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Abstract 

For robust spoken conversational interaction, 

many dialog state tracking algorithms have 

been developed. Few studies, however, have 

reported the strengths and weaknesses of each 

method. The Dialog State Tracking Challenge 

(DSTC) is designed to address this issue by 

comparing various methods on the same 

domain. In this paper, we present a set of 

techniques that build a robust dialog state 

tracker with high performance: wide-coverage 

and well-calibrated data selection, feature-rich 

discriminative model design, generalization 

improvement techniques and unsupervised 

prior adaptation. The DSTC results show that 

the proposed method is superior to other 

systems on average on both the development 

and test datasets.  

1 Introduction 

Even though we have recently seen an explosive 

growth of interest in speech-enabled applications, 

there are still many problems to overcome in 

order to provide users with practical and 

profitable services. One of the long-standing 

problems which may often frustrate users is 

Automatic Speech Recognition (ASR) error. Due 

to ASR error, it is barely possible to directly 

observe what the user said and finally figure out 

the true user goal. The aim of dialog state 

tracking is, therefore, to accurately estimate the 

true dialog state from erroneous observations as 

a dialog unfolds. 

In order to achieve this goal, many dialog state 

tracking algorithms have been developed. Few 

studies, however, have reported the strengths and 

weaknesses of each method. The Dialog State 

Tracking Challenge
1
 (DSTC) was organized to 

advance state-of-the-art technologies for dialog 

state tracking by allowing for reliable 

comparisons between different approaches using 

the same datasets. Unlike other machine 

learning-based empirical tasks, DSTC is also 

carefully designed to take into consideration 

diverse realistic mismatches. For instance, there 

are test datasets that were collected by systems 

using different speech recognizers, spoken 

language understanding (SLU) modules, and 

dialog managers. Also there are test datasets that 

were produced by similar systems but deployed 

at a different time (1 year later) with extended 

coverage. Since such mismatches between 

training and test data may often happen in real 

deployment, it is important to build a tracker 

which constantly shows high performance across 

all test datasets despite various mismatches. 

The aim of this paper is to describe a set of 

techniques used to build a robust tracker with 

high performance: wide-coverage and well-

calibrated data selection, feature-rich 

discriminative model design, generalization 

improvement techniques and unsupervised prior 

adaptation. Our challenge systems are basically 

various combinations of those techniques. The 

DSTC results demonstrate the effectiveness of 

each technique.  

This paper is structured as follows. Section 2 

describes the challenge setup. Section 3 

elaborates on our proposed approaches. Section 4 

briefly describes previous research and other 

systems that participated in DSTC. Section 5 

presents and discusses the results. Finally, 

Section 6 concludes with a brief summary and 

suggestions for future research.  

                                                 
1
 http://research.microsoft.com/en-us/events/dstc/ 
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2 Dialog State Tracking Challenge 

This section describes the task for DSTC and 

datasets provided for training and test. Most part 

of this section is borrowed from the DSTC 

manual
2
.  

2.1 Task Description 

DSTC data is taken from several different 

spoken dialog systems which all provided bus 

schedule information for Pittsburgh, 

Pennsylvania, USA as part of the Spoken Dialog 

Challenge (Black et al., 2011). There are 9 slots 

which are evaluated: route, from.desc, 

from.neighborhood, from.monument, to.desc, 

to.neighborhood, to.monument, date, and time. 

Since both marginal and joint representations of 

dialog states are important for deciding dialog 

actions, the challenge takes into consideration 

both. Each joint representation is an assignment 

of values to all slots.  Thus there are 9 marginal 

outputs and 1 joint output in total, which are all 

evaluated separately. 

The dialog tracker receives SLU N-best 

hypotheses for each user turn, each with a 

confidence score. In general, there are a large 

number of values for each slot, and the coverage 

of N-best hypotheses is good, thus the challenge 

confines consideration of goals to slots and 

values that have been observed in an SLU output. 

By exploiting this aspect, the task of a dialog 

state tracker is to generate a set of observed slot 

and value pairs, with a score between 0 and 1. 

The sum of all scores is restricted to sum to 1.0. 

Thus 1.0 – total score is defined as the score of a 

special value None that indicates the user’s goal 

has not yet been appeared on any SLU output. 

