
Proceedings of the SIGDIAL 2013 Conference, pages 414–422,
Metz, France, 22-24 August 2013. c©2013 Association for Computational Linguistics

Recipe For Building Robust Spoken Dialog State Trackers:

Dialog State Tracking Challenge System Description

Sungjin Lee

Language Technologies Institute,

Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA

sungjin.lee@cs.cmu.edu

Maxine Eskenazi

Language Technologies Institute,

Carnegie Mellon University,

Pittsburgh, Pennsylvania, USA

max@cs.cmu.edu

Abstract

For robust spoken conversational interaction,

many dialog state tracking algorithms have

been developed. Few studies, however, have

reported the strengths and weaknesses of each

method. The Dialog State Tracking Challenge

(DSTC) is designed to address this issue by

comparing various methods on the same

domain. In this paper, we present a set of

techniques that build a robust dialog state

tracker with high performance: wide-coverage

and well-calibrated data selection, feature-rich

discriminative model design, generalization

improvement techniques and unsupervised

prior adaptation. The DSTC results show that

the proposed method is superior to other

systems on average on both the development

and test datasets.

1 Introduction

Even though we have recently seen an explosive

growth of interest in speech-enabled applications,

there are still many problems to overcome in

order to provide users with practical and

profitable services. One of the long-standing

problems which may often frustrate users is

Automatic Speech Recognition (ASR) error. Due

to ASR error, it is barely possible to directly

observe what the user said and finally figure out

the true user goal. The aim of dialog state

tracking is, therefore, to accurately estimate the

true dialog state from erroneous observations as

a dialog unfolds.

In order to achieve this goal, many dialog state

tracking algorithms have been developed. Few

studies, however, have reported the strengths and

weaknesses of each method. The Dialog State

Tracking Challenge
1
 (DSTC) was organized to

advance state-of-the-art technologies for dialog

state tracking by allowing for reliable

comparisons between different approaches using

the same datasets. Unlike other machine

learning-based empirical tasks, DSTC is also

carefully designed to take into consideration

diverse realistic mismatches. For instance, there

are test datasets that were collected by systems

using different speech recognizers, spoken

language understanding (SLU) modules, and

dialog managers. Also there are test datasets that

were produced by similar systems but deployed

at a different time (1 year later) with extended

coverage. Since such mismatches between

training and test data may often happen in real

deployment, it is important to build a tracker

which constantly shows high performance across

all test datasets despite various mismatches.

The aim of this paper is to describe a set of

techniques used to build a robust tracker with

high performance: wide-coverage and well-

calibrated data selection, feature-rich

discriminative model design, generalization

improvement techniques and unsupervised prior

adaptation. Our challenge systems are basically

various combinations of those techniques. The

DSTC results demonstrate the effectiveness of

each technique.

This paper is structured as follows. Section 2

describes the challenge setup. Section 3

elaborates on our proposed approaches. Section 4

briefly describes previous research and other

systems that participated in DSTC. Section 5

presents and discusses the results. Finally,

Section 6 concludes with a brief summary and

suggestions for future research.

1
 http://research.microsoft.com/en-us/events/dstc/

414

2 Dialog State Tracking Challenge

This section describes the task for DSTC and

datasets provided for training and test. Most part

of this section is borrowed from the DSTC

manual
2
.

2.1 Task Description

DSTC data is taken from several different

spoken dialog systems which all provided bus

schedule information for Pittsburgh,

Pennsylvania, USA as part of the Spoken Dialog

Challenge (Black et al., 2011). There are 9 slots

which are evaluated: route, from.desc,

from.neighborhood, from.monument, to.desc,

to.neighborhood, to.monument, date, and time.

Since both marginal and joint representations of

dialog states are important for deciding dialog

actions, the challenge takes into consideration

both. Each joint representation is an assignment

of values to all slots. Thus there are 9 marginal

outputs and 1 joint output in total, which are all

evaluated separately.

