
Proceedings of the SIGDIAL 2014 Conference, pages 218–227,
Philadelphia, U.S.A., 18-20 June 2014. c©2014 Association for Computational Linguistics

Learning to Re-rank for Interactive Problem Resolution and Query
Refinement

Rashmi Gangadharaiah
IBM Research,

India Research Lab,
Bangalore, KA, India

rashgang@in.ibm.com

Balakrishnan Narayanaswamy and Charles Elkan
Department of CSE,

University of California, San Diego
La Jolla, CA, USA

{muralib, elkan}@cs.ucsd.edu

Abstract

We study the design of an information re-
trieval (IR) system that assists customer
service agents while they interact with
end-users. The type of IR needed is
difficult because of the large lexical gap
between problems as described by cus-
tomers, and solutions. We describe an
approach that bridges this lexical gap by
learning semantic relatedness using tensor
representations. Queries that are short and
vague, which are common in practice, re-
sult in a large number of documents be-
ing retrieved, and a high cognitive load
for customer service agents. We show
how to reduce this burden by providing
suggestions that are selected based on the
learned measures of semantic relatedness.
Experiments show that the approach offers
substantial benefit compared to the use of
standard lexical similarity.

1 Introduction

Information retrieval systems help businesses and
individuals make decisions by automatically ex-
tracting actionable intelligence from large (un-
structured) data (Musen et al., 2006; Antonio
Palma-dos Reis, 1999). This paper focuses on the
application of retrieval systems in a contact cen-
ters where the system assists agents while they are
helping customers with problem resolution.

Currently, most contact center information re-
trieval use (web based) front-ends to search en-
gines indexed with knowledge sources (Holland,
2005). Agents enter queries to retrieve documents
related to the customer’s problem. These sources
are often incomplete as it is unlikely that all pos-
sible customer problems can be identified before
product release. This is particularly true for re-
cently released and frequently updated products.

One approach, which we build on here, is to mine
problems and resolutions from online discussion
forums Yahoo! Answers1 Ubuntu Forums2 and
Apple Support Communities3. While these often
provide useful solutions within hours or days of
a problem surfacing, they are semantically noisy
(Gangadharaiah and Narayanaswamy, 2013).

Most contact centers and agents are evaluated
based on the number of calls they handle over a
period (Pinedo et al., 2000). As a result, queries
entered by agents into the search engine are usu-
ally underspecified. This, together with noise in
the database, results in a large number of docu-
ments being retrieved as relevant documents. This
in turn, increases the cognitive load on agents, and
reduces the effectiveness of the search system and
the efficiency of the contact center. Our first task
in this paper is to automatically make candidate
suggestions that reduce the search space of rel-
evant documents in a contact center application.
The agent/user then interacts with the system by
selecting one of the suggestions. This is used to
expand the original query and the process can be
repeated. We show that even one round of inter-
action, with a small set of suggestions, can lead to
high quality solutions to user problems.

In query expansion, the classical approach is to
automatically find suggestions either in the form
of words, phrases or similar queries (Kelly et al.,
2009; Feuer et al., 2007; Leung et al., 2008).
These can be obtained either from query logs or
based on their representativeness of the initial re-
trieved documents (Guo et al., 2008; Baeza-yates
et al., 2004). The suggestions are then ranked ei-
ther based on their frequencies or based on their
similarity to the original query (Kelly et al., 2009;
Leung et al., 2008). For example, if suggestions
and queries are represented as term vectors (e.g.

1http://answers.yahoo.com/
2http://ubuntuforums.org/
3https://discussions.apple.com/
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term frequency-inverse document frequency or tf-
idf) their similarity may be determined using simi-
larity measures such as cosine similarity or inverse
of euclidean distance (Salton and McGill, 1983).

However, in question-answering and problem-
resolution domains, and in contrast to traditional
Information Retrieval, most often the query and
the suggestions do not have many overlapping
words. This leads to low similarity scores, even
when the suggestion is highly relevant. Consider
the representative example in Table 1, taken from
our crawled dataset. Although the suggestions,
“does not support file transfer”, “connection not
stable”, “pairing failed” are highly relevant for the
problem of “Bluetooth not working”, their lexi-
cal similarity score is zero. The second task that
this paper addresses is how to bridge this lexical
chasm between the query and the suggestions. For
this, we learn a measure of semantic-relatedness
between the query and the suggestions rather than
defining closeness based on lexical similarity.

