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Abstract

Recognition of causality is important to
achieve natural language discourse under-
standing. Previous approaches rely on
shallow linguistic features. In this work,
we propose to identify causality in verb-
noun pairs by exploiting deeper seman-
tics of nouns and verbs. Particularly, we
acquire and employ three novel types of
knowledge: (1) semantic classes of nouns
with a high and low tendency to encode
causality along with information regard-
ing metonymies, (2) data-driven seman-
tic classes of verbal events with the least
tendency to encode causality, and (3) ten-
dencies of verb frames to encode causal-
ity. Using these knowledge sources, we
achieve around 15% improvement in F-
score over a supervised classifier trained
using linguistic features.

1 Introduction

The identification of cause-effect relations is crit-
ical to achieve natural language discourse under-
standing. Causal relations are encoded in text us-
ing various linguistic constructions e.g., between
two verbs, a verb and a noun, two discourse seg-
ments, etc. In this research, we focus on identify-
ing causality encoded between a verb and a noun
(or noun phrase). For example, consider the fol-
lowing example:
1. At least 1,833 people died in the hurricane.

In example (1), the verb-noun phrase pair
“died”-“the hurricane” encodes causality where
event “died” is the effect of “hurricane” event.

Previously several approaches have been pro-
posed to identify causality between two verbs
(Bethard and Martin, 2008; Riaz and Girju, 2010;
Do et al., 2011; Riaz and Girju, 2013) and dis-
course segments (Sporleder and Lascarides, 2008;

Pitler and Nenkova, 2009; Pitler et al., 2009).
However, the problem of identifying causality in
verb-noun pairs has not received a considerable
attention. For example, Do et al. (2011) have
studied this task but they worked only with a list
of predefined nouns representing events. In this
work, we focus on the linguistic construction of
verb-noun (or noun phrase) pairs where noun can
be of any semantic type.

Traditional approaches for identifying causal-
ity mainly employ linguistic features (e.g., lexical
items, part-of-speech tags of words, etc.) in the
framework of supervised learning (Girju, 2003;
Sporleder and Lascarides, 2008; Bethard and Mar-
tin, 2008; Pitler and Nenkova, 2009; Pitler et al.,
2009) and do not involve deeper semantics of lan-
guage. Analysis of such approaches by Sporleder
and Lascarides (2008) have revealed that the lin-
guistic features are not always sufficient to achieve
a good performance on the task of identifying se-
mantic relations including causality. In this work,
we propose a model that deeply processes and
acquires the specific semantic information about
the participants of a verb-noun phrase (v-np) pair
(i.e., noun and verb semantics) to identify causal-
ity with a better performance over the baseline
model depending merely on shallow linguistic fea-
tures.

The work in this paper builds on our recent work
reported in Riaz and Girju (2014). In that previ-
ous model, we identified the semantic classes of
nouns and verbs with a high and low tendency to
encode causation. For example, a named entity
such as LOCATION may have the least tendency
to encode causation. We leveraged such informa-
tion about nouns to filter false positives. Sim-
ilarly, we utilized the TimeBank’s (Pustejovsky
et al., 2006) classification of verbal events (i.e.,
Occurrence, Perception, Aspectual, State, I State,
I Action and Reporting) and their definitions to
claim that the reporting events (e.g., say, tell, etc.)
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just describe and narrate other events instead of
encoding causality with them. We proposed an In-
teger Linear Programming (ILP) model (Roth and
Yih, 2004; Do et al., 2011) to combine noun and
verb semantics with the decisions of a supervised
classifier which only relies on linguistic features.

In this paper, we extend our previous model by
acquiring and exploiting the following three novel
types of knowledge:
1. We learn the information about tendencies of

various verb frames to encode causation. For
example, our model identifies if the subject of
verb “destroy” (“occur”) has a high (low) ten-
dency to encode causation. Such information
helps gain performance by exploiting causal
semantics of each verb frame separately. We
also learn and incorporate information about
the verb frames in general e.g., how likely it is
for the subject of any verb to encode causation
with its verb.

2. In Riaz and Girju (2014), we utilized the Time-
Bank’s definition of reporting events to argue
that such events have the least tendency to en-
code causation. Instead of relying on human
judgment we now introduce a data intensive ap-
proach to identify the TimeBank’s classes of
events with the least tendency to encode cau-
sation.

3. Although, information about the nouns with
the least tendency to encode causation helps to
filter false positives it can lead to false nega-
tives when metonymic readings are associated
with such nouns. Therefore, we introduce a
metonymy resolver on top of our current model
to avoid false negatives.

We provide details of our previously proposed
model in section 3. We introduce new model and
discuss its performance in sections 4 and 5. Sec-
tion 6 concludes the current research.

2 Relevant Work

In Natural Language Processing (NLP), re-
searchers are showing lots of interest in the task
of identifying causality due to its various applica-
tions e.g., question answering (Girju, 2003), sum-
marization (Chklovski and Pantel, 2004), future
prediction (Radinsky and Horvitz, 2013), etc.