2.2 Datasets 

The data is divided into 2 training sets and 4 test 

sets (Table 1). For standardized development sets, 

each training set is split in half. Participants were 

asked to report results on the second half of each 

set. The data from group A in train2, and test1 

was collected using essentially the same dialog 

system. Only a few updates were made to reflect 

changes to the bus schedule. The data in test2 

was collected using a different version of group 

A’s dialog manager. The data from group B in 

train3 and test3 were collected using essentially 

the same dialog system; the main difference is 

that test3 covers more bus routes. Test4 tests the 

condition when training and testing using totally 

                                                 
2
 http://research.microsoft.com/apps/pubs/?id=169024 

different dialog systems, and when there is no 

same-system training data available. 

2.3 Metrics 

There are a variety of aspects of tracker 

performance that were measured: accuracy, mean 

reciprocal rank (MRR), ROC curves, Average 

score
3

, and Brier score
4

. There are three 

schedules for determining which turns to include 

in each evaluation. 

 Schedule 1: Include all turns. 

 Schedule 2: Include a turn for a given 

concept only if that concept either appears on 

the SLU N-Best list in that turn, or if the 

system’s action references that concept in 

that turn. 

 Schedule 3: Include only the turn before the 

system starts over from the beginning, and 

the last turn of the dialog. 

3 Recipe for Building a Robust Tracker  

In this section, we present several ingredients for 

building a robust state tracker that come into play 

at various levels of the development process: 

from data selection to model adaptation. 

3.1 Wide-Coverage and Well-Calibrated 

Data Selection 

The first step to create a robust dialog state 

tracker is the use of data which covers diverse 

system dialog actions and user inputs with well-

calibrated confidence scores. Since dialog 

policies can be varying according to how a 

dialog proceeds, it is crucial to arrange a training 

dialog corpus with well-balanced dialog actions. 

For example, group A datasets barely have 

implicit confirmation and heavily rely on explicit 

confirmation, while group B datasets have both 

types of confirmation. Thus a model trained on 

group A datasets cannot exploit implicit 

                                                 
3
 the average score assigned to the correct item 

4
 the L2 norm between the vector of scores output by 

dialog state tracker and a vector with 1 in the position 

of the correct item, and 0 elsewhere 

Dataset Source Calls Time period 

train2 Group A 678 Summer 2010 

train3 Group B 779 Summer 2010 

test1 Group A 765 Winter 2011-12 

test2 Group A 983 Winter 2011-12 

test3 Group B 1037 Winter 2011-12 

test4 Group C 451 Summer 2010 
 

Table 1: Dataset description. 
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confirmation when applied to group B datasets, 

whereas a model trained on group B datasets can 

be applied to group A datasets without much 

loss.  

Another important aspect of the data is how 

well user inputs are calibrated. If the confidence 

score is well-calibrated, confirmation can be 

skipped in the case of a hypothesis with a high 

confidence.  On the contrary, if the quality of the 

confidence score is very poor, a successful dialog 

will only be possible via heavy use of 

confirmation. Thus a model trained on a well-

calibrated dataset is likely to perform well on the 

poorly-calibrated dataset because of backup 

confirmation. Whereas, a model trained on the 

poorly-calibrated dataset will not perform well 

on the well-calibrated dataset due to the 

mismatch of the confidence score as well as the 

scarceness of confirmation information. The 

group A datasets have been shown to be poorly 

calibrated (Lee and Eskenazi, 2012); this is also 

shown in Fig. 2. Group B datasets are relatively 

well-calibrated, however. 

The importance of wide coverage and well-

calibrated data can be observed by examining the 

results of entry1 and entry2 (Fig. 1) which are 

trained on group A and B datasets, respectively. 

3.2 Feature-Rich Discriminative Model Design 

Most previous approaches are based on 

generative temporal modeling where the current 

dialog state is estimated using a few features 

such as the current system action and N-best 

hypotheses with corresponding confidence scores 

given the estimated dialog state at the previous 

turn (Gasic and Young, 2011; Lee and Eskenazi, 

2012; Raux and Ma, 2011; Thomson and Young, 

2010; Williams, 2010; Young et al., 2010). 

However, several fundamental questions have 

been raised recently about the formulation of the 

dialog state update as a generative temporal 

model: limitation in modeling correlations 

between observations in different time slices; and 

the insensitive discrimination between true and 

false dialog states (Williams, 2012).  

 
Figure 2: Estimated empirical accuracy of confidence 

score for from slot. Ideally calibrated confidence score 

should be directly proportional to empirical accuracy. 