Query Bluetooth not working .
Suggestions devices not discovered,

bluetooth greyed out,
bluetooth device did not respond,
does not support file transfer,
connection not stable,
pairing failed

Table 1: Suggestions for the Query or customer’s
problem, “Bluetooth not working”.

The primary contributions of this paper are that:

• We show how tensor methods can be used
to learn measures of question-answer or
problem-resolution similarity. In addition,
we show that these learned measures can
be used directly with well studied classifica-
tion techniques like Support Vector Machines
(SVMs) and Logistic Classifiers to classify
whether suggestions are relevant. This results
in substantially improved performance over
using conventional similarity metrics.

• We show that along with the learned similar-
ity metric, a data dependent Information Gain
(which incorporates knowledge about the set
of documents in the database) can be used as
a feature to further boost accuracy.

• We demonstrate the efficacy of our approach
on a complete end-to-end problem-resolution
system, which includes crawled data from

online forums and gold standard user inter-
action annotations.

2 System outline

As discussed in the Introduction, online discus-
sion forums form a rich source of problems and
their corresponding resolutions. Thread initiators
or users of a product facing problems with their
product post in these forums. Other users post
possible solutions to the problem. At the same
time, there is noise due to unstructured content,
off-topic replies and other factors. Our interac-
tion system has two phases, as shown in Figure
1. The offline phase attempts to reduce noise in
the database, while the online phase assists users
deal with the cognitive overload caused by a large
set of retrieved documents. In our paper, threads
form the documents indexed by the system.

The goals of the offline phase are two-fold.
First, to reduce the aforementioned noise in the
database, we succinctly represent each document
(i.e., a thread in online discussion forums) by its
signature, which is composed of units extracted
from the first post of the underlying thread that
best describe the problem discussed in the thread.
Second, the system makes use of click-through
data, where users clicked on relevant suggestions
for their queries to build a relevancy model. As
mentioned before, the primary challenge is to
build a model that can identify units that are se-
mantically similar to a given query.

In the online phase, the agent who acts as the
mediator between the user and the Search Engine
enters the user’s/customer’s query to retrieve rele-
vant documents. From these retrieved documents,
the system then obtains candidate suggestions and
ranks these suggestions using the relevancy model
built in the offline phase to further better under-
stand the query and thereby reduce the space of
documents retrieved. The user then selects the
suggestion that is most relevant to his query. The
retrieved documents are then filtered displaying
only those documents that contain the selected
suggestion in their signatures. The process con-
tinues until the user quits.

2.1 Signatures of documents

In the offline phase, every document (correspond-
ing to a thread in online discussion forums) is
represented by units that best describe a problem.
We adopt the approach suggested in (Gangadhara-
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iah and Narayanaswamy, 2013) to automatically
generate these signatures from each discussion
thread. We assume that the first post describes
the user’s problem, something we have found to
be true in practice. From the dependency parse
trees of the first posts, we extract three types of
units (i) phrases (e.g., sync server), (ii) attribute-
values (e.g., iOS, 4) and (iii) action-attribute tuples
(e.g., sync server: failed). Phrases form good base
problem descriptors. Attribute-value pairs provide
configurational contexts to the problem. Action-
attribute tuples, as suggested in (Gangadharaiah
and Narayanaswamy, 2013), capture segments of
the first post that indicate user wanting to perform
an action (“I cannot hear notifications on blue-
tooth”) or the problems caused by a user’s action
(“working great before I updated”). These make
them particularly valuable features for problem-
resolution and question-answering.

2.2 Representation of Queries and
Suggestions

Queries are represented as term vectors using the
term frequency-inverse document frequency (tf-
idf) representation forming the query space. The
term frequency is defined as the frequency with
which word appears in the query and the inverse
document frequency for a word is defined as the
frequency of queries in which the word appeared.
Similarly, units are represented as tf-idf term vec-
tors from the suggestion space. Term frequency in
the unit space is defined as the number of times
a word appears in the unit and its inverse docu-
ment frequency is defined in terms of the number
of units in which the word appeared. Since the
vocabulary used in the queries and documents are
different, the representations for queries and units
belong to different spaces of different dimensions.