The dialog tracker receives SLU N-best

hypotheses for each user turn, each with a

confidence score. In general, there are a large

number of values for each slot, and the coverage

of N-best hypotheses is good, thus the challenge

confines consideration of goals to slots and

values that have been observed in an SLU output.

By exploiting this aspect, the task of a dialog

state tracker is to generate a set of observed slot

and value pairs, with a score between 0 and 1.

The sum of all scores is restricted to sum to 1.0.

Thus 1.0 – total score is defined as the score of a

special value None that indicates the user’s goal

has not yet been appeared on any SLU output.

2.2 Datasets

The data is divided into 2 training sets and 4 test

sets (Table 1). For standardized development sets,

each training set is split in half. Participants were

asked to report results on the second half of each

set. The data from group A in train2, and test1

was collected using essentially the same dialog

system. Only a few updates were made to reflect

changes to the bus schedule. The data in test2

was collected using a different version of group

A’s dialog manager. The data from group B in

train3 and test3 were collected using essentially

the same dialog system; the main difference is

that test3 covers more bus routes. Test4 tests the

condition when training and testing using totally

2
 http://research.microsoft.com/apps/pubs/?id=169024

different dialog systems, and when there is no

same-system training data available.

2.3 Metrics

There are a variety of aspects of tracker

performance that were measured: accuracy, mean

reciprocal rank (MRR), ROC curves, Average

score
3

, and Brier score
4

. There are three

schedules for determining which turns to include

in each evaluation.

 Schedule 1: Include all turns.

 Schedule 2: Include a turn for a given

concept only if that concept either appears on

the SLU N-Best list in that turn, or if the

system’s action references that concept in

that turn.

 Schedule 3: Include only the turn before the

system starts over from the beginning, and

the last turn of the dialog.

3 Recipe for Building a Robust Tracker

In this section, we present several ingredients for

building a robust state tracker that come into play

at various levels of the development process:

from data selection to model adaptation.

3.1 Wide-Coverage and Well-Calibrated

Data Selection

The first step to create a robust dialog state

tracker is the use of data which covers diverse

system dialog actions and user inputs with well-

calibrated confidence scores. Since dialog

policies can be varying according to how a

dialog proceeds, it is crucial to arrange a training

dialog corpus with well-balanced dialog actions.

For example, group A datasets barely have

implicit confirmation and heavily rely on explicit

confirmation, while group B datasets have both

types of confirmation. Thus a model trained on

group A datasets cannot exploit implicit

3
 the average score assigned to the correct item

4
 the L2 norm between the vector of scores output by

dialog state tracker and a vector with 1 in the position

of the correct item, and 0 elsewhere

Dataset Source Calls Time period

train2 Group A 678 Summer 2010

train3 Group B 779 Summer 2010

test1 Group A 765 Winter 2011-12

test2 Group A 983 Winter 2011-12

test3 Group B 1037 Winter 2011-12

test4 Group C 451 Summer 2010

Table 1: Dataset description.

415

confirmation when applied to group B datasets,

whereas a model trained on group B datasets can

be applied to group A datasets without much

loss.

Another important aspect of the data is how

well user inputs are calibrated. If the confidence

score is well-calibrated, confirmation can be

skipped in the case of a hypothesis with a high

confidence. On the contrary, if the quality of the

confidence score is very poor, a successful dialog

will only be possible via heavy use of

confirmation. Thus a model trained on a well-

calibrated dataset is likely to perform well on the

poorly-calibrated dataset because of backup

confirmation. Whereas, a model trained on the

poorly-calibrated dataset will not perform well

on the well-calibrated dataset due to the

mismatch of the confidence score as well as the

scarceness of confirmation information. The

group A datasets have been shown to be poorly

calibrated (Lee and Eskenazi, 2012); this is also

shown in Fig. 2. Group B datasets are relatively

well-calibrated, however.

The importance of wide coverage and well-

calibrated data can be observed by examining the

results of entry1 and entry2 (Fig. 1) which are

trained on group A and B datasets, respectively.