 

 
 

Figure 1: Diagram showing the relation between datasets and models. Each team could have up to five systems 

entered. Our challenge entries are tagged by their entry numbers. More detailed descriptions about each model 

are provided in Section 3. 

416



In fact, such limitations can be improved by 

adopting a discriminative approach, which 

enables the incorporation of a rich set of features 

without worrying about their interdependence 

(Sutton and McCallum, 2006). For example, a 

hypothesis that repeats with low confidence 

scores is likely to be a manifestation of ASR 

error correlations between observations in 

different time slices. Thus, the highest 

confidence score that a hypothesis has attained 

so far could be a useful feature in preventing 

repeated incorrect hypotheses from defeating the 

correct hypothesis (which had a higher score but 

was only seen once). Another useful feature 

could be the distribution of confidence scores 

that a hypothesis has attained thus far, since it 

may not have the same effect as having a single 

observation with the total score due to the 

potential nonlinearity of confidence scores. 

There are many other potentially useful features. 

The entire list of features used for the challenge 

system is found in Appendix A. 

In addition to the role of rich features in 

performance enhancement, the incorporation of 

rich features is also important for robust state 

tracking. If the tracker estimates the true state by 

considering various aspects of observations and 

prior knowledge, then the influence of 

differences in certain factors between datasets 

can be mitigated by many other factors that are 

retained relatively unchanged between datasets.  

For the challenge system, we employed a 

Maximum Entropy (MaxEnt) model which is one 

of most powerful undirected graphical models. 

Unlike previous work using MaxEnt (Bohus and 

Rudnicky, 2006) where the model is limited to 

maintain only the top K-best hypotheses, we 

amended MaxEnt to allow for the entire set of 

observed hypotheses to be incorporated; Several 

feature functions which differ only by output 

labels were aggregated into one common feature 

function so that they can share common 

parameters and gather their statistics together 

(Appendix A). This modification is also crucial 

for robust estimation of the model parameters 

since some slots such as from and to can have 

about 10
4
 values but most of them are not seen in 

the training corpus. 

The effectiveness of feature-rich 

discriminative modeling can be observed by 

comparing the results of DMALL and PBM (Fig. 

1) which are discriminative and generative 

models, respectively. 

Note that interesting relational constraints, e.g. 

whether or not departure and arrival places are 

valid on a route, can be incorporated by adopting 

a structured model such as Conditional Random 

Field (CRF). But CRF was not used for the 

challenge since the bus information that was 

provided is not compatible with every dataset. 

The effectiveness of a structured model has been 

investigated in a separate publication (Lee, 2013). 

3.3 Generalization Improvement Techniques 

Even though the incorporation of a set of rich 

features helps overcome the weaknesses of 

previous approaches, it also implies a risk of 

overfitting training datasets due to its increased 

capacity of function class. Overfitting is a serious 

hazard especially for test datasets that are 

severely dissimilar to training datasets. As noted 

above, since the test datasets of the challenge are 

intentionally arranged to have various 

mismatches, it is crucial that we prevent a model 

from overfitting training datasets. In the rest of 

this section, we describe various ways of 

controlling the capacity of a model.  

 The most obvious method to control the 

capacity is to penalize larger weights 

proportional to the squared values of the weights 

or the absolute values of the weights. We employ 

the Orthant-wise Limited-memory Quasi Newton 

optimizer (Andrew and Gao, 2007) for L1 

regularization. The weights for L1 regularization 

were set to be 10 and 3 for the prior features and 

the other features, respectively. These values 

were chosen through cross-validation over 

several values rather than doing a thorough 

search. 

A second method, which is often convenient, 

is to start with small weights and then stop the 

learning before it has time to overfit provided 

that it finds the true regularities before it finds 

the spurious regularities that are related to 

specific training datasets. It could be hard, 

however, to decide when to stop. A typical 

technique is to keep learning until the 

performance on the validation set gets worse and 

then stop training and go back to the best point. 

For the challenge systems, we applied a simpler 

method that is to stop the training if the average 

objective function change over the course of 10 

previous iterations is less than 0.1, which is 

usually set to a much smaller number such as 10
-4

. 

In general, prediction errors can be 

decomposed into two main subcomponents, i.e., 

error due to bias and variance (Hastie et. al, 

2009). It is also known that there is a tradeoff 

between bias and variance. If a model is flexible 

enough to fit the given data, errors due to bias 
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will decrease while errors due to variance will 

increase. The methods stated above try to 

achieve less error by decreasing errors due to 

variance. However we cannot avoid increasing 

errors due to bias in this way. Thus we need a 

method to alleviate the tradeoff between bias and 

variance.  

