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Abstract

Dialog state tracking challenge provides
a common testbed for state tracking al-
gorithms. This paper describes the SJTU
system submitted to the second Dialogue
State Tracking Challenge in detail. In
the system, a statistical semantic parser is
used to generate refined semantic hypothe-
ses. A large number of features are then
derived based on the semantic hypothe-
ses and the dialogue log information. The
final tracker is a combination of a rule-
based model, a maximum entropy and a
deep neural network model. The SJTU
system significantly outperformed all the
baselines and showed competitive perfor-
mance in DSTC 2.

1 Introduction

Dialog state tracking is important because spo-
ken dialog systems rely on it to choose proper
actions as spoken dialog systems interact with
users. However, due to automatic speech recog-
nition (ASR) and spoken language understanding
(SLU) errors, it is not easy for the dialog man-
ager to maintain the true state of the dialog. In
recent years, much research has been devoted to
dialog state tracking. Many approaches have been
applied to dialog state tracking, from rule-based
to statistical models, from generative models to
discriminative models (Wang and Lemon, 2013;
Zilka et al., 2013; Henderson et al., 2013; Lee
and Eskenazi, 2013). Recently, shared research
tasks like the first Dialog State Tracking Challenge
(DSTC 1) (Williams et al., 2013) have provided
a common testbed and evaluation suite for dialog
state tracking (Henderson et al., 2013).

Compared with DSTC 1 which is in the bus
timetables domain, DSTC 2 introduces more com-
plicated and dynamic dialog states, which may

change through the dialog, in a new domain, i.e.
restaurants domain (Henderson et al., 2014). For
each turn, a tracker is supposed to output a set
of distributions for each of the three components
of the dialog state: goals, method, and requested
slots. At a given turn, the goals consists of the
user’s true required value having been revealed
for each slot in the dialog up until that turn; the
method is the way the user is trying to interact with
the system which may be by name, by constraints,
by alternatives or finished; and the requested slots
consist of the slots which have been requested by
the user and not replied by the system. For evalua-
tion in DSTC 2, 1-best quality measured by accu-
racy, probability calibration measured by L2, and
discrimination measured by ROC are selected as
featured metrics. Further details can be found in
the DSTC 2 handbook (Henderson et al., 2013).

Previous research has demonstrated the effec-
tiveness of rule-based (Zilka et al., 2013), maxi-
mum entropy (MaxEnt) (Lee and Eskenazi, 2013)
and deep neural network (DNN) (Henderson et al.,
2013) models separately. Motivated by this, the
SJTU system employs a combination of a rule-
based model, a MaxEnt and a DNN model. The
three models were first trained (if necessary) on
the training set and tested for each of the three
components of the dialog state, i.e goals, method,
and requested slots on the development set. Then,
models with the best performance for each of the
three components were selected to form a com-
bined model. Finally, the combined model was
retrained using both training set and development
set. Additionally, as the live SLU was found not
good enough with some information lost com-
pared with the live ASR, a new semantic parser
was implemented which took the live ASR as in-
put and the SJTU system used the result from the
new semantic parser instead of the live SLU.

The remainder of the paper is organized as fol-
lows. Section 2 describes the design of the new
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semantic parser. Section 3 presents the rule-based
model. Section 4 describes the statistical mod-
els including the maximum entropy model and the
deep neural network model. Section 5 shows and
discusses the performance of the SJTU system. Fi-
nally, section 6 concludes the paper.

2 Semantic Parser

It was found that the live SLU provided by the or-
ganisers has poor quality. Hence, a new statistical
semantic parser is trained to parse the live ASR
hypotheses.

2.1 Semantic Tuple Classifier
The semantics of an utterance is represented in
functor form called dialogue act consisting of a
dialogue act type and a list of slot-value pairs, for
example:

request(name,food=chinese)
where “request” is the dialogue act type,“name”
is a slot requested and “food=chinese” is a
slot-value pair which provides some informa-
tion to the system. In DSTC 2, there are
many different dialogue act types (e.g. “request”,
“inform”, “deny”, etc) and different slot-value
pairs (e.g. “food=chinese”, “pricerange=cheap”,
“area=center”, etc), which are all called semantic
items.