For every query-unit pair, we learn a measure
of similarity as explained in Section 4. Addi-
tionally, we use similarity features based on co-
sine similarity between the query and the unit un-
der consideration. We also consider an additional
feature based on information gain (Gangadhara-
iah and Narayanaswamy, 2013). In particular, if
S represents the set all retrieved documents, S1 is
a subset of S (S1 ⊆ S) containing a unit uniti and
S2 is a subset of S that does not contain uniti,
information gain with uniti is,

Gain(S, uniti) = E(S)− |S1|
|S| E(S1)− |S2|

|S| E(S2) (1)

E(S) =
∑

k=1,...|S|
−p(dock)log2p(dock). (2)

The probability for each document is based on its
rank in the retrieved of results,

p(docj) =

1
rank(docj)∑

k=1,...|S|
1

rank(dock)

. (3)

We crawled posts and threads from online forums
for the products of interest, as detailed in Sec-
tion 5.1, and these form the documents. We used
trial interactions and retrievals to collect the click-
though data, which we used as labeled data for
similarity metric learning. In particular, labels in-
dicate which candidate units were selected as rel-
evant suggestions by a human annotator. We now
explain our training (offline) and testing (online)
phases that use this data in more detail.

2.3 Training

The labeled (click-through) data for training the
relevance model is collected as follows. Anno-
tators were given pairs of queries. Each pair is
composed of an underspecified query and a spe-
cific query (Section 5.1 provides more informa-
tion on the creation of these queries). An un-
derspecified query is a query that reflects what a
user/agent typically enters into the system, and the
corresponding specific query is full-specified ver-
sion of the underspecified query. Annotators were
first asked to query the search engine with each
underspecified query. We use the Lemur search
engine (Strohman et al., 2004). From the resulting
set of retrieved documents, the system uses the in-
formation gain criteria (as given in (1) below) to
rank and display to the annotators the candidate
suggestions (i.e., the units that appear in the signa-
tures of the retrieved documents). Thus, our sys-
tem is bootstrapped using the information gain cri-
terion. The annotators then selects the candidate
suggestion that is most relevant to the correspond-
ing specific query. The interaction with the system
continues until the annotators quit.

We then provide a class label for each unit based
on the collected click-through information. In par-
ticular, if a unit s ∈ S(x) was clicked by a user for
his query x, from the list S we provide a + la-
bel to indicate that the unit is relevant suggestion
for the query. Similarly, for all other units that are
never clicked by users for x are labeled as−. This
forms the training data for the system. Details on
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Figure 1: Outline of our interactive query refine-
ment system for problem resolution

the feature extraction and how the model is created
is given in Section 3.

2.4 Testing

In the online phase, the search engine retrieves
documents for the user’s query x′. Signatures for
the retrieved documents form the initial space of
candidate units. As done in training, for every pair
of x′ and unit the label is predicted using the model
built in the training phase. Units that are predicted
as + are shown to the user. When a user clicks
on his most relevant suggestion, the retrieved re-
sults are filtered to show only those documents that
contain the suggestion (i.e., in its signature). This
process continues until the user quits.

3 Model

We consider underspecified queries x ∈ Rxd and
units y ∈ Ryd . Given an underspecified query x
we pass it through a search engine, resulting in a
list of results S(x).

As explained in Section 2.3, our training data
consists of labels r(x, y) ∈ +1,−1 for each
under-specified query, y ∈ S(x). r(x, y) = +1
if the unit is labeled a relevant suggestion and
r(x, y) = −1 if it is not labeled relevant. Units
are relevant or not based on the final query, and
not just y, a distinction we expand upon below.