Several approaches have been proposed to iden-
tify causality in pairs of verbal events (Bethard
and Martin, 2008; Riaz and Girju, 2010; Do et
al., 2011; Riaz and Girju, 2013) and discourse

segments (Sporleder and Lascarides, 2008; Pitler
and Nenkova, 2009; Pitler et al., 2009). However
causality a pervasive relation of language can be
encoded via various linguistic constructions. For
example, verbs and nouns are the key components
of language to represent events. Therefore in this
work we focus on identifying causality in verb-
noun pairs.

Previously researchers have followed the path
of utilizing linguistic features in the framework
of supervised learning (Girju, 2003; Bethard and
Martin, 2008; Sporleder and Lascarides, 2008;
Pitler and Nenkova, 2009; Pitler et al., 2009).
Though linguistic features are important but other
sources of knowledge are also critically required
to achieve progress on the current task.

In recent years, researchers have proposed un-
supervised metrics to identify causality between
events (Riaz and Girju, 2010; Do et al., 2011).
For example, Riaz and Girju (2010) and Do et
al. (2011) introduced unsupervised metrics to
learn causal dependencies between events. These
metrics mainly depend on probabilities of co-
occurrences of events and do not distinguish well
causality from any other types of correlation (Riaz
and Girju, 2013). In order to overcome this prob-
lem Riaz and Girju (2013) proposed some ad-
vanced metrics which combine probabilities of co-
occurrences of events with the supervised esti-
mates of cause and non-cause relations.

Considering the importance of employing rich
sources of knowledge other than linguistic features
for the current task, we have recently proposed a
model that incorporates semantic classes of nouns
and verbs with a high and low tendency to encode
causation (Riaz and Girju, 2014). In this work, we
exploit information about verb frames, data-driven
verb semantics and metonymies to achieve more
progress on our recent work.

3 Model for Recognizing Causality

In this section we provide an overview of our pre-
vious model (Riaz and Girju, 2014) for identifying
causality in v-np pairs where v (np) stands for verb
(noun phrase). This model works in the following
two stages: (1) A supervised classifier is used to
make binary predictions (i.e., the label cause (C)
or non-cause (¬C)) employing linguistic features,
and (2) noun and verb semantics are then com-
bined with the predictions of supervised classifier
in the ILP framework to identify causality.
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3.1 Supervised Classifier

To the best of our knowledge, there is no data
set of v-np pairs with the labels C and ¬C avail-
able to us. For the current task we employ some
heuristics to extract a training corpus of v-np pairs
using FrameNet (Baker et al., 1998). FrameNet
provides frame elements for the verbs and hand
annotated examples (aka annotations) of these
frame elements. Consider the following annota-
tion from FrameNet “They died [Causefrom shot-
gun wounds]” where the frame element “Cause”
is given for the verb “died”. We remove the prepo-
sition “from” from the above annotation of frame
element to acquire an instance of v-np (i.e., died-
shotgun wounds) pair. We extract all annotations
for verbs from FrameNet in which a frame element
must contain at least one noun and no verb in it.
We found such annotations for 729 distinct frame
elements. We manually assigned the labels C and
¬C to these frame elements. Cause, Purpose, Rea-
son, Result, Explanation are some examples of the
frame elements to which we assigned the label C.
Using the above mentioned assignments of labels
C and ¬C to frame elements, we have acquired
a training corpus of 4, 141 (77, 119) C (¬C) in-
stances from FrameNet. In order to avoid class im-
balance while training we employ an equal num-
ber of instances of both labels.

Due to space constraints, we refer the reader to
Appendix A for the details of linguistic features
to build the supervised classifier. We employ both
Naive Bayes (NB) and Maximum Entropy (Max-
Ent) algorithms to acquire predictions and prob-
abilities of assignments of labels. We set up the
following ILP using these probabilities:

Z1 = max
∑

v-np∈I

∑
l∈L1

x1(v-np, l)P (v-np, l) (1)

∑
l∈L1

x1(v-np, l) = 1 ∀ v-np ∈ I (2)

x1(v-np, l) ∈ {0, 1} ∀ v-np ∈ I ∀l ∈ L1 (3)

Here, L1 = {C,¬C}, I is the set of all v-np pairs.
x1(v-np, l) is a binary decision variable set to 1
only if the label l ∈ L1 is assigned to a v-np pair
and only one label out of |L1| choices can be as-
signed to a v-np pair (see constraints 2 and 3). In
particular, we maximize the objective function Z1

(1) assigning the labels l ∈ {L1} to v-np pairs de-
pending on the probabilities of assignments (i.e.,
P (v-np, l)) obtained through the supervised clas-
sifier.

3.2 Noun and Verb Semantics
We automatically acquire and employ semantic
classes of nouns and verbs with a high and low
tendency to encode causation. Such information
helps to reduce errors in predictions of the super-
vised classifier.