A semantic tuple (e.g. act type, type-slot pair,
slot-value pair) classifier (STC) approach devel-
oped by Mairesse et al. ( 2009) is used in the SJTU
system. It requires a set of SVMs to be trained on
n-gram features from a given utterance: a multi-
class SVM is used to predict the dialogue act type,
and a binary SVM is used to predict the exis-
tence of each slot-value pair. Henderson et al. (
2012) improved this method with converting the
SVM outputs to probabilities, and approximating
the probability of a dialogue-act d of type d-typej

with a set of slot-value pairs S by:

P (d|u) = P (d-typej |u)
∏

sv∈S

P (sv|u)∏
sv/∈S

(1− P (sv|u)) (1)

where u denotes an utterance and sv runs over all
possible slot-value pairs.

2.2 Dialogue Context Features
In addition to the n-gram feature used in the orig-
inal STC parser, the dialogue context can be ex-

ploited to constrain the semantic parser. In DSTC
2, the dialogue context available contains the his-
tory information of user’s ASR hypotheses, the
system act and the other output of system (e.g.
whether there is a barge-in from the user or not,
the turn-index) and so on. In the SJTU system,
the context features from the last system act (in-
dicators for all act types and slot-value pairs on
whether they appear), an indicator for “barge-in”
and the reciprocal of turn-index are combined with
the original n-gram feature to be the final feature
vector.

2.3 Generating Confidence Scores

For testing and predicting the dialogue act, the se-
mantic parser is applied to each of the top N ASR
hypotheses hi, and the set of results Di with mi

distinct dialogue act hypotheses would be merged
in following way:

P (d|o) =
N∑

i=1

{
p(hi|o)p(d|hi) if d ∈ Di

0 otherwise

where o is the acoustic observation, d runs over
each different dialogue act in Di, i = 1, ..., N ,
p(hi|o) denotes the ASR posterior probability of
the i-th hypothesis, p(d|hi) denotes the semantic
posterior probability given the i-th ASR hypoth-
esis as in equation (1). Finally, a normalization
should be done to guarantee the sum of P (d|o) to
be one.

2.4 Implementation

The STCs-based semantic parser is implemented
with linear kernel SVMs trained using the Lib-
SVM package (Chang and Lin, 2011). The SVM
misclassification cost parameters are optimised in-
dividually for each SVM classifier by performing
cross-validations on the training data.

3 Rule-based Model

In this section, the rule-based model which is
slightly different from the focus tracker (Hender-
son et al., 2013) and HWU tracker (Wang, 2013) is
described. The idea of the rule-based model is to
maintain beliefs based on basic probability opera-
tions and a few heuristic rules that can be observed
on the training set. In the following the rule-based
model for joint goals, method and requested slots
are described in detail.
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3.1 Joint Goals

For slot s, the i-th turn and value v, p+
s,i,v (p−s,i,v) is

used to denote the sum of all the confidence scores
assigned by the SLU to the user informing or af-
firming (denying or negating) the value of slot s is
v. The belief of “the value of slot s being v in the
i-th turn” denoted by bs,i,v is defined as follows.

• If v 6= “None”,

bs,i,v = (bs,i−1,v + p+
s,i,v(1− bs,i−1,v))

(1− p−s,i,v −
∑
v′ 6=v

p+
s,i,v′)

• Otherwise,

bs,i,v = 1−
∑

v′ 6=“None”

bs,i,v′

In particular, when i = 0, bs,0,v = 1 if v =
“None”, otherwise 0. The motivation here comes
from HWU tracker (Wang, 2013) that only p+

s,·,v
positively contributes to the belief of slot s being
v, and both p+

s,·,v′ (v′ 6= v) and p−s,·,v contribute to
the belief negatively.