At each time step, our system proposes a list
Z(x) of possible query refinement suggestions z
to the user. The user can select one or none of
these suggestions. If the user selects z, only those
documents that contain the suggestion (i.e., in its
signature) are shown to the user, resulting in a fil-

tered set of results, S(x+ z).
This process can be repeated until a stopping

criterion is reached. Stopping criterion include the
size of the returned list is smaller than some num-
ber |S(x + z)| < N , in which case all remain-
ing documents are returned. Special cases include
when only one document is returned N = 1. We
will design query suggestions so that |S(x+z)| >
0. Another criterion we use is to return all remain-
ing documents after a certain maximum number of
interactions or until the user quits.

4 Our Approach

We specify our algorithm using a tensor notation.
We do this since tensors appear to subsume most
of the methods applied in practice, where different
algorithms use slightly different costs, losses and
constraints. These ideas are strongly motivated by,
but generalize to some extent, suggestions for this
problem presented in (Elkan, 2010).

For our purposes, we consider tensors as multi-
dimensional arrays, with the number of dimen-
sions defined as the order of the tensor. An M
order tensor X ∈ RI1×I2...IM . As such tensors
subsume vectors (1st order tensors) and matrices
(2nd order tensors). The vectorization of a ten-
sor of order M is obtained by stacking elements
from the M dimensions into a vector of length
I1 × I2 × . . .× IM in the natural way.

The inner product of two tensors is defined as

〈X,W〉 =
I1∑
i1

I2∑
i2

. . .

IM∑
iM

xi1wi1xi2wi2 . . . xiMwiM

(4)
Analogous to the definition for vectors, the

(Kharti-Rao) outer product A = X ⊗W of two
tensors X and W has Aij = XiWj where i and j
run over all elements of X and W . Thus, if X is
of order MX and W of order MW , A is of order
MA = MX +MW .

The particular tensor we are interested in is a
2-D tensor (matrix) X which is the outer product
of query and unit pairs (Feats). In particular, for a
query x and unit y, Xi,j = xiyj .

Given this representation, standard classifica-
tion and regression methods from the machine
learning literature can often be extended to deal
with tensors. In our work we consider two clas-
sifiers that have been successful in many applica-
tions, logistic regression and support vector ma-
chines (SVMs) (Bishop, 2006).
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In the case of logistic regression, the conditional
probability of a reward signal r(X) = r(x, y) is,

p(r(X) = +1) =
1

1 + exp(−〈X,W〉+ b)
(5)

The parameters W and b can be obtained by min-
imizing the log loss Lreg on the training data D

Lreg(W, b) = (6)∑
(X,r(X))∈D

log(1 + exp(−r(X)〈X,W〉+ b)

For SVMs with the hinge loss we select param-
eters to minimize Lhinge,

Lhinge(W, b) = ||X||2F + (7)

λ
∑

(X,r(X))∈D
max[0, 1− (r(X)〈X,W〉+ b)]

where ||X||F is the Frobenius norm of tensor X.
Given the number of parameters in our system

(W, b) to limit overfitting, we have to regularize
these parameters. We use regularizers of the form

Ω(W, b) = λW ||W||F (8)

such regularizes have been successful in many
large scale machine learning tasks including
learning of high dimensional graphical models
(Ravikumar et al., 2010) and link prediction
(Menon and Elkan, 2011).

Thus, the final optimization problem we are
faced with is of the form

min
W,b
L(W, b) + Ω(W, b) (9)

where L is Lreg or Lhinge as appropriate. Other
losses, classifiers and regularizers may be used.

The advantage of tensors over their vectorized
counterparts, that may be lost in the notation, is
that they do not lose the information that the dif-
ferent dimensions can (and in our case do) lie in
different spaces. In particular, in our case we use
different features to represent queries and units (as
discussed in Section 2.2) which are not of the same
length, and as a result trivially do not lie in the
same space.

Tensor methods also allow us to regularize the
components of queries and units separately in dif-
ferent ways. This can be done for example by,
i) forcing W = Q1Q2, where Q1 and Q2 are
constrained to be of fixed rank s ii) using trace or

Frobenius norms on Q1 and Q2 for separate regu-
larization as proxies for the rank iii) using different
sparsity promoting norms on the rows of Q1 and
Q2 iv) weighing these penalties differently for the
two matrices in the final loss function. Note that
by analogy to the vector case, we directly obtain
generalization error guarantees for our methods.