3.2 Feature-Rich Discriminative Model Design

Most previous approaches are based on

generative temporal modeling where the current

dialog state is estimated using a few features

such as the current system action and N-best

hypotheses with corresponding confidence scores

given the estimated dialog state at the previous

turn (Gasic and Young, 2011; Lee and Eskenazi,

2012; Raux and Ma, 2011; Thomson and Young,

2010; Williams, 2010; Young et al., 2010).

However, several fundamental questions have

been raised recently about the formulation of the

dialog state update as a generative temporal

model: limitation in modeling correlations

between observations in different time slices; and

the insensitive discrimination between true and

false dialog states (Williams, 2012).

Figure 2: Estimated empirical accuracy of confidence

score for from slot. Ideally calibrated confidence score

should be directly proportional to empirical accuracy.

Figure 1: Diagram showing the relation between datasets and models. Each team could have up to five systems

entered. Our challenge entries are tagged by their entry numbers. More detailed descriptions about each model

are provided in Section 3.

416

In fact, such limitations can be improved by

adopting a discriminative approach, which

enables the incorporation of a rich set of features

without worrying about their interdependence

(Sutton and McCallum, 2006). For example, a

hypothesis that repeats with low confidence

scores is likely to be a manifestation of ASR

error correlations between observations in

different time slices. Thus, the highest

confidence score that a hypothesis has attained

so far could be a useful feature in preventing

repeated incorrect hypotheses from defeating the

correct hypothesis (which had a higher score but

was only seen once). Another useful feature

could be the distribution of confidence scores

that a hypothesis has attained thus far, since it

may not have the same effect as having a single

observation with the total score due to the

potential nonlinearity of confidence scores.

There are many other potentially useful features.

The entire list of features used for the challenge

system is found in Appendix A.

In addition to the role of rich features in

performance enhancement, the incorporation of

rich features is also important for robust state

tracking. If the tracker estimates the true state by

considering various aspects of observations and

prior knowledge, then the influence of

differences in certain factors between datasets

can be mitigated by many other factors that are

retained relatively unchanged between datasets.

For the challenge system, we employed a

Maximum Entropy (MaxEnt) model which is one

of most powerful undirected graphical models.

Unlike previous work using MaxEnt (Bohus and

Rudnicky, 2006) where the model is limited to

maintain only the top K-best hypotheses, we

amended MaxEnt to allow for the entire set of

observed hypotheses to be incorporated; Several

feature functions which differ only by output

labels were aggregated into one common feature

function so that they can share common

parameters and gather their statistics together

(Appendix A). This modification is also crucial

for robust estimation of the model parameters

since some slots such as from and to can have

about 10
4
 values but most of them are not seen in

the training corpus.

The effectiveness of feature-rich

discriminative modeling can be observed by

comparing the results of DMALL and PBM (Fig.

1) which are discriminative and generative

models, respectively.

Note that interesting relational constraints, e.g.

whether or not departure and arrival places are

valid on a route, can be incorporated by adopting

a structured model such as Conditional Random

Field (CRF). But CRF was not used for the

challenge since the bus information that was

provided is not compatible with every dataset.

The effectiveness of a structured model has been

investigated in a separate publication (Lee, 2013).

3.3 Generalization Improvement Techniques

Even though the incorporation of a set of rich

features helps overcome the weaknesses of

previous approaches, it also implies a risk of

overfitting training datasets due to its increased

capacity of function class. Overfitting is a serious

hazard especially for test datasets that are

severely dissimilar to training datasets. As noted

above, since the test datasets of the challenge are

intentionally arranged to have various

mismatches, it is crucial that we prevent a model

from overfitting training datasets. In the rest of

this section, we describe various ways of

controlling the capacity of a model.

 The most obvious method to control the

capacity is to penalize larger weights

proportional to the squared values of the weights

or the absolute values of the weights. We employ

the Orthant-wise Limited-memory Quasi Newton

optimizer (Andrew and Gao, 2007) for L1

regularization. The weights for L1 regularization

were set to be 10 and 3 for the prior features and

the other features, respectively. These values

were chosen through cross-validation over

several values rather than doing a thorough

search.