System combination is one powerful way to 

reduce variance without raising bias. If we 

average models that have different forms and 

make different mistakes, the average will do 

better than the individual models. This effect is 

largest when the models make very different 

predictions from one another. We could make the 

models different by simply employing different 

machine learning algorithms as well as by 

training them on different subsets of the training 

data.  

The challenge system, entry3, consists of three 

discriminative models and one generative model 

(Fig. 1). Entry1 and entry2 were trained on 

different training datasets to make them produce 

different predictions. DMCOND is a discriminative 

model trained on both train2 and train3. Also, 

DMCOND differs from other discriminative 

models in the way that it was trained: the 

parameters associated with the features which are 

computable without grounding action 

information (features (1), (5), (8), (9) and (10) in 

Appendix A) are trained first and then the other 

features are learned given the former parameters. 

The idea behind this training method is to 

encourage the model to put more weight on 

dialog policy invariant features. The final 

component PBM is the AT&T Statistical Dialog 

Toolkit
5

 which is one of the state-of-the-art 

generative model-based systems. We modified it 

to process implicit confirmation and incorporate 

the prior distribution which was estimated on the 

training corpus. The prior distribution was 

smoothed by an approximate Good-Turing 

estimation on the fly when the system encounters 

an unseen value at run time. The improvement 

from system combination is verified by the 

results of entry3. 

3.4 Unsupervised Prior Adaptation 

While a prior is a highly effective type of 

information for dialog state tracking, it is also 

able to hamper the performance when incorrectly 

estimated. Thus it is worthwhile to investigate 

adapting the prior to the test datasets. Since a 

dialog state tracker is meant to estimate the 

                                                 
5
 http://www2.research.att.com/sw/tools/asdt/ 

posterior probabilities over hypotheses, we can 

extract estimated labels from test datasets by 

setting an appropriate threshold, taking the 

hypotheses with a greater probability than the 

threshold as labels. By combining the predictive 

prior from test datasets and the prior from 

training datasets, we adapted entry2 and entry3 

in an unsupervised way to produce entry5 and 

entry4, respectively (Fig. 1). For each test dataset, 

we used different thresholds: 0.95 for test1, test2 

and test3, and 0.85 for test4. 

4 Related Work 

Since the Partially Observable Markov Decision 

Process (POMDP) framework has offered a 

well-founded theory for both state tracking and 

decision making, most earlier studies adopted 

generative temporal models, the typical way to 

formulate belief state updates for POMDP-based 

systems (Williams and Young, 2007). Several 

approximate methods have also emerged to 

tackle the vast complexity of representing and 

maintaining belief states, e.g., partition-based 

approaches (Gasic and Young, 2011; Lee and 

Eskenazi, 2012; Williams, 2010; Young et al., 

2010) and Bayesian network (BN)-based 

methods (Raux and Ma, 2011; Thomson and 

Young, 2010). A drawback of the previous 

generative models is that it is hard to incorporate 

a rich set of observation features, which are often 

partly dependent on one another. Moreover, the 

quality of the confidence score will be critical to 

all generative models proposed so far, since they 

do not usually try to handle potential nonlinearity 

in confidence scores.  

As far as discriminative models are concerned, 

the MaxEnt model has been applied (Bohus and 

Rudnicky, 2006). But the model is restricted to 

maintaining only the top K-best hypotheses, 

where K is a predefined parameter, resulting in 

potential degradation of performance and 

difficulties in extending it to structured models. 

Finally, there is a wide range of systems that 

participated in Dialog State Tracking Challenge 

2013: from rule-based systems to fairly complex 

statistical methods such as Deep Neural 

Networks. Since we have not only traditional 

generative models such as Dynamic Bayesian 

Network and partition-based approaches, but also 

newly-proposed discriminative approaches such 

as log-linear models, Support Vector Machines 

and Deep Neural Networks, the analysis of the 

challenge results is expected to reveal valuable 

lessons and future research directions. 
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5 Results and Discussion  

The official results of the challenge are publicly 

available and our team is team6. As mentioned in 

Section 2.3, there are a variety of aspects of 

tracker performance that were measured on 

different schedules. Since prediction accuracy at 

the end of a dialog directly translates to the 

success of the entire task, we first show the 

average accuracy across all test datasets 

measured at schedule 3 in Fig. 3. The average 

accuracy at schedule 3 also well represents how 

robust a state tracker is since the test datasets are 

widely distributed in the dimensions of dialog 

policies, dialog length and the quality of user 

input and confidence score.  