We derive two semantic classes of nouns for our
purpose i.e., Cnp and ¬Cnp where the class Cnp

(¬Cnp) represents the noun phrases with a high
(low) tendency to encode causation. For exam-
ple, a noun phrase expression for a location has
the least tendency to encode causation unless a
metonymic reading is associated with it. In or-
der to acquire these classes, we extract annotations
of 936 distinct frame elements from FrameNet
in which a frame element must contain at least
one noun and no verb in it. These annotations
of frame elements roughly represent instances of
noun phrases (np). We manually assigned the la-
bels Cnp and ¬Cnp to the frame elements. For
example, we assign the label ¬Cnp to the frame
element “Place” which represents a location (see
Appendix B for some examples of the frame ele-
ments with labels Cnp and ¬Cnp). We also fol-
low the approach similar to Girju and Moldovan
(2002) to employ WordNet senses of nouns to ac-
quire more instances of the classes Cnp and ¬Cnp

(see Appendix B for the details). We have ac-
quired a total of 280, 212 instances of np (50%
for each of the two classes i.e., Cnp and ¬Cnp)
using both FrameNet and WordNet. Using these
instances, we build a supervised classifier to iden-
tify the semantic class of np (see Appendix B for
the details of features to build the classifier). We
incorporate the knowledge of semantic classes of
nouns by making the following additions to ILP:

Z2 = Z1 +
∑

v-np∈I−M

∑
l∈L2

x2(fnp(v-np), l)P (fnp(v-np), l)

(4)∑
l∈L2

x2(fnp(v-np), l) = 1 ∀ v-np ∈ I −M (5)

x2(fnp(v-np), l) ∈ {0, 1} ∀ v-np ∈ I −M (6)
∀l ∈ L2

x1(v-np,¬C)− x2(fnp(v-np),¬Cnp) ≥ 0 (7)
∀ v-np ∈ I −M

Here L2 = {Cnp,¬Cnp}. fnp(v-np) is a func-
tion which returns np of a v-np pair. M is the set
of v-np pairs with metonymic readings associated
with np. Currently, this set is empty and in sec-
tion 4.3 we introduce a metonymy resolver to pop-
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ulate this set. x2(fnp(v-np), l) is a binary decision
variable set to 1 only if the label l ∈ L2 is assigned
to np and only one label out of |L2| choices can
be assigned to np (see constraints 5 and 6). Con-
straint 7 enforces that if an np belongs to the class
¬Cnp then its corresponding v-np pair is assigned
the label ¬C. In particular, we maximize the ob-
jective function Z2 (4) subject to the constraints
introduced till now. For each v-np pair, we predict
the semantic class of np using our supervised clas-
sifier for the labels l ∈ L2 and set the probabilities
– i.e., P (fnp(v-np), l) = 1, P (fnp(v-np), {L2} −
{l}) = 0 if the label l ∈ L2 is assigned to np. Also
before running our supervised classifier, we run a
named entity recognizer (Finkel et al., 2005) and
assign the label ¬Cnp to all noun phrases identi-
fied as named entities. We also determine associa-
tion of metonymies with the noun phrases identi-
fied as named entities.

For the current task we also acquire two seman-
tic classes of verbs i.e., Cev and ¬Cev where the
class Cev (¬Cev ) contains the verbal events with a
high (low) tendency to encode causation. In order
to derive these two classes we exploit the Time-
Bank corpus (Pustejovsky et al., 2003) which pro-
vides seven semantic classes of verbal events – i.e.,
Occurrence, Perception, Aspectual, State, I State,
I Action and Reporting. According to the defini-
tions of these classes, we claim that the report-
ing events (e.g., say, tell, etc.) just describe and
narrate other events instead of encoding causality
with them. Using this claim, we consider that all
instances of reporting verbal events of TimeBank
belong to the class ¬Cev and the rest of instances
of verbal events lie in the class Cev . After ac-
quiring instances of the classes Cev and ¬Cev , we
build a supervised classifier for these two classes.
We use the features introduced by Bethard and
Martin (2006) to build this classifier (see Bethard
and Martin (2006) for the details). Employing pre-
dictions and probabilities of assignments of the la-
bels Cev and ¬Cev we add the following two con-
straints to ILP: (1) if the event represented by v
belongs to ¬Cev then the corresponding v-np pair
must be labeled with ¬C and (2) if a v-np pair is
a causal pair then the event represented by v must
be labeled with Cev .

4 Enriched Verb and Noun Semantics

This section describes the novel contributions of
this work i.e., identification of semantics of verb

frames, semantic classes of verbal events via a data
intensive approach and association of metonymic
readings with noun phrases to identify causality
with a better performance.

4.1 Verb Frames

We introduce a method to acquire tendencies of
various verb frames to encode causation. Consider
the following two examples to understand the ten-
dencies of verb frames of form {v, gr} to encode
causation where v is the verb and gr is the gram-
matical relation of np with the verb v.
1. The Great Storm of October 1987 almost totally de-

stroyed the eighty year old pinetum at Nymans Garden

in Sussex. (Cause (C))
2. The explosion occurred in the city’s main business area.