We also discuss the advantage of the tensor
representation above over a natural representation
X = [x; y] i.e. X is the column vector obtained
by stacking the query and unit representations.
Note that in this representation, for logistic regres-
sion, while a change in the query x can change
the probability for a unit P (r(X) = 1) it can-
not change the relative probability of two different
units. Thus, the ordering of all unit remains the
same for all queries. This flaw has been pointed
out in the literature in (Vert and Jacob, 2008) and
(Bai et al., 2009), but was brought to our attention
by (Elkan, 2010).

Finally, we note that by normalizing the query
and unit vectors (x and y), and selecting W = I
(the identity matrix) we can recover the cosine
similarity metric (Elkan, 2010). Thus, our rep-
resentation is atleast as accurate and we show
that learning the diagonal and off-diagonal com-
ponents of W can substantially improve accuracy.

Additionally, for every (query,unit) we also
compute information gain (IG) as given in (1), and
the lexical similarity (Sim) in terms of cosine sim-
ilarity between the query and the unit as additional
features in the feature vectors.

5 Results and Discussion

To evaluate our system, we built and simulated
a contact center information retrieval system for
iPhone problem resolution.

5.1 Description of the Dataset

We collected data by crawling forum discussion
threads from the Apple Discussion Forum, created
during the period 2007-2011, resulting in about
147,000 discussion threads. The underspecified
queries and specific queries were created as fol-
lows. Discussion threads were first clustered treat-
ing each discussion thread as a data point using a
tf-idf representation. The thread nearest the cen-
troid of the 60 largest clusters were marked as the
‘most common’ problems.

The first post is used as a proxy for the problem
description. An annotator was asked to then create
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Underspecified query “Safari not working”
1. safari:crashes
2. safari:cannot find:server
3. server:stopped responding
4. phone:freezes
5. update:failed

Table 2: Specific Queries generated with the un-
derspecified Query, ”Safari not working”.

a short query (underspecified) from the first post
of each of the 60 selected threads. These queries
were given to the Lemur search engine (Strohman
et al., 2004) to retrieve the 50 most similar threads
from an index built on the entire set of 147,000
threads. The annotator manually analyzed the first
posts of the retrieved threads to create contexts,
resulting in a total 200 specific queries.

We give an example to illustrate the data cre-
ation in Table 2. From an under-specified query
“Safari not working”, the annotator found 5 spe-
cific queries. Two other annotators, were given
these specific queries with the search engine’s
results from the corresponding under-specified
query. They were asked to choose the most rel-
evant results for the specific queries. The intersec-
tion of the choices of the annotators formed our
‘gold standard’ of relevant documents.

5.2 Results

We simulated a contact center retrieval systems (as
in Figure 1) to evaluate the approach proposed in
this paper. To evaluate the generality of our ap-
proach we conduct experiments with both SVMs
and Logistic Regression. Due to lack of space we
illustrate each result for only one kind of classifier.

5.2.1 Evaluating the Relevance Model
To measure the performance of the relevance
model for predicting the class labels or for finding
the most relevant units towards making the user’s
underspecified query more specific, we performed
the following experiment. 4000 random query-
unit pairs were picked from the training data, col-
lected as explained in Section 2. Since most units
are not relevant for a query, 90% of the pairs be-
longed to the − class. On average, every spe-
cific query gave rise to 2.4 suggestions. Hence,
predicting − for all pairs still achieves an error
rate of 10%. This data was then split into vary-
ing sizes of training and test sets. The relevancy
model was then built on the training half and the
classifiers were used to predict labels on the test
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Figure 2: Performance with Logistic Regression
using different features and various sizes of Train-
ing and Test sets. Feats-IG-Sim does not use co-
sine similarity (Sim) and information gain (IG).
Feats+IG+Sim considers Sim and IG.

set. Figure 2 shows error rate obtained with logis-
tic regression (a similar trend was observed with
SVMs) on various sizes of the training data and
test data. The plot shows that the model (Feats-
IG-Sim and Feats+IG+Sim) performs significantly
better at predicting the relevancy of units for un-
derspecified queries when compared to just us-
ing cosine similarity (Sim) as a feature. Feats-
IG-Sim does not make use of cosine similarity
as a feature or the information gain feature while
Feats+IG+Sim uses both these features for train-
ing the relevancy model and for predicting the rel-
evancy of units. As expected the performance of
the classifier improves as the size of the training
data is increased.