A second method, which is often convenient,

is to start with small weights and then stop the

learning before it has time to overfit provided

that it finds the true regularities before it finds

the spurious regularities that are related to

specific training datasets. It could be hard,

however, to decide when to stop. A typical

technique is to keep learning until the

performance on the validation set gets worse and

then stop training and go back to the best point.

For the challenge systems, we applied a simpler

method that is to stop the training if the average

objective function change over the course of 10

previous iterations is less than 0.1, which is

usually set to a much smaller number such as 10
-4

.

In general, prediction errors can be

decomposed into two main subcomponents, i.e.,

error due to bias and variance (Hastie et. al,

2009). It is also known that there is a tradeoff

between bias and variance. If a model is flexible

enough to fit the given data, errors due to bias

417

will decrease while errors due to variance will

increase. The methods stated above try to

achieve less error by decreasing errors due to

variance. However we cannot avoid increasing

errors due to bias in this way. Thus we need a

method to alleviate the tradeoff between bias and

variance.

System combination is one powerful way to

reduce variance without raising bias. If we

average models that have different forms and

make different mistakes, the average will do

better than the individual models. This effect is

largest when the models make very different

predictions from one another. We could make the

models different by simply employing different

machine learning algorithms as well as by

training them on different subsets of the training

data.

The challenge system, entry3, consists of three

discriminative models and one generative model

(Fig. 1). Entry1 and entry2 were trained on

different training datasets to make them produce

different predictions. DMCOND is a discriminative

model trained on both train2 and train3. Also,

DMCOND differs from other discriminative

models in the way that it was trained: the

parameters associated with the features which are

computable without grounding action

information (features (1), (5), (8), (9) and (10) in

Appendix A) are trained first and then the other

features are learned given the former parameters.

The idea behind this training method is to

encourage the model to put more weight on

dialog policy invariant features. The final

component PBM is the AT&T Statistical Dialog

Toolkit
5

 which is one of the state-of-the-art

generative model-based systems. We modified it

to process implicit confirmation and incorporate

the prior distribution which was estimated on the

training corpus. The prior distribution was

smoothed by an approximate Good-Turing

estimation on the fly when the system encounters

an unseen value at run time. The improvement

from system combination is verified by the

results of entry3.

3.4 Unsupervised Prior Adaptation

While a prior is a highly effective type of

information for dialog state tracking, it is also

able to hamper the performance when incorrectly

estimated. Thus it is worthwhile to investigate

adapting the prior to the test datasets. Since a

dialog state tracker is meant to estimate the

5
 http://www2.research.att.com/sw/tools/asdt/

posterior probabilities over hypotheses, we can

extract estimated labels from test datasets by

setting an appropriate threshold, taking the

hypotheses with a greater probability than the

threshold as labels. By combining the predictive

prior from test datasets and the prior from

training datasets, we adapted entry2 and entry3

in an unsupervised way to produce entry5 and

entry4, respectively (Fig. 1). For each test dataset,

we used different thresholds: 0.95 for test1, test2

and test3, and 0.85 for test4.

4 Related Work

Since the Partially Observable Markov Decision

Process (POMDP) framework has offered a

well-founded theory for both state tracking and

decision making, most earlier studies adopted

generative temporal models, the typical way to

formulate belief state updates for POMDP-based

systems (Williams and Young, 2007). Several

approximate methods have also emerged to

tackle the vast complexity of representing and

maintaining belief states, e.g., partition-based

approaches (Gasic and Young, 2011; Lee and

Eskenazi, 2012; Williams, 2010; Young et al.,

2010) and Bayesian network (BN)-based

methods (Raux and Ma, 2011; Thomson and

Young, 2010). A drawback of the previous

generative models is that it is hard to incorporate

a rich set of observation features, which are often

partly dependent on one another. Moreover, the

quality of the confidence score will be critical to

all generative models proposed so far, since they

do not usually try to handle potential nonlinearity

in confidence scores.

As far as discriminative models are concerned,

the MaxEnt model has been applied (Bohus and

Rudnicky, 2006). But the model is restricted to

maintaining only the top K-best hypotheses,

where K is a predefined parameter, resulting in

potential degradation of performance and

difficulties in extending it to structured models.

