
Proceedings of the SIGDIAL 2015 Conference, pages 374–383,
Prague, Czech Republic, 2-4 September 2015. c©2015 Association for Computational Linguistics

Quality-adaptive Spoken Dialogue Initiative Selection And Implications
On Reward Modelling

Stefan Ultes, Matthias Kraus, Alexander Schmitt, and Wolfgang Minker
Ulm University

Albert-Einstein-Allee 43
89081 Ulm, Germany

{fistname.lastname}@uni-ulm.de

Abstract

Adapting Spoken Dialogue Systems to the
user is supposed to result in more efficient
and successful dialogues. In this work, we
present an evaluation of a quality-adaptive
strategy with a user simulator adapting
the dialogue initiative dynamically dur-
ing the ongoing interaction and show that
it outperforms conventional non-adaptive
strategies and a random strategy. Further-
more, we indicate a correlation between
Interaction Quality and dialogue comple-
tion rate, task success rate, and average di-
alogue length. Finally, we analyze the cor-
relation between task success and interac-
tion quality in more detail identifying the
usefulness of interaction quality for mod-
elling the reward of reinforcement learn-
ing strategy optimization.

1 Introduction

Maximizing task success in task-oriented dialogue
systems has always been a central claim of Spoken
Dialogue (SDS) research. Today, commercial sys-
tems are still inflexible and do not adapt to users
or the dialogue flow. This usually results in bad
performance and in frequently unsuccessful dia-
logues. In recent years, adaptation strategies have
been investigated for rendering SDS more flexible
and robust. The aim of those strategies is to adapt
the dialogue flow based on observations that are
made during an ongoing dialogue.

One approach to observe and score the interac-
tion between the system and the user is the Interac-
tion Quality (IQ) (Schmitt and Ultes, 2015) origi-
nally presented by Schmitt et al. (2011). Their In-
teraction Quality paradigm is one of the first met-
rics which can be used for this purpose. A pilot
user study on adapting the dialogue to the Interac-
tion Quality by Ultes et al. (2014b) in a limited

domain has already shown encouraging results.
There, similar dialogue performance was achieved
for both the strategy adapting the grounding mech-
anism to Interaction Quality and the strategy of al-
ways applying implicit confirmation prompts pre-
viously known to achieve best user feedback.

While the previous experiment showed encour-
aging results for adapting the grounding strategy,
it is unclear if other aspects of a dialogue strat-
egy may also be positively affected. Hence, in this
contribution, we investigate if applying rules for
adapting the dialogue initiative to IQ may also re-
sult in an increase in IQ and if other metrics like
task success rate or dialogue completion rate may
correlate1.

To investigate this, we have designed a basic
experiment having an IQ-adaptive dialogue strat-
egy adapting the dialogue initiative. Depend-
ing on the IQ score, the system chooses be-
tween user-initiative, system-initiative and mixed-
initiative. Moreover, the performance of four addi-
tional strategies is analyzed regarding a correlation
between IQ and other performance measures.

Besides the interest in the general performance
of the quality-adaptive strategy, we are specifically
interested whether implications may be drawn
from the experiments about the usage of IQ in a
reinforcement learning setting for modelling the
reward function.

The outline of the paper is as follows: in Sec-
tion 2, we present significant related work on
adaptive dialogue and quality metrics including
the Interaction Quality (IQ) paradigm, a more ab-
stract form of user satisfaction. All five dialogue
strategies are described in detail in Section 3. The
experimental setup including the test system in the
the “Let’s Go” domain is presented in Section 4

1Automatic optimization aims at maximizing a reward
function. If IQ was contributing positively to this reward
function, optimisation would naturally result in an increase
in IQ. As we do not perform optimization, this correlation
does not automatically exist
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followed by a thorough presentation of the exper-
imental results based on dialogues with the user
simulator. Based on the experiments’ results, in-
ferences are drawn on using IQ for reward mod-
elling. Finally, we conclude and outline future
work in Section 6.

2 Significant Related Work

The field of adaptive dialogue spans over many
different types of adaptation. While some systems
adapt to their environment (e.g., (Heinroth et al.,
2010)), the focus of this work lies on systems that
adapt to the user and the characteristics of the in-
teraction. More specifically, an emphasis is placed
on dynamic adaptation to the user during the on-
going dialogue.