First of all, we note that our 4 entries 

(entries2-5) took the top positions in both the All 

and Joint categories. Entry4, which showed the 

best performance, outperformed the best entry 

from other teams by 4.59% (entry2 of team9) 

and 10.1% (entry2 of team2). Specificially, the 

large improvement in Joint implies that our 

model performs evenly well for all slots and is 

more robust to the traits of each slot. 

Furthermore, from the results we can verify 

the effectiveness of each technique for achieving 

robustness. Given the large gap between the 

performance of entry1 and of entry2, it is clearly 

shown that a model trained on a wide-coverage 

and well-calibrated dialog corpus can be 

applicable to a broad range of test datasets 

without much loss. Even though entry2 was 

trained on only 344 dialogs (the first half of 

train3), it already surpasses most of competing 

models.  

The utility of a feature-rich discriminative 

model is demonstrated by the fact that DMALL 

greatly outperformed PBM. We also note that 

just using a discriminative model does not 

 

 
 

(a) All slot: a weighted average accuracy across all slots 

 
(b) Joint slot 

 

Figure 3: Accuracy measured at schedule 3 averaged over the test and development datasets. Models which do 

not appear in Fig. 1 are the best system of each team except for us. Rule denotes a rule-based system, Hybrid a 

hybrid system of discriminative and generative approaches, DiscTemp a discriminative temporal model, RForest 

a random forest model, DNN a deep neural network model, DiscJoint a discriminative model which deals with 

slots jointly, SVM a support vector machine model, and DBN a dynamic Bayesian network mode. 
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guarantee improved performance since many 

discriminative systems that participated in the 

challenge underperformed some of the entries 

that were based on generative modeling or rules. 

This result implies that devising effective 

features is central to performance.  

In addition, this result also points to the 

necessity of controlling the capacity of a model. 

While our models constantly show good 

performance both on development sets and test 

sets, the performance of the other models 

significantly dropped off. In fact, this explains 

why Hybrid and Rule systems switch their 

positions in the Joint slot. Moreover, many other 

systems in the graph tail seem to be severely 

overfitted, resulting in poor performance on test 

datasets despite relatively good performance on 

development datasets. As expected, system 

combination gives rise to better accuracy without 

loss of robustness; entry3 clearly outperforms 

each of its components, i.e. entry1, entry2, 

DMCOND and PBM, on both development and test 

datasets. 

Finally, the improvement observed when 

using unsupervised prior adaptation is also 

shown to be positive but its effect size is not 

significant: entry5 vs. entry2 and entry4 vs. 

entry3. Given that the way in which we have 

adapted the model is fairly primitive, we believe 

that there is much room to refine the 

unsupervised adaptation method.  

MRR measures the average of 1/R, where R is 

the rank of the first correct hypothesis. MRR at 

schedule 3 measures the quality of the final 

ranking which may be most important to a multi-

modal interface that can display results to the 

user. Even though the results are not displayed 

due to space limitations, the results for MRR are 

very similar to those for accuracy. Our 4 entries 

(entries2-5) still take the top positions. 

The ROC curves assess the discrimination of 

the top hypothesis’ score. The better 

discrimination at schedule 2 may be helpful for 

reducing unnecessary confirmations for values 

with sufficiently high belief. Also, the better 

discrimination at schedule 3 may enable a model 

to adapt to test data in an unsupervised manner 

by allowing us to set a proper threshold to 

produce predictive labels. The ROC curves of 

our systems again showed the highest levels of 

discrimination. 

6 Conclusion 

In this paper, we presented a set of techniques to 

build a robust dialog state tracker without losing 

performance: wide-coverage and well-calibrated 

data selection, feature-rich discriminative model 

design, generalization improvement techniques 

and unsupervised prior adaptation. The results in 

terms of various metrics show that the proposed 

method is truly useful for building a tracker 

prominently robust not only to mismatches 

between training and test datasets but also to the 

traits of different slots. Since we used relatively 

simple features for this work, there is much room 

to boost performance through feature 

engineering. Also, more thorough search for 

regularization weights can give additional 

performance gain. Moreover, one can extend the 

present discriminative model presented here to a 

structured version which can improve 

performance further by allowing  relational 

constraints to be incorporated (Lee, 2013). 