(Non-Cause (¬C))
In above two examples the nps “The Great

Storm of October 1987” and “The explosion” have
the grammatical relations of subject with the verbs
“destroyed” and “died”. In examples (1) and (2)
the verb frames {destroy, subject} and {occur,
subject} encode cause and non-cause relations.
These examples reveal that each verb frame has
its own tendency to encode causation. This type
of knowledge helps gain performance by exploit-
ing the semantics of each verb frame separately.

We leverage FrameNet annotations to acquire
such type of knowledge. We collect all annota-
tions of verbs from FrameNet and assign the la-
bels C and ¬C to the frame elements as discussed
in section 3.1. In FrameNet, example (1) is given
as follows:
3. [Cause The Great Storm of October 1987] [Degree almost

totally] destroyed [Undergoer the eighty year old pinetum

at Nymans Garden in Sussex].

According to our assignments of labels C and
¬C to the frame elements, example (1) is given
as “[C The Great Storm of October 1987] [¬C al-
most totally] destroyed [¬C the eighty year old
pinetum at Nymans Garden in Sussex].”. After ac-
quiring instances of the labels C and ¬C from ex-
ample (1), we populate the fields of a knowledge
base of verb frames (see Table 1). Fields of this
knowledge base are {v, gr}, count({v, gr}, C) and
count({v, gr},¬C). gr is the dependency relation
of the frame element with the verb v. We use Stan-
ford’s dependency parser (Marneffe et al., 2006)
to collect dependency relations. count({v, gr}, C)
(count({v, gr},¬C)) is the count of the label C
(¬C) of the frame {v, gr}. As shown in Table 1,
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for the frame element “The Great Storm of Octo-
ber 1987”, the word “Storm” has the dependency
relation of “nsubj” with the verb “destroy”. If
there exists more than one dependency relations
between the frame element and its verb then we
choose the very first relation in the text order. Ac-
cording to the counts given in Table 1, {destroy,
nsubj} has more tendency to encode a cause re-
lation than the non-cause one. We have acquired
7,156 and 114,898 instances of the labels C and
¬C from FrameNet for populating the knowledge
base of verb frames. We compute tendencies of
verb frames to encode causality using the follow-
ing scores:

S({v, gr}, l) = S1({v, gr}, l)× S2({*, gr}, l) (8)

S1({v, gr}, l) = count({v,gr},l)
count({v,gr},l)+count({v,gr},L1−{l})

S2({*, gr}, l) = count({*,gr},l)
count({*,gr},l)+count({*,gr},L1−{l})

Counts of first component (S1) can be taken
from the knowledge base of verb frames of form
{v, gr}. The second component (S2) with counts
count({*, gr}, l) and count({*, gr}, L1 − {l})
captures tendencies of verb frames in general.
For example, what is the tendency of any subject
to encode causality with its verb i.e., the score
S2({∗, nsubj}, C). We populate the knowledge
base of Table 1 with equal number of C and ¬C
instances to calculate counts for S2. We make the
following additions to ILP to incorporate informa-
tion about verb frames:

Z3 = Z2 +
∑

v-np∈I∧
g(v-np)∈KB∧
fnp(v-np)∈Cnp

∑
l∈L1

x3(g(v-np), l)S(g(v-np), l)

(9)∑
l∈L1

x3(g(v-np), l) = 1 ∀
v-np∈I∧

g(v-np)∈KB∧
fnp(v-np)∈Cnp

(10)

x3(g(v-np), l) ∈ {0, 1} ∀l ∈ L1,∀
v-np∈I∧

g(v-np)∈KB∧
fnp(v-np)∈Cnp

(11)

x3(g(v-np), l) ≤ x1(v-np, l) ∀l ∈ L1, (12)

∀
v-np∈I

∧g(v-np)∈KB
∧ fnp(v-np)∈Cnp

x1(v-np, l) ≤ x3(g(v-np), l) ∀l ∈ L1, (13)

∀
v-np∈I∧

g(v-np)∈KB∧
fnp(v-np)∈Cnp

Here, KB is the knowledge base of verb frames
and g(v-np) is the function which returns the verb
frame i.e., {v, gr}. This function returns NULL
value if there is no grammatical relation between
v and np in an instance. The above changes in
ILP are only applicable for the v-np pairs with

{v, gr} count({v, gr}, C) count({v, gr},¬C)
{destroy,nsubj} 1 0
{destroy,advmod} 0 1
{destroy,dobj} 0 1
[C The Great Storm of October 1987] [¬C almost totally] de-
stroyed [¬C the eighty year old pinetum at Nymans Garden in
Sussex].