Finally, there is a wide range of systems that

participated in Dialog State Tracking Challenge

2013: from rule-based systems to fairly complex

statistical methods such as Deep Neural

Networks. Since we have not only traditional

generative models such as Dynamic Bayesian

Network and partition-based approaches, but also

newly-proposed discriminative approaches such

as log-linear models, Support Vector Machines

and Deep Neural Networks, the analysis of the

challenge results is expected to reveal valuable

lessons and future research directions.

418

5 Results and Discussion

The official results of the challenge are publicly

available and our team is team6. As mentioned in

Section 2.3, there are a variety of aspects of

tracker performance that were measured on

different schedules. Since prediction accuracy at

the end of a dialog directly translates to the

success of the entire task, we first show the

average accuracy across all test datasets

measured at schedule 3 in Fig. 3. The average

accuracy at schedule 3 also well represents how

robust a state tracker is since the test datasets are

widely distributed in the dimensions of dialog

policies, dialog length and the quality of user

input and confidence score.

First of all, we note that our 4 entries

(entries2-5) took the top positions in both the All

and Joint categories. Entry4, which showed the

best performance, outperformed the best entry

from other teams by 4.59% (entry2 of team9)

and 10.1% (entry2 of team2). Specificially, the

large improvement in Joint implies that our

model performs evenly well for all slots and is

more robust to the traits of each slot.

Furthermore, from the results we can verify

the effectiveness of each technique for achieving

robustness. Given the large gap between the

performance of entry1 and of entry2, it is clearly

shown that a model trained on a wide-coverage

and well-calibrated dialog corpus can be

applicable to a broad range of test datasets

without much loss. Even though entry2 was

trained on only 344 dialogs (the first half of

train3), it already surpasses most of competing

models.

The utility of a feature-rich discriminative

model is demonstrated by the fact that DMALL

greatly outperformed PBM. We also note that

just using a discriminative model does not

(a) All slot: a weighted average accuracy across all slots

(b) Joint slot

Figure 3: Accuracy measured at schedule 3 averaged over the test and development datasets. Models which do

not appear in Fig. 1 are the best system of each team except for us. Rule denotes a rule-based system, Hybrid a

hybrid system of discriminative and generative approaches, DiscTemp a discriminative temporal model, RForest

a random forest model, DNN a deep neural network model, DiscJoint a discriminative model which deals with

slots jointly, SVM a support vector machine model, and DBN a dynamic Bayesian network mode.

419

guarantee improved performance since many

discriminative systems that participated in the

challenge underperformed some of the entries

that were based on generative modeling or rules.

This result implies that devising effective

features is central to performance.

In addition, this result also points to the

necessity of controlling the capacity of a model.

While our models constantly show good

performance both on development sets and test

sets, the performance of the other models

significantly dropped off. In fact, this explains

why Hybrid and Rule systems switch their

positions in the Joint slot. Moreover, many other

systems in the graph tail seem to be severely

overfitted, resulting in poor performance on test

datasets despite relatively good performance on

development datasets. As expected, system

combination gives rise to better accuracy without

loss of robustness; entry3 clearly outperforms

each of its components, i.e. entry1, entry2,

DMCOND and PBM, on both development and test

datasets.

Finally, the improvement observed when

using unsupervised prior adaptation is also

shown to be positive but its effect size is not

significant: entry5 vs. entry2 and entry4 vs.

entry3. Given that the way in which we have

adapted the model is fairly primitive, we believe

that there is much room to refine the

unsupervised adaptation method.

MRR measures the average of 1/R, where R is

the rank of the first correct hypothesis. MRR at

schedule 3 measures the quality of the final

ranking which may be most important to a multi-

modal interface that can display results to the

user. Even though the results are not displayed

due to space limitations, the results for MRR are

very similar to those for accuracy. Our 4 entries

(entries2-5) still take the top positions.