2.1 User-Adaptive Dialogue

A very prominent work closely related to the topic
of this contribution has been presented by Litman
and Pan (2002). They identify problematic situ-
ations in dialogues by analyzing the performance
of the speech recognizer (ASR) and use this infor-
mation to adapt the dialogue strategy. Each dia-
logue starts off with a user initiated strategy with-
out confirmations. Depending on the ASR per-
formance, a system-directed strategy with explicit
confirmations may eventually be employed. Ap-
plied to TOOT, a system for getting information
about train schedules, the authors achieved signif-
icant improvement in task success compared to a
non-adaptive system. While Litman and Pan adapt
to the ASR performance as indicator for problem-
atic dialogues (being a system property represent-
ing an objective adaptation criterion), the user is
put into the focus of adaptation in this work by
using an abstract form of user satisfaction hence
applying a subjective criterion.

Further work on user-adaptive dialogue has
been presented by Gnjatović and Rösner (2008)
adapting to the user’s emotional state and by Noth-
durft et al. (2012) adapting to the user knowledge.
For both, only simulated or predefined user states
are used while this work uses a real estimation
module deriving the user satisfaction.

Using user ratings to improve the dialogue per-
formance in a reinforcement learning (RL) ap-
proach has been presented by Walker (2000),
Rieser and Lemon (2008), Janarthanam and
Lemon (2008), and Gašić et al. (2013). Walker ap-
plied RL to a MDP-based dialogue system ELVIS

for accessing emails over the phone. They mod-
eled the reward function using the PARADISE
framework (Walker et al., 1997) showing that the
resulting policy improved the system performance
in terms of user satisfaction significantly. The
resulting best policy showed, among other as-
pects, that the system-initiative strategy was found
to work best. The group of Lemon also em-
ployed PARADISE for modelling the reward func-
tion. Using reinforcement learning, they found
an optimal dialogue strategy for result presenta-
tion (Rieser and Lemon, 2008) or referring expres-
sions (Janarthanam and Lemon, 2008) for natural
language generation.

For a POMDP-based dialogue manager, Gašić
et al. use a reward function based on user ratings
to train the optimized policy. The user ratings are
acquired using Amazon Mechanical Turk. They
show that their approach converges much faster
than conventional approaches using a user simu-
lator. However, their approach does not allow for
adapting the course of the dialogue online but re-
lies on a pre-optimized dialogue strategy.

Finally, not directly providing user adaptivity
but allowing for reacting to specific dialogue situa-
tions in a rule-based manner is VoiceXML (Oshry
et al., 2007). By counting the number of “re-
prompts” or “nomatches”, a suitable strategy may
be selected. While these parameters are also
part of the Interaction Quality used for adapta-
tion within this work, the Interaction Quality cap-
tures more complex effects than the simple rules
of VoiceXML. These effects may not be modeled
easily using rules (Ultes and Minker, 2013).

2.2 Interaction Quality

While there is numerous work on investigating
turn-wise quality ratings for SDSs, e.g., Engel-
brecht et al. (2009), Higashinaka et al. (2010)
and Hara et al. (2010), the Interaction Quality
paradigm by Schmitt et al. (2011) seems to be the
only metric fulfilling the requirements for adapt-
ing the dialogue online (Ultes et al., 2012).

For rendering an SDS adaptive to the user’s
satisfaction level, a module is needed to auto-
matically derive the satisfaction from the ongo-
ing interaction. For creating this module, usually,
dialogues have to be annotated with ratings de-
scribing the user’s satisfaction level. Schmitt et
al. (2015) proposed a measure called “Interaction
Quality” (IQ) which fulfills the requirements of a
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Figure 1: The three different modeling levels representing the interaction at exchange en: The most
detailed exchange level, comprising parameters of the current exchange; the window level, capturing
important parameters from the previous n dialogue steps (here n = 3); the dialogue level, measuring
overall performance values from the entire previous interaction.

quality metric for adaptive dialogue identified by
Ultes et al. (2012). For Schmitt et al., the main
aspect of user satisfaction is that it is assigned by
real users. However, this seems to be impractical
in many real world scenarios. Hence, the usage of
expert raters is proposed. Further studies have also
shown a high correlation between quality ratings
applied by experts and users (Ultes et al., 2013).

The IQ paradigm is based on automatically de-
riving interaction parameters from the SDS and
feed these parameters into a statistical classifica-
tion