5.2.2 Evaluating the Interaction Engine
We evaluate a complete system with both the user
(the agent) and the search engine in the loop. We
measure the value of the interactions by an analy-
sis of which results ‘rise to the top’. Users were
given a specific query and its underspecified query
along with the results obtained when the under-
specified query was input to the search engine.
They were presented with suggestions that were
predicted + for the underspecified query using
SVMs. The user was asked to select the most ap-
propriate suggestion that made the underspecified
query more specific. This process continues until
the user quits either because he is satisfied with the
retrieved results or does not obtain relevant sug-
gestions from the system. For example, for the
underspecified query in Table 2, one of the pre-
dicted suggestions was, “server:stopped respond-
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Figure 3: Comparison of the proposed approach
with respect to the Baseline that does not involve
interaction in terms of MAP at N.

ing”. If the user finds the suggestion relevant, he
clicks on it. The selected suggestion then reduces
the number of retrieved results. We then measured
the relevance of the reduced result, with respect
to the gold standard for that specific query, using
metrics used in IR - MRR, Mean Average Preci-
sion (MAP) and Success at rank N.

Figures 3, 4 and Table 3 evaluate the results ob-
tained with the interaction engine using Feats-IG-
Sim and Feats+IG+Sim. We compared the per-
formance of our algorithms with a Baseline that
does not perform any interaction and is evaluated
based on the retrieved results obtained with the un-
derspecified queries. The models for each of the
systems were trained using query-suggestion pairs
collected from 100 specific queries (data collected
as explained in Section 2). The remaining 100 spe-
cific queries were used for testing. We see that the
suggestions predicted by the classifiers using the
relevancy model indeed improves the performance
of the baseline. Also, adding the IG and Sim fea-
ture further boosts the performance of the system.

Systems MRR
Baseline 0.4218
Feats-IG-Sim 0.9449
Feats+IG+Sim 0.9968

Table 3: Comparison of the proposed approach
with respect to the Baseline that does not involve
interaction in terms of MRR.

5.3 Related Work

Learning affinities between queries an documents
is a well studied area. (Liu, 2009) provides an ex-
cellent survey of these approaches. In these meth-
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Figure 4: Comparison of the proposed approach
with respect to the Baseline that does not involve
interaction in terms of Success at N.

ods, there is a fixed feature function Φ(x, y) de-
fined between any query-document pair. These
features are then used, along with labeled train-
ing data, to learn the parameters of a model that
can then be used to predict the relevance r(x, y)
of a new query-document pair. The output of the
model can also be used to re-rank the results of a
search engine. In contrast to this class of methods,
we define and parameterize the Φ function and
jointly optimize the parameters of the feature map-
ping and the machine learning re-ranking model.

Latent tensor methods for regression and clas-
sification have recently become popular in the im-
age and signal processing domain. Most of these
methods solve an optimization problem similar to
our own (9), but add additional constraints limit-
ing the rank of the learned matrix W either ex-
plicitly or implicit by defining W = Q1Q

T
2 , and

defining Q1 ∈ Rdx×d and Q2 ∈ Rdy×d. This ap-
proach is used for example in (Pirsiavash et al.,
2009) and more recently in (Tan et al., 2013) (Guo
et al., 2012). While this reduces the number of pa-
rameters to be learned from dxdy to d(dx + dy) it
makes the problem non-convex and introduces an
additional parameter d that must be selected.