The ROC curves assess the discrimination of

the top hypothesis’ score. The better

discrimination at schedule 2 may be helpful for

reducing unnecessary confirmations for values

with sufficiently high belief. Also, the better

discrimination at schedule 3 may enable a model

to adapt to test data in an unsupervised manner

by allowing us to set a proper threshold to

produce predictive labels. The ROC curves of

our systems again showed the highest levels of

discrimination.

6 Conclusion

In this paper, we presented a set of techniques to

build a robust dialog state tracker without losing

performance: wide-coverage and well-calibrated

data selection, feature-rich discriminative model

design, generalization improvement techniques

and unsupervised prior adaptation. The results in

terms of various metrics show that the proposed

method is truly useful for building a tracker

prominently robust not only to mismatches

between training and test datasets but also to the

traits of different slots. Since we used relatively

simple features for this work, there is much room

to boost performance through feature

engineering. Also, more thorough search for

regularization weights can give additional

performance gain. Moreover, one can extend the

present discriminative model presented here to a

structured version which can improve

performance further by allowing relational

constraints to be incorporated (Lee, 2013).

Finally, we believe that once a more detailed and

thorough investigation of the challenge results

has been carried out, we will be able to take the

best of each system and combine them to

generate a much better dialog state tracker.

Acknowledgments

This work was funded by NSF grant IIS0914927.

The opinions expressed in this paper do not

necessarily reflect those of NSF.

References

G. Andrew and J. Gao, 2007. Scalable training of L1-

regularized log-linear models. In Proceedings of

ICML.

A. Black et al., 2011. Spoken dialog challenge 2010:

Comparison of live and control test results. In

Proceedings of SIGDIAL.

D. Bohus and A. Rudnicky, 2006. A K hypotheses +

other belief updating model. In Proceedings of

AAAI Workshop on Statistical and Empirical

Approaches for Spoken Dialogue Systems.

M. Gasic and S. Young, 2011. Effective handling of

dialogue state in the hidden information state

POMDP-based dialogue manager. ACM

Transactions on Speech and Language Processing,

7(3).

T. Hastie, R. Tibshirani, and J. Friedman, 2009. The

Elements of Statistical Learning: Data Mining,

Inference, and Prediction (2nd edition). Springer.

420

S. Lee and M. Eskenazi, 2012. Exploiting Machine-

Transcribed Dialog Corpus to Improve Multiple

Dialog States Tracking Methods. In Proceedings

of SIGDIAL, 2012.

S. Lee, 2013. Structured Discriminative Model For

Dialog State Tracking. Submitted to SIGDIAL,

2013.

A. Raux, B. Langner, D. Bohus, A. W Black, and M.

Eskenazi, 2005. Let’s Go Public! Taking a Spoken

Dialog System to the Real World. In Proceedings

of Interspeech.

A. Raux and Y. Ma, 2011. Efficient Probabilistic

Tracking of User Goal and Dialog History for

Spoken Dialog Systems. In Proceedings of

Interspeech.

C. Sutton and A. McCallum, 2006. An Introduction to

Conditional Random Fields for Relational

Learning. Introduction to Statistical Relational

Learning. Cambridge: MIT Press.

B. Thomson and S. Young, 2010. Bayesian update of

dialogue state: A POMDP framework for spoken

dialogue systems. Computer Speech & Language,

24(4):562-588.

B. Thomson, F. Jurccek, M. Gasic, S. Keizer, F.

Mairesse, K. Yu, S. Young, 2010a. Parameter

learning for POMDP spoken dialogue models. In

Proceedings of SLT.

J. Williams and S. Young, 2007. Partially observable

Markov decision processes for spoken dialog

systems. Computer Speech & Language,

21(2):393-422.

J. Williams, 2010. Incremental partition

recombination for efficient tracking of multiple

dialog states. In Proceedings of ICASSP.

J. Williams, 2011. An Empirical Evaluation of a

Statistical Dialog System in Public Use, In

Proceedings of SIGDIAL.

J. Williams, 2012. A Critical Analysis of Two

Statistical Spoken Dialog Systems in Public Use.