3.2 Method

For the i-th turn, pi,m is used to denote the sum of
all the confidence scores assigned by the SLU to
method m. Then the belief of “the method being
m in the i-th turn” denoted by bi,m is defined as
follows.

• If m 6= “none”,

bi,m = bi−1,m(1−
∑

m′ 6=“none”

pi,m′) + pi,m

• Otherwise,

bi,m = 1−
∑

m′ 6=“none”

bi,m′

In particular, b0,m = 0 when i = 0 and m 6=
“none”. An explanation of the above formula
is given by Zilka et al. (2013). The idea is also
adopted by the focus tracker (Henderson et al.,
2013).

3.3 Requested Slots
For the i-th turn and slot r, pi,r is used to denote
the sum of all the confidence scores assigned by
the SLU to r is one of the requested slots. Then
the belief of “r being one of the requested slots in
the i-th turn” denoted by bi,r is defined as follows.

• If i = 1, or system has at least one of
the following actions: “canthelp”, “offer”,
“reqmore”, “confirm-domain”, “expl-conf”,
“bye”, “request”,

bi,r = pi,r

• Otherwise,

bi,r = bi−1,r(1− pi,r) + pi,r

This rule is a combination of the idea of HWU
tracker (Wang, 2013) and an observation from the
labelled data that once system has some certain ac-
tions, the statistics of requested slots from the past
turn should be reset.

4 Statistical Model

In this section, two statistical models, one is the
MaxEnt model, the other is the DNN model, are
described.

4.1 Features
The performance of statistical models is highly de-
pendent on the feature functions.

Joint Goals
For slot s, the i-th turn and value v, the feature
functions designed for joint goals are listed below.

• f1 , inform(s, i, v) = the sum of all the
scores assigned by the SLU to the user in-
forming the value of slot s is v.

• f2 , affirm(s, i, v) = the sum of all the
scores assigned by the SLU to the user af-
firming the value of slot s is v.

• f3 , pos(s, i, v) = inform(s, i, v) +
affirm(s, i, v).

• f4 , deny(s, i, v) = the sum of all the scores
assigned by the SLU to the user denying the
value of slot s is v.

• f5 , negate(s, i, v) = the sum of all the
scores assigned by the SLU to the user negat-
ing the value of slot s is v.
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• f6 , neg(s, i, v) = deny(s, i, v) +
negate(s, i, v).

• f7 , acc(s, i, v) = pos(s, i, v)−neg(s, i, v).

• f8 , rule(s, i, v) = the confidence score
given by the rule-based model.

• f9 , rank inform(s, i, v) = the sum of all
the reciprocal rank of the scores assigned by
the SLU to the user informing the value of
slot s is v, or 0 if informing v cannot be found
in the SLU n-best list.

• f10 , rank affirm(s, i, v) = the sum of all
the reciprocal rank of the scores assigned by
the SLU to the user affirming the value of slot
s is v, or 0 if affirming v cannot be found in
the SLU n-best list.

• f11 , rank+(s, i, v) =
rank inform(s, i, v) +
rank affirm(s, i, v).

• f12 , rank deny(s, i, v) = the sum of all the
reciprocal rank of the scores assigned by the
SLU to the user denying the value of slot s
is v, or 0 if denying v cannot be found in the
SLU n-best list.

• f13 , rank negate(s, i, v) = the sum of all
the reciprocal rank of the scores assigned by
the SLU to the user negating the value of slot
s is v, or 0 if negating v cannot be found in
the SLU n-best list.

• f14 , rank−(s, i, v) = rank deny(s, i, v)+
rank negate(s, i, v).

• f15 , rank(s, i, v) = rank+(s, i, v) −
rank−(s, i, v).

• f16 , max(s, i, v) = the largest score given
by SLU to the user informing, affirming,
denying, or negating the value of slot s is v
from the 1-st turn.

• f17 , rest(s, i, v) = 1 if v = “None”, oth-
erwise 0.

