro-activity. The superior performance of
the PBR model, which is explicitly resistant to
non-system directed speech, implies that domi-
nant barge-in models will have increasingly lim-
ited utility as spoken dialogue systems become
more prevalent and are used in increasingly dif-
ficult environments. Furthermore, within the con-
text of overall dialogue systems, the PBR model’s
performance emphasizes the importance of contin-
uous processing for future systems.

This paper has proposed and evaluated the
Prediction-based Barge-in Response model. This
model’s behavior is driven by continuously pre-
dicting whether a barge-in recognition will be un-
derstood successfully, and combines incremental
speech processing techniques with a prompt re-
sumption procedure. Using a live dialogue task
with real users, we evaluated this model against
the standard barge-in model and found that it led
to improved performance in both task success and
efficiency.

Acknowledgments

Many thanks to Vincent Goffin for help with this
work, and to the anonymous reviewers for their in-
sightful comments and critique. We acknowledge
funding from the NSF under grant IIS-0713698.

391



References
T. Baumann, M. Atterer, and D. Schlangen. 2009. As-

sessing and improving the performance of speech
recognition for incremental systems. In Proc.
NAACL: HLT, pages 380–388. Association for Com-
putational Linguistics.

V. Goffin, C. Allauzen, E. Bocchieri, D. Hakkani-Tur,
A. Ljolje, S. Parthasarathy, M. Rahim, G. Riccardi,
and M. Saraclar. 2005. The AT&T WATSON
speech recognizer. In Proceedings of ICASSP, pages
1033–1036.

James G Martin and Winifred Strange. 1968. The per-
ception of hesitation in spontaneous speech. Percep-
tion & Psychophysics, 3(6):427–438.

Ian McGraw and Alexander Gruenstein. 2012. Es-
timating word-stability during incremental speech
recognition. In in Proc. of Interspeech 2012.

A. Raux, B. Langner, D. Bohus, A.W. Black, and
M. Eskenazi. 2005. Lets go public! taking a spo-
ken dialog system to the real world. In in Proc. of
Interspeech 2005.

A. Raux. 2008. Flexible Turn-Taking for Spoken Dia-
log Systems. Ph.D. thesis, CMU.

Richard C Rose and Hong Kook Kim. 2003. A
hybrid barge-in procedure for more reliable turn-
taking in human-machine dialog systems. In Auto-
matic Speech Recognition and Understanding, 2003.
ASRU’03. 2003 IEEE Workshop on, pages 198–203.
IEEE.

E.O. Selfridge and P.A. Heeman. 2010. Importance-
Driven Turn-Bidding for spoken dialogue systems.
In Proc. of ACL 2010, pages 177–185. Association
for Computational Linguistics.

E.O. Selfridge, I. Arizmendi, P.A. Heeman, and J.D.
Williams. 2011. Stability and accuracy in incre-
mental speech recognition. In Proceedings of the
SIGdial 2011.

E.O. Selfridge, I. Arizmendi, P.A. Heeman, and J.D.
Williams. 2012. Integrating incremental speech
recognition and pomdp-based dialogue systems. In
Proceedings of the SIGdial 2012.

Nikko Ström and Stephanie Seneff. 2000. Intelligent
barge-in in conversational systems. Procedings of
ICSLP.

Jason D Williams. 2012. A critical analysis of two sta-
tistical spoken dialog systems in public use. In Spo-
ken Language Technology Workshop (SLT), 2012
IEEE, pages 55–60. IEEE.

Fan Yang and Peter A. Heeman. 2010. Initiative con-
flicts in task-oriented dialogue”. Computer Speech
Language, 24(2):175 – 189.

392



A Appendix

This diagram represents the possible operating positions the Prediction-based Barge-in Response
model can be in. If the prompt is complete, the PBR model applies the dialogue policy to the final
recognition result and initiates the on-policy speech act. If the prompt was finished without being paused
it decrements R. In the latter case (barge-in), it operates using the three states as described in Section 2.
When a partial is recognized the Stability Score is computed and compared to the T1 threshold parame-
ter. If the score is below T1 the partial is discarded. Otherwise, if the model is in State 1 (the prompt is
on) the prompt is paused, a timer is started, and control transitions to State 2. If the model is in State 2
the timer is restarted. After transitioning to State 2, control only returns to State 1 if the timer exceeds
T2. At this time, the prompt is resumed and the resumption parameter R is incremented. Control im-
mediately transitions to State 3 if a final recognition result is received. The result is evaluated by the
dialogue manager, and the new speech act is returned. If the speech act indicates the recognition was not
understood successfully, the system either resumes (if in State 1) or continues (if in State 2). In the case
of resumption, R is incremented. If the new speech act indicates understanding success, the new speech
is immediately produced.
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