In Proceedings of SLT.

S. Young, M. Gasic, S. Keizer, F. Mairesse, J. Schatz-

mann, B. Thomson and K. Yu, 2010. The Hidden

Information State Model: a practical framework for

POMDP-based spoken dialogue management.

Computer Speech and Language, 24(2):150–174.

Appendix A. Feature Functions

Feature functions are playing a central role to the

performance of discriminative models. We

describe the feature functions that we used for

the challenge system in the following. To

facilitate readers’ understanding an example of

feature extraction is illustrated in Fig. 4.

One of the most fundamental features for

dialog state tracking should exploit the

confidence scores assigned to an informed

hypothesis. The simplest form could be direct

use of confidence scores. But often pre-trained

confidence measures fail to match the empirical

distribution of a given dialog domain (Lee and

Eskenazi, 2012; Thomson et al. 2010). Also the

distribution of confidence scores that a

hypothesis has attained so far may not have the

same effect as the total score of the confidence

scores (e.g., in Fig. 4, two observations for 61C

with confidence score 0.3 vs. 0.6 which is the

sum of the scores). Thus we create a feature

function that divides the range of confidence

scores into bins and returns the frequency of

observations that fall into the corresponding bin:

 (
)

 {
 ((

))

(1)

where () returns the set of confidence

scores whose action informs in the sequence of

observations
 . () computes the

frequency of observations that fall into the

bin.

There are two types of grounding actions

which are popular in spoken dialog systems, i.e.,

implicit and explicit confirmation. To leverage

affirmative or negative responses, the following

feature functions are introduced in a similar

fashion as the feature function:

 (
)

 {
 ((

))

(2)

 (
)

 {
 ((

))

(3)

where () / () returns the set of

confidence scores whose associated action

affirms / negates in the sequence of

observations
 .

 (
)

 {
 (

)

(4)

421

where () indicates whether or not the

user has negated the system’s implicit

confirmation in the sequence of observations
 .

One of interesting feature functions is the so-

called baseline feature which exploits the output

of a baseline system. The following feature

function emulates the output of the baseline

system which always selects the top ASR

hypothesis for the entire dialog:

 (
)

 {
 ((

))

(5)

where () returns the maximum

confidence score whose action informs in the

sequence of observations
 . () indicates

whether or not the maximum score falls into the

 bin.

Yet another feature function of this kind is the

accumulated score which adds up all confidence

scores associated with inform and affirm and

subtracts the ones with negation:

 (
)

{

 (

)

 (
)

 (
)

(6)

Since we have a partition-based tracker, it is also

possible to take advantage of its output:

 (
)

 {
 (

))

(7)

where () returns the posterior probability

of a hypothesis estimated by the partition-based

tracker. Note that such feature functions as

 () , () and () are not

independent of the others defined previously,

which may cause generative models to produce

deficient probability distributions.

It is known that prior information can boost

the performance (Williams, 2012) if the prior is

well-estimated. One of advantages of generative

models is that they provide a natural mechanism

to incorporate a prior. Discriminative models

also can exploit a prior by introducing additional

feature functions:

 (
)

 {
 (())

(8)

where () returns the fraction of

occurrences of in the set of true labels.

If the system cannot process a certain user

request, it is highly likely that the user change

his/her goal. The following feature function is

designed to take care of such cases:

 (
) {

 ()

 (9)

where () indicates whether or not is out-

of-coverage.

As with other log-linear models, we also have

feature functions for bias:

 (
)

 (
) {

(10)

Note that we have an additional bias term for

None to estimate an appropriate weight for it.

Here, None is a special value to indicate that the

true hypothesis has not yet appeared in the ASR

N-best lists. Since there are generally a large

number of values for each concept, the

probability of the true hypothesis will be very

small unless the true hypothesis appears on the

N-best lists. Thus we can make inferences on the

model very quickly by focusing only on the

observed hypotheses at the cost of little

performance degradation.

Figure 4: A simplified example of feature extraction for the route concept. It shows the values that each feature

will have when three consecutive user inputs are given.

422