• f18 , pos(s, i, v) =
∑

k=1≤i pos(s,k,v)

i , which
is the arithmetic mean of pos(s, ·, v) from the
1-st turn to the i-th turn. Similarly, f19 ,
neg(s, i, v), f20 , rank+(s, i, v) and f21 ,
rank−(s, i, v) are defined.

• f22 , (f22,1, f22,2, · · · , f22,10), where
f22,j , bin pos(s, i, v, j) = totpos(s,i,v,j)

Z ,
where totpos(s, i, v, j) = the total number
of slot-value pairs from the 1-st turn to the
i-th turn with slot s and value v which
will fall in the j-th bin if the range of
confidence scores is divided into 10 bins,
and Z =

∑
k≤i,1≤j′≤10,v′ totpos(s, k, v′, j′),

which is the normalization factor. Simi-
larly, f23 , (f23,1, f23,2, · · · , f23,10) where
f23,j , bin neg(s, i, v, j) is defined.

• f24 , (f24,1, f24,2, · · · , f24,10). Where
f24,j , bin rule(s, i, v, j) = totrule(s,i,v,j)

Z ,
where totrule(s, i, v, j) = the total number
of rule(s, ·, v) from the 1-st turn to the i-
th turn which will fall in the j-th bin if the
range of rule(·, ·, ·) is divided into 10 bins,
and Z =

∑
k≤i,1≤j′≤10,v′ totrule(s, k, v′, j′),

which is the normalization factor. Simi-
larly, f25 , (f25,1, f25,2, · · · , f25,10) where
f25,j , bin rank(s, i, v, j), and f26 ,
(f26,1, f26,2, · · · , f26,10) where f26,j ,
bin acc(s, i, v, j) are defined.

• f27 , (f27,1, f27,2, · · · , f27,10). Where
f27,j , bin max(s, i, v, j) = 1 if
max(s, i, v) will fall in the j-th bin if
the range of confidence scores is divided into
10 bins, otherwise 0.

• f28 , (f28,1, f28,2, · · · , f28,17). Where
f28,j , user acttype(s, i, v, uj) = the sum
of all the scores assigned by the SLU to the
user act type being uj(1 ≤ j ≤ 17). There
are a total of 17 different user act types de-
scribed in the handbook of DSTC 2 (Hender-
son et al., 2013).

• f29 , (f29,1, f29,2, · · · , f29,17). Where
f29,j , machine acttype(s, i, v, mj) = the
number of occurrences of act type mj(1 ≤
j ≤ 17) in machine act. There are a total of
17 different machine act types described in
the handbook of DSTC 2 (Henderson et al.,
2013).

• f30 , canthelp(s, i, v) = 1 if the system can-
not offer a venue with the constrain s = v,
otherwise 0.

• f31 , slot confirmed(s, i, v) = 1 if the sys-
tem has confirmed s = v, otherwise 0.
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• f32 , slot requested(s, i, v) = 1 if the sys-
tem has requested the slot s, otherwise 0.

• f33 , slot informed(s, i, v) = 1 if the sys-
tem has informed s = v, otherwise 0.

• f34 , bias(s, i, v) = 1.

In particular, all above feature function are 0
when i ≤ 0.

Method
For the i-th turn and method m, the feature func-
tions designed for method are listed below.

• f1 , slu(i, m) = the sum of all the scores
assigned by the SLU to the method being m.

• f2 , rank(i, m) = the sum of all the recip-
rocal rank of the scores assigned by the SLU
to the method being m.

• f3 , rule(i, m) = the confidence score given
by the rule-based model.

• f4 , slu(i, m) =
∑i

k=1 slu(k,m)
i , which is

the arithmetic mean of slu(·, m) from the
1-st turn to the i-th turn. Similarly, f5 ,
rank(i, m) and f6 , rule(i, m) are defined.

• f7 , score name(i) = the sum of all the
scores assigned by the SLU to the user in-
forming the value of slot name is some
value.

• f8 , venue offered(i) = 1 if at least one
venue has been offered to the user by the sys-
tem from the 1-st turn to the i-th turn, other-
wise 0.