Finally, we believe that once a more detailed and 

thorough investigation of the challenge results 

has been carried out, we will be able to take the 

best of each system and combine them to 

generate a much better dialog state tracker.   
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Appendix A. Feature Functions 

Feature functions are playing a central role to the 

performance of discriminative models. We 

describe the feature functions that we used for 

the challenge system in the following. To 

facilitate readers’ understanding an example of 

feature extraction is illustrated in Fig. 4. 

One of the most fundamental features for 

dialog state tracking should exploit the 

confidence scores assigned to an informed 

hypothesis. The simplest form could be direct 

use of confidence scores. But often pre-trained 

confidence measures fail to match the empirical 

distribution of a given dialog domain (Lee and 

Eskenazi, 2012; Thomson et al. 2010). Also the 

distribution of confidence scores that a 

hypothesis has attained so far may not have the 

same effect as the total score of the confidence 

scores (e.g., in Fig. 4, two observations for 61C 

with confidence score 0.3 vs. 0.6 which is the 

sum of the scores). Thus we create a feature 

function that divides the range of confidence 

scores into bins and returns the frequency of 

observations that fall into the corresponding bin: 
 

       (    
 )  

        {
                 (       (    

 ))

           
   
(1) 

 

where      ( )  returns the set of confidence 

scores whose action informs   in the sequence of 

observations   
 .         (   )  computes the 

frequency of observations that fall into the     

bin. 

There are two types of grounding actions 

which are popular in spoken dialog systems, i.e., 

implicit and explicit confirmation. To leverage 

affirmative or negative responses, the following 

feature functions are introduced in a similar 

fashion as the        feature function: 
 

       (    
 )  

       {
                 (       (    

 ))

           
   
(2) 

 

       (    
 )  

       {
                 (       (    

 ))

           
   
(3) 

 

where      ( )  /      ( )  returns the set of 

confidence scores whose associated action 

affirms / negates   in the sequence of 

observations   
 . 

 

           (    
 )  

                         {
                  (    

 )

           
   

(4) 
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where          ( ) indicates whether or not the 

user has negated the system’s implicit 

confirmation in the sequence of observations   
 . 

One of interesting feature functions is the so-

called baseline feature which exploits the output 

of a baseline system. The following feature 

function emulates the output of the baseline 

system which always selects the top ASR 

hypothesis for the entire dialog: 
 

          (    
 )  

      {
            (           (    

 ))

           
   
(5) 

 

where          ( )  returns the maximum 

confidence score whose action informs   in the 

sequence of observations   
 .    (   )  indicates 

whether or not the maximum score falls into the 

    bin. 

Yet another feature function of this kind is the 

accumulated score which adds up all confidence 

scores associated with inform and affirm and 

subtracts the ones with negation: 
 

         (    
 )  

                  

{
 
 

 
                    (    

 )

                                 (    
 )

                                 (    
 )

                 

   
(6) 

 

Since we have a partition-based tracker, it is also 

possible to take advantage of its output: 
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(7) 

 

where    ( )  returns the posterior probability 

of a hypothesis estimated by the partition-based 

tracker. Note that such feature functions as 

         ( ) ,         ( )  and    ( )  are not 

independent of the others defined previously, 

which may cause generative models to produce 

deficient probability distributions. 

It is known that prior information can boost 

the performance (Williams, 2012) if the prior is 

well-estimated. One of advantages of generative 

models is that they provide a natural mechanism 

to incorporate a prior. Discriminative models 

also can exploit a prior by introducing additional 

feature functions: 
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(8) 

 

where           ( ) returns the fraction of 

occurrences of   in the set of true labels. 

If the system cannot process a certain user 

request, it is highly likely that the user change 

his/her goal. The following feature function is 

designed to take care of such cases: 
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where     ( ) indicates whether or not   is out-

of-coverage. 

As with other log-linear models, we also have 

feature functions for bias: 
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(10) 

 

Note that we have an additional bias term for 

None to estimate an appropriate weight for it. 

Here, None is a special value to indicate that the 

true hypothesis has not yet appeared in the ASR 

N-best lists. Since there are generally a large 

number of values for each concept, the 

probability of the true hypothesis will be very 

small unless the true hypothesis appears on the 

N-best lists. Thus we can make inferences on the 

model very quickly by focusing only on the 

observed hypotheses at the cost of little 

performance degradation. 

 
 

Figure 4: A simplified example of feature extraction for the route concept. It shows the values that each feature 

will have when three consecutive user inputs are given. 
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