This approach of restricting the rank was re-
cently suggested for information retrieval in (Wu
et al., 2013). They look at a regression problem,
using click-through rates as the reward function
r(x, y). In addition, (Wu et al., 2013) does not
use an initial search engine and hence must learn
an affinity function between all query-document
pairs. In contrast to this, we learn a classification
function that discriminates between the true and
false positive documents that are deemed similar
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by the search engine. This has three beneficial ef-
fects : (i) it reduces the amount of labeled training
data required and the imbalance between the posi-
tive and negative classes which can make learning
difficult (He and Garcia, 2009) and (ii) allows us
to build on the strengths of fast and strong existing
search engines increasing accuracy and decreas-
ing retrieval time and (iii) allows the learnt model
to focus learning on the query-document pairs that
are most problematic for the search engine.

Bilinear forms of tensor models without the
rank restriction have recently been studied for link
prediction (Menon and Elkan, 2011) and image
processing (Kobayashi and Otsu, 2012). Since
the applications are different, there is no prelimi-
nary search engine which retrieves results, making
them ranking methods and ours a re-ranking ap-
proach. Related work in text IR includes (Beefer-
man and Berger, 2000), where two queries are
considered semantically similar if their clicks lead
to the same page. However, the probability that
different queries lead to common clicks of the
same URLs is very small, again increasing the
training data required. Approaches in the past
have also proposed techniques to automatically
find suggestions either in the form of words,
phrases (Kelly et al., 2009; Feuer et al., 2007;
Baeza-yates et al., 2004) or similar queries (Leung
et al., 2008) from query logs (Guo et al., 2008;
Baeza-yates et al., 2004) or based on their prob-
ability of representing the initial retrieved doc-
uments (Kelly et al., 2009; Feuer et al., 2007).
These suggestions are then ranked either based on
their frequencies or based on their closeness to the
query. Closeness is defined in terms of lexical sim-
ilarity to the query. However, most often the query
and the suggestions do not have any co-occurring
words leading to low similarity scores, even when
the suggestion is relevant.

(Gangadharaiah and Narayanaswamy, 2013)
use information gain to rank candidate sugges-
tions. However, the relevancy of the suggestions
highly depends on the relevancy of the initial re-
trieved documents. Our work here addresses the
question of how to bridge this lexical chasm be-
tween the query and the suggestions. For this, we
use semantic-relatedness between the query and
the suggestions as a measure of closeness rather
than defining closeness based on lexical similar-
ity. A related approach to handle this lexical gap
by applying alignment techniques from Statistical

Machine translation (Brown et al., 1993), in par-
ticular by building translation models for infor-
mation retrieval (Berger and Lafferty, 1999; Rie-
zler et al., 2007). These approaches require train-
ing data in the form of question-answer pairs, are
again limited to words or phrases and are not in-
tended for understanding the user’s problem better
through interaction, which is our focus.

6 Conclusions, Discussions and Future
Work

We studied the problem of designing Information
Retrieval systems for interactive problem resolu-
tion. We developed a system for bridging the
large lexical gap between short, incomplete prob-
lem queries and documents in a database of reso-
lutions. We showed that tensor representations are
a useful tool to learn measures of semantic relat-
edness, beyond the cosine similarity metric. Our
results show that with interaction, suggestions can
be effective in pruning large sets of retrieved doc-
uments. We showed that our approach offers sub-
stantial improvement over systems that only use
lexical similarities for retrieval and re-ranking, in
an end-to-end problem-resolution domain.

In addition to the classification losses consid-
ered in this paper, we can also use another loss
term based on ideas from recommender systems,
in particular (Menon and Elkan, 2011). Consider
the matrix T with all training queries as rows and
all units as the columns. If we view the query
refinement problem as a matrix completion prob-
lem, it is natural to assume that this matrix has low
rank, so that T can be written as T = UΛVT ,
where Λ is a diagonal matrix and parameter of our
optimization. These can then be incorporated into
the training process by appropriate changes to the
cost and regularization terms.

Another benefit of the tensor representation is
that it can easily be extended to incorporate other
meta-information that may be available. For ex-
ample, if context sensitive features, like the iden-
tity of the agent, are available these can be incor-
porated as another dimension in the tensor. While
optimization over these higher dimensional ten-
sors may be more computationally complex, the
problems are still convex and can be solved ef-
ficiently. This is a direction of future research
we are pursuing. Finally, exploring the power of
information gain type features in larger database
systems is of interest.
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