• f9 , (f9,1, f9,2, · · · , f9,17). Where f9,j ,
user acttype(i, uj) = the sum of all the
scores assigned by the SLU to the user act
type being uj(1 ≤ j ≤ 17).

• f10 , bias(i) = 1.

In particular, all above feature function are 0
when i ≤ 0.

Requested Slots
For the i-th turn and slot r, the feature functions
designed for requested slots are listed below.

• f1 , slu(i, r) = the sum of all the scores
assigned by the SLU to r being one of the
requested slots.

• f2 , rank(i, r) = the sum of all the recipro-
cal rank of the scores assigned by the SLU to
r being one of the requested slots.

• f3 , rule(i, r) = the confidence score given
by the rule-based model.

• f4 , bias(i, r) = 1

In particular, all above feature function are 0
when i ≤ 0.

4.2 Maximum Entropy Model

Total 6 MaxEnt models (Bohus and Rudnicky,
2006) are employed, four models for the joint
goals, one for the method and one for the re-
quested slots. The Maximum Entropy model is an
efficient means that models the posterior of class
y given the observations x:

P (y|x) =
1

Z(x)
exp (λTf(y,x))

Where Z(x) is the normalization constant. λ is
the parameter vector and f(y,x) is the feature
vector.

The models for the joint goals are implemented
for four informable slots (i.e. area, food, name
and pricerange) separately. In the k-th turn, for
every informable slot s and its value v, i.e. slot-
value pair in SLU, the MaxEnt model for the cor-
responding slot is used to determine whether the
value v for the slot s in the user goals is right or
not. The input consists of 160 features 1 which
are selected from the feature functions described
in section 4.1 Joint Goals:

{f34}i=k ∪
⋃

k−2≤i≤k

{f1, · · · , f15,f28, · · · , f33}

Where i is the turn index . The output of the model
is the confidence score that the value v for the slot
s is right.

In the k-th turn, the model for the method is
used to determine which way the user is trying to
interact with the system. The input consists of 97
features which are selected from the feature func-

1For the feature function whose range is not 1 dimen-
sion, the number of features defined by the feature function
is counted as the number of dimensions rather than 1. For
example, the number of features defined by f28 is 17.
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tions described in section 4.1 Method:

{f10}i=k ∪
⋃

k−3≤i≤k

{f7, f8,f9}

∪
⋃
m

k − 3 ≤ i ≤ k

{f3}

and the output consists of five confidence scores
that the method belongs to every one of the five
ways (i.e. by name, by constraints, by alternatives,
finished and none).

The model for the requested slots is used to de-
termine whether the requestable slot r in the SLU
“request(slot)” is truly requested by the user or not
in the k-th turn. The input consists of 10 features
which are selected from the feature functions de-
scribed in section 4.1 Requested Slots:

{f4}i=k ∪
⋃

k−2≤i≤k

{f1, f2, f3}

and the output is the confidence score that r is truly
requested by the user in this turn.

The parameters of the 6 MaxEnt models are op-
timised separately through maximizing the likeli-
hood of the training data. The training process is
stopped when the likelihood change is less than
10−4.

4.3 Deep Neural Network Model
4 DNNs for joint goals (one for each slot), 1 for
method and 1 for requested slots are employed.
All of them have similar structure with Sigmoid
for hidden layer activation and Softmax for out-
put layer activation. As shown in figure 1, each
DNN has 3 hidden layers and each layer has 64
nodes. DNNs take the feature set (which will be
described in detail later) of a certain value of goal,
method, or requested slots as the input, then out-
put two values (donated by X and Y ), through the
hidden layer processing, and finally the confidence
of the value can be got by eX

eX+eY .
For slot s, the k-th turn and value v, the feature

set of goal consisting of 108 features is defined as:⋃
k−5≤i≤k

{f3, f6, f7, f8, f11, f14, f15}

∪ {f18, · · · , f21}i=k−6

∪ {f16, f17,f22, · · · ,f27}i=k

For the k-th turn and method m, the feature set
of method consisting of 15 features is defined as:⋃