Table 1: A knowledge base of verb frames. This
knowledge base is populated using the instances
of C and ¬C labels given in this table.

g(v-np) ∈ KB and np identified as of class Cnp

because we have already filtered the cases of np ∈
¬Cnp in section 3.2. x3(g(v-np), l) is a binary de-
cision variable set to 1 only if the label l ∈ L1

is assigned to g(v-np) and only one label out of
|L1| choices can be assigned to g(v-np) (see con-
straints 10 and 11). We add information about verb
frames using constraints 12 and 13. These con-
straints enforce the predictions of the supervised
classifier of causality (section 3.1) to be consis-
tent with the predictions using tendencies of verb
frames (i.e., score S({v, gr}, l)). We maximize
objective function (9) subject to the above con-
straints. We remove those {v, gr} from KB which
have count({v, gr}, C)+count({v, gr},¬C) < 5
to avoid wrong predictions based on the small
counts of verb frames.

4.2 Data-driven Verb Semantics

In section 3.2 we considered that reporting events
belong to the class ¬Cev with the least tendency
to encode causation using the definition of these
events in the TimeBank corpus. Instead of re-
lying on definitions of events we now introduce
a data intensive approach to automatically iden-
tify the class ¬Cev of verbal events. In order
to identify this class we extract training instances
of verbal events encoding C and ¬C relations.
Verbal events encode cause-effect relations using
verb-verb (e.g., Five shoppers were killed when a
car blew up.) and verb-noun linguistic construc-
tions. Therefore for the current purpose we use
the following two types of training instances: (A)
a training corpus of 240K instances of verb-verb
(vi-vj) pairs encoding C and ¬C relations (named
as Trainingvi-vj) (we refer the reader to Riaz and
Girju (2013) for the details of this training corpus)
and (B) the training corpus v-np instances intro-
duced in section 3.1 (named as Trainingv-np).

Following is the procedure to derive V¬C ⊆
V where V={Occurrence, Perception, Aspectual,
State, I State, I Action, Reporting} and the set
V¬C contains the TimeBank’s semantic classes
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with the least tendency to encode a cause relation.
1. Input: Training corpus, V

2. Output: Set V¬C

3. For each training instance k employ the supervised clas-
sifier of Bethard and Martin (2006) to do the following:

(a) if k ∈ Trainingvi-vj then identify the semantic class
(sc) of both events represented by both verbs vi and
vj and add this information to a set i.e., T = T ∪
(kvi , scvi , l) ∪ (kvj , scvj , l) where scvi is the se-
mantic class of event of the verb vi of instance k
and l ∈ {C,¬C}.

(b) Else if k ∈ Trainingv-np then identify the semantic
class (sc) of event represented by the verb v and set
T = T ∪ (kv, scv, l).

4. Using results of step 3, calculate tendency of each se-
mantic class sc ∈ V to encode non-causality (i.e.,
score(sc,¬C)) as follows:

score(sc,¬C) = score1(sc,¬C)× score2(sc,¬C)

score1(sc,¬C) = (
count(sc,¬C)

count(sc)
− count(sc, C)

count(sc)
)

score2(sc,¬C) = (
count(sc,¬C)

count(¬C)
− count(sc, C)

count(C)
)

where count(m, n) is the number of instances of verbal
events with the labels m and n and count(m) is the number
of instances of verbal events with the label m.

5. Acquire a ranked list of semantic classes listsc = [sc1, sc2,
. . . scm] s.t. score(sci,¬C) ≥ score(sci+1,¬C). From
this list we remove the class sci if either score1(sci, ¬c)
< 0 or score2(sci, ¬c) < 0.

. The following steps are used to determine the cutoff
class sci ∈ listsc s.t. the semantic classes {sc1, sc2, . . .,
sci-1} have the least tendency to encode causation.

6. resultsc−1 = 0 and resultsc0 = 0.

7. Remove sci from the front of listsc and do the following:
(c) Predict the label (l) ¬C for all tuples of form

(m, sc, l) ∈ T if sc ∈ {sc1, sc2, . . ., sci} and pre-
dict C for the rest of the tuples.

(d) Using predictions from step (c), calculate the
resultsci = F1-score × accuracy for the label l ∈
{C,¬C}.

(e) If resultsci−resultsci-1 < resultsci-1−resultsci-2
then output {sc1, sc2, . . ., sci−1}

(f) Else go to step 7.

Using the above procedure, we obtain the
sets {Aspectual} and {Reporting, I State} with
Trainingvi-vj and Trainingv-np corpora. We con-
sider that the Aspectual, Reporting and I State
events of the TimeBank corpus belong to the class
¬Cev and rest of the events lie in Cev . Using these
semantic classes we apply the constraints intro-
duced in section 3.2.

4.3 Metonymy Resolution:
Metonymy resolution is the task to determine if a
literal or non-literal reading is associated with a

{v, gr} count({v, gr}, Cnp) count({v, gr},¬Cnp)
{kill,nsubj} 1 0
{kill,dobj} 0 1
[CnpPissed off Angelus] just kills [¬Cnpme]

Table 2: A knowledge base of verb frames. This
knowledge base is populated using the instances
of Cnp and ¬Cnp labels given in this table.

natural language expression (Markert and Nissim,
2009). Consider the following example:
4. The United States has killed Osama bin Laden and has

custody of his body. (Cause (C))
In example (4) “The United States” refers to a

non-literal reading i.e., the event of “raid in Ab-
bottabad on May 2, 2011 by the United States”
rather than merely referring to a literal sense i.e.,
a country. The association of non-literal reading
with “The United States” results in killing event.
Previously, researchers have worked with hand-
annotated selectional restrictions violation for this
task (Markert and Nissim, 2009). In the exam-
ple (4) a country cannot “kill” someone and thus
a metonymic reading is associated with it. In this
work we identify association of metonymies with
noun phrases via verb frames and prepositions as
explained below in this section.

In the first part of our approach we employ
violations of tendencies of verb frames to iden-
tify if a non-literal reading is associated with a
noun phrases. Particularly, we build a knowledge
base of verb frames using Cnp and ¬Cnp classes
as discussed in section 4.1. Consider the knowl-
edge base given in Table 2 populated using the
following FrameNet annotations “[StimulusPissed
off Angelus] just kills [Experiencerme].” with as-
signments of labels Cnp and ¬Cnp to the frame
elements. We populate the knowledge base using
only those FrameNet annotations in which a frame
element does not contain a verb.

Now we introduce our method to identify the
association of non-literal reading with the “The
United States” in example (4). The supervised
classifier predicts the class ¬Cnp for the np “The
United States”. However, in the current state
of knowledge base (Table 2) P({destroy, nsubj},
Cnp) > P({destroy, nsubj}, ¬Cnp) where P is
the probability. The prediction of ¬Cnp for “The
United States” violates the above probabilities.
Considering this violation, we predict the associa-
tion of metonymy with np.

In the second part of our approach we iden-
tify tendencies of prepositions to encode causation
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and use violation of these tendencies to identify
metonymies. For this purpose, we use the training
corpus of v-np pairs with 4, 141 C and 77, 119 ¬C
training instances (see section 3.1). We employ
only those training instances in which a preposi-
tion appears between v and np and there appears
no verb between them. From these instances, we
acquire a set of prepositions that appear between
v and np. Using this set of prepositions (PR) as
input to the following procedure, we acquire a set
of prepositions (PRC) with the highest tendency
to encode causation:
1. Input: Training Corpus of v-np pairs, PR

2. Output: PRC

3. Calculate tendency of each preposition pr ∈ PR to en-
code causality (i.e., score(pr, C)) as follows:

score(pr, C) = score1(pr, C)× score2(pr, C)

score1(pr, C) = (
count(pr, C)

count(pr)
− count(pr,¬C)

count(pr)
)

score2(pr, C) = (
count(pr, C)

count(C)
− count(pr,¬C)

count(¬C)
)

4. Acquire a ranked list of prepositions listpr = [pr1, pr2, . . .
prm] s.t. score(pri, C) ≥ score(pri+1, C). From this
list we remove pri if either score1(pri, C) or score2(pri,
C) < 0.

5. resultpr−1 = 0, resultpr0 = 0

6. Remove pri from the front of the listpr and do the follow-
ing:

(a) Predict the label C for all v-np training instances
with pr ∈ {pr1, pr2, . . ., pri} and assign the label
¬C to the rest of the instances.

(b) Using predictions from step (a) calculate the
resultpri = F1-score × accuracy.

(c) If resultpri -resultpri-1 < resultpri-1 -resultpri-2 then
output {pr1, pr2, . . ., pri−1}.

(d) Else go to step 6.

The above procedure outputs the set PRC =
{for, by}. Now we introduce method to identify
association of non-literal reading for the example
“All weapon sites in Iraq were destroyed by the
United States” where “the United States” ∈ ¬Cnp

as identified by the supervised classifier. However,
the preposition “by” has a high tendency to en-
code causation and thus “the United States” may
encode causation. Therefore, there is a possibil-
ity that this noun phrase has a non-literal sense
attached to it which results in encoding causality.
Using this method, we predict metonymies only
for the v-np instances where preposition appears
between v and np and there appears no verb be-
tween them. If any of two methods of metonymy
resolution predicts the association of metonymy
with np then we add v-np to the set M used in
ILP (see section 3.2).

5 Evaluation and Discussion

In this section we present experiments and discus-
sion on the performance achieved for the current
task. In order to evaluate our model, we generated
a test set of instances of v-np pairs. For this pur-
pose, we collected three wiki articles on the topics
of Hurricane Katrina, Iraq War and Egyptian Rev-
olution of 2011. We apply a part-of-speech tagger
and a dependency parser on all sentences of these
three articles (Toutanova et al., 2003; Marneffe et
al., 2006). We extracted all v-np pairs from each
sentence of these articles. For each of the these
three articles, we selected first 500 instances of v-
np pairs. Two annotators were asked to provide the
labels C and ¬C to the instances of v-np pairs us-
ing the annotation guidelines from Riaz and Girju
(2010). We have achieved a 0.64 kappa score for
the human inter-annotator agreement on a total of
1,500 v-np instances. This results in a total of
1,365 instances of v-np pairs with 11.86% C pairs.

In this section, we present performance of the
following models (see Table 3):
1. Baseline: NB and MaxEnt (McCallum, 2002)

supervised classifiers using only the shallow
linguistic features (see section 3.1).

2. Basic noun and verb semantics: ILP with
the addition of semantic classes of nouns
without metonymy (denoted by +N!M) and
the addition of semantic classes of verbs
where ¬Cev={(R)eporting events} (denoted by
+N!M+V{R}). These models represent the
work proposed in Riaz and Girju (2014) (sec-
tion 3).

3. Noun semantics with metonymies: ILP
with the addition of noun semantics involv-
ing metonymies resolved via verb frames (de-
noted by +NM1), metonymies resolved via verb
frames {v, gr} where gr ∈ GR = {csubj, csub-
jpass, nsubj, nsubjpass, xsubj, dobj, iobj, pobj,
agent} a set of core dependency relations of
subjects and objects (denoted by +NM1GR

) and
metonymies resolved via both verb frames and
prepositions (denoted by +NM1GR

+M2).
4. Verb frames and data-driven verb seman-

tics: ILP with the addition of information about
verb frames (denoted by +NM+VF where M =
M1GR + M2), data-driven verb semantics i.e.,
¬Cev ={(A)spectual, (R)eporting, (I) (S)tate
events} (denoted by +NM+V{A,R,IS}) and both
verb frames and data-driven verb semantics
(denoted by +NM+VF+V{A,R,IS})
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S B +N! M +N! M+V{R} +NM1 +NM1GR
+NM1GR + M2 +NM+VF +NM+V{A,R,IS} +NM+VF +V{A,R,IS}

A 28.86 71.86 73.40 71.35 71.42 71.64 72.96 75.16 76.19
P 13.52 26.18 27.21 26.29 26.34 27.54 28.39 29.93 30.82
R 92.59 75.30 74.07 78.39 78.39 85.18 83.95 81.48 80.86
F 23.60 38.85 39.80 39.37 39.44 41.62 42.43 43.78 44.63
A 61.46 80.73 81.17 80.65 80.73 81.02 81.39 81.75 82.05
P 19.46 32.02 32.72 32.41 32.52 34.09 34.66 35.25 35.64
R 71.60 55.55 55.55 58.02 58.24 64.19 64.19 64.19 63.58
F 30.60 40.63 41.18 41.59 41.68 44.53 45.02 45.51 45.67

Table 3: Performance of (B)aseline, +N!M, +N!M+V{R}, +NM1 , +NM1GR
, +NM1GR

+M2 , +NM+VF,
+NM+V{A,R,IS} and +NM+VF+V{A,R,IS} (see text for details) in terms of (S)cores of (A)ccuracy,
(P)recision, (R)ecall, (F)-score. The row 1 (2) of this table presents results over NB (MaxEnt) base-
line supervised classifier, respectively.

Table 3 shows that MaxEnt gives a very high ac-
curacy and F-score as compared with NB. Model
+N!M+V{R} with basic noun and verb seman-
tics introduced in section 3.2 results in more than
10% improvement in F-score over NB and Max-
Ent classifiers relying only on shallow linguis-
tic features. Model +NM+VF+V{A,R,IS} with en-
riched verb and noun semantics brings more than
4% improvement in F-score over +N!M+V{R}
with MaxEnt as baseline. We perform statis-
tical significance test using bootstrap sampling
method given in Berg-Kirkpatrick et al. (2012)
(see Berg-Kirkpatrick et al. (2012) for the de-
tails). +NM+VF+V{A,R,IS} brings significant im-
provement in F-score over +N!M+V{R} with p-
value 0.0.

Though +N!M gives significantly better F-score
over baseline, it drops recall by more than 16%.
Metonymy resolution helps perform quite bet-
ter by recovering more than 8% recall with
+NM1GR

+M2 over +N!M. +NM1GR
+M2 also re-

sults in 3.9% improvement in F-score over +N!M

with MaxEnt as baseline model (significant im-
provement with p-value 0.0). Metonymies re-
solved via verb frames with all and core grammat-
ical relations (i.e., set GR) recover more than 2%
recall and slightly improve F-score.

Model with the addition of information of verb
frames (i.e.,+NM+VF) brings 0.49% improve-
ment in F-score over +NM1GR

+M2 using Max-
Ent as baseline model (significant improvement
with p-value 0.027). Model with the addition of
data-driven verb semantics (i.e., +NM+V{A,R,IS})
results in 0.98% improvement in F-score over
+NM1GR

+M2 using MaxEnt as baseline model
(significant improvement with p-value 0.0021).
Overall the model +NM+VF+V{A, R, IS} yields
more than 16% (20%) F-score (accuracy) over the
baseline models build via NB and MaxEnt.

5.1 Error Analysis

We performed error analysis for the model
+NM+VF+V{A,R,IS} by randomly selecting 50
False Positives (FP) and 50 False Negatives (FN).

For 32% FP instances information about verb
frames is not available in the knowledge base of
verb frames. To avoid this problem researchers
should exploit some abstractions e.g., {semantic
sense of v, gr} frames. Our model fails to iden-
tify the class ¬Cnp for noun phrases of 29% FP
instances due to the lack of enough training data
for the semantic classes of nouns. In 21% FP
instances v and np are not even relevant to each
other. Our model first needs to determine rele-
vance between v and np before identifying causal-
ity. Remaining 18% instances have v and np in
temporal only sense, comparison relation or both
represent parts of same event. There is need to ex-
tract more knowledge sources to better distinguish
causality from any other type of relation.

77% FN instances are classified as non-causal
due to the lack of enough v-np training data and
require more sources of knowledge e.g., back-
ground knowledge. On remaining 23% FN in-
stances our model fails to identify Cnp class due
to the lack of enough training data for the seman-
tic classes of nouns.

6 Conclusion

This work has revealed that enriched semantics
of nouns and verbs help gain significant improve-
ment in performance over a baseline relying only
on shallow linguistic features. Through empiri-
cal evaluation and error analysis of our model we
have highlighted strengths and weaknesses of our
model for the current task. Our work has provided
a novel direction to exploit semantics of partici-
pants of causal relations to solve the challenge of
identifying causality.
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Appendix A. Supervised Classifier

In this appendix, we provide a set of linguistic fea-
tures taken from Riaz and Girju (2014) to iden-
tify causality in v-np pairs employing a supervised
classifier (see section 3.1 for the details).
• Lexical Features: verb, lemma of verb,

noun phrase, lemmas of all words of
noun phrase, head noun of noun phrase,
lemmas of all words between verb and
noun phrase.
• Syntatic Features: part-of-speech tags of verb

and head noun of noun phrase.
• Semantic Features: We adopted this fea-

ture from Girju (2003) to capture semantics
of nouns. The 9 noun hierarchies of Word-
Net i.e., entity, psychological feature, abstrac-
tion, state, event, act, group, possession, phe-
nomenon are used as this feature. Each of these
hierarchies is set to 1 if any sense of head noun
of noun phrase lies in that hierarchy, otherwise
set to 0.
• Structural Features: This feature is applied

by considering both subject (i.e., sub in np)
and object (i.e., obj in np) of verb (v). For ex-
ample, for the pair v-np the variable sub in np
is set to 1 if the subject ∈ np, set to 0 if the
subject 6∈ np and set to -1 if the subject is not
available in an instance. The subject and object
of a verb are its core arguments and may some-
time be part of an event represented by a verb.
Therefore, these arguments may have high ten-
dency to encode non-causation with their verb.
• Pairs: The following pairs (verb, head noun

of noun phrase), (subjectverb, head noun of
noun phrase) and (objectverb, head noun of
noun phrase) are used to capture relations.

Appendix B. Noun Semantics

In this appendix, some examples of the frame ele-
ments of FrameNet and the WordNet senses be-
longing to the classes Cnp and ¬Cnp are given
in Tables 4 and 5 (see section 3.2 for the de-
tails). We employ training instances acquired us-
ing the FrameNet annotations and WordNet senses
for building a supervised classifier for the classes
Cnp and ¬Cnp. Following is the list of features we
use for this supervised classifier:
• Lexical Features: All words of noun phrase,

lemmas of all words of noun phrase, head noun
of noun phrase, first two (three) (four) letters

SC FrameNet Labels
cnp Event, Goal, Purpose, Cause, Internal cause, External

cause, Result, Means, Reason, Phenomena, Coordi-
nated event, Action, Activity, Circumstances, Desired
goal, Explanation

¬cnp Artist, Performer, Duration, Time, Place, Distributor,
Area, Path, Direction, Sub-region Frequency, Body
part, Area, Degree, Angle, Fixed location, Path shape,
Addressee, Interval

Table 4: Some examples of the frame elements of
FrameNet to which we assign the semantic classes
Cnp and ¬Cnp.

SC WordNet Senses
cnp {act, deed, human action, human activity},

{phenomenon}, {state}, {psychological feature},
{event}, {causal agent, cause, causal agency}

¬cnp {time period, period of time, period}, {measure,
quantity, amount}, {group, grouping}, {organization,
organisation}, {time unit, unit of time}, {clock time,
time}

Table 5: This table shows our selected Word-
Net senses of nouns belonging to classes Cnp and
¬Cnp. For example, using the information pro-
vided in this table we assume that any noun con-
cept whose all senses of WordNet lie in the seman-
tic hierarchy of the sense {time period, period of
time, period} is of class ¬Cnp. We use English
Gigaword corpus to collect instances of noun (or
noun phrases) and label them with Cnp and ¬Cnp

according to their senses in WordNet.

of head noun of noun phrase, last two, (three)
(four) letters of head noun of noun phrase.
• Word Class Features: part-of-speech tags of

all words of noun phrase and head noun of
noun phrase.
• Semantic Features: Frequent sense of head

noun of noun phrase.
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