k−3≤i≤k

{f1, f2, f3} ∪ {f4, f5, f6}i=k−4

An input layer 
with |feature_set| nodes 

3 hidden layers 
Each has 64 nodes 

An output layer 
with 2 nodes 

…
 

…
 

…
 

…
 

Figure 1: Structure of the DNN Model

For the k-th turn and slot r, the feature set of
requested slots consisting of 12 features is defined
as: ⋃

k−3≤i≤k

{f1, f2, f3}

Bernoulli-Bernoulli RBM was applied to pre-
train DNNs and Stochastic Gradient Descent with
cross-entropy criterion to fine-tune DNNs. For the
fine-tuning process, 3/4 of the data was used for
training and 1/4 for validation.

5 Experiments

DSTC 2 provides a training dataset of 1612 dia-
logues (11677 utterances) and a development set
of 506 dialogues (3934 utterances). The training
data was first used to train the semantic parser
and the MaxEnt and the DNN models for internal
system development as shown in section 5.1 and
5.2. These systems were tested on the develop-
ment data. Once the system setup and parameters
were determined, the training and development set
were combined together to train the final submit-
ted system. The final system was then tested on
the final evaluation data as shown in section 5.3.

5.1 Effect of the STC Semantic Parser
In DSTC 2, as the live semantic information was
found to be poor, two new semantic parsers were
then trained as described in section 2. One used
the top ASR hypothesis n-gram features and the
other one employed additional system feedback
features (the last system act, “barge-in” and turn-
index).

Table 1 shows the performance of two new se-
mantic parser in terms of the precision, recall,
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System Precision Recall F-score ICE
baseline 0.6659 0.8827 0.7591 2.1850
1-best 0.7265 0.8894 0.7997 1.4529

+ sys fb 0.7327 0.8969 0.8065 1.3449

Table 1: Performance of semantic parsers with dif-
ferent features on the development set.

F-score of top dialogue act hypothesis and the
Item Cross Entropy (ICE) (Thomson et al., 2008)
which measures the overall quality of the confi-
dences distribution of semantic items (the less the
better). The baseline is the original live seman-
tic hypotheses, “1-best” (row 3) represents the se-
mantic parser trained on the top ASR hypothesis
with n-gram feature, and “sys fb” (row 4) rep-
resents the semantic parser added with the sys-
tem feedback features. The STC semantic parsers
significantly improve the quality of semantic hy-
potheses compared with baseline in the score of
precision, recall, F-score and ICE. And the parser
using context features (row 4) scored better than
the other one (row 3).

The improved semantic parsers are expected to
also yield better performance in dialogue state
tracking. Hence, the parsers were used in focus
baseline provided by the organiser. As shown in

Joint Goals Method Requested
baseline 0.6121 0.8303 0.8936
1-best 0.6613 0.8764 0.8987

+ sys fb 0.6765 0.8764 0.9297

Table 2: Results for focus baseline tracker with
different parsers

table 2, the new parsers achieved consistent im-
provement on the accuracy of joint goals, method
and requested slots. So the semantic hypotheses
of parser using the system feedback features was
used for later development.

5.2 Internal System Development

Table 3 shows the the results of rule-based model,
the MaxEnt model and the DNN model on the de-
velopment set. From the table we can see that
the DNN model has the best performance for joint
goals, the MaxEnt model has the best performance
for method and the rule-based model has the best
performance for requested slots. So the combined
model is a combination of those three models, one
for one of the three components where it has the
best performance, that is, the rule-based model
for requested slots, the MaxEnt model for method,

and the DNN model for joint goals.

Joint Goals Method Requested
Rule-based 0.6890 0.8955 0.9668

MaxEnt 0.6741 0.9079 0.9665
DNN 0.6906 0.8991 0.9661

Table 3: Performance of three tracking models

5.3 Evaluation Performance
The official results of the challenge are publicly
available and the SJTU team is team 7. Entry
0, 1, 2, 3 of team 7 is the combined model, the
rule-based model, the DNN model and the Max-
Ent model respectively. They all used the new se-
mantic parser based on live ASR hypotheses. En-
try 4 of team 7 is also a combined model but it
does not use the new semantic parser and takes the
live SLU as input.

Table 4 shows the results on the final evalua-
tion test set. As expected, the semantic parser does
work, and the combined model has the best perfor-
mance for joint goals and method, however, that
is not true for requested slots. Notice that on the
development set, the difference of the accuracy of
requested slots among the 3 models is significantly
smaller than that of joint goals and method. One
reasonable explanation is that one cannot claim
that the rule-based model has better performance
for requested slots than the MaxEnt model and the
DNN model only with an accuracy advantage less
than 0.1%.

Joint Goals Method Requested
Baseline 0.6191 0.8788 0.8842

Focus 0.7193 0.8670 0.8786
HWU 0.7108 0.8971 0.8844

HWU+ 0.6662 0.8846 0.8830
Rule-based 0.7387 0.9207 0.9701

MaxEnt 0.7252 0.9357 0.9717
DNN 0.7503 0.9287 0.9710

Combined+ 0.7503 0.9357 0.9701
Combined- 0.7346 0.9102 0.9458

Table 4: Accuracy of the combined model (Com-
bined+) compared with the rule-based model,
the MaxEnt model, the DNN model, the com-
bined model without the new semantic parser
(Combined-) and four baselines on the test set.
Four baselines are the baseline tracker (Base-
line), the focus tracker (Focus), the HWU tracker
(HWU) and the HWU tracker with “original” flag
set to (HWU+) respectively.

Figure 2 summaries the performance of the ap-
proach relative to all 31 entries in the DSTC 2.
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Figure 2: Performance of the combined model among 31 trackers. SJTU is the combined model (entry 0
of team 7).

As ROC metric is only comparable between sys-
tems of similar accuracy, only accuracy and L2
are compared. The results of the combined model
is competitive for all the three components, espe-
cially for joint goals.

5.4 Post Evaluation Analysis
Two strategies and two kinds of features were
added to the MaxEnt model for the requested slots
after DSTC 2 based on some observations on the
training set and development set. The first strategy
is that the output for the requested slots of the first
turn is set to empty by force. The second strategy
is that the output of the confidence is additionally
multiplied by (1−Cf ), where Cf denotes the con-
fidence given by the MaxEnt model to the method
of current turn being finished. As for the two kinds
of features, one is the slot indicator and the other
is the acttype-slot tuple. They are defined as 2:

• f5 , (f5,1, f5,2, · · · , f5,8), where f5,j ,
slot indicator(i, r, sj) = 1 if the index of the
slot r is j, i.e. sj = r, otherwise 0.

• f6 , (f6,1, f6,2, · · · , f6,33), where f6,j ,
user act slot(i, r, tj) = the sum of all the
scores assigned by the SLU to the j-th user
acttype-slot tuple tj . The acttype-slot tuple is
the combination of dialog act type and possi-
ble slot, e.g. inform-food, confirm-area.
There are 33 user acttype-slot tuples.

2The feature number is consistent with that in section 4.1.

• f7 , (f7,1, f7,2, · · · , f7,46), where f7,j ,
sys act slot(i, r, tj) = the number of occur-
rences of the j-th machine acttype-slot tuple
tj in the dialog acts. There are 46 machine
acttype-slot tuples.

With those strategies and features, the Max-
Ent model achieved an accuracy of 0.9769 for the
requested slots, which is significantly improved
compared with the submitted system.

6 Conclusion

This paper describes the SJTU submission for
DSTC 2 in detail. It is a combined system con-
sisting of a rule-based model, a maximum entropy
model and a deep neural network model with a
STC semantic parser. The results show that the
SJTU system is competitive and outperforms most
of the other systems in DSTC 2 on test datasets.
Post evaluation analysis reveal that there is still
room for improvement by refining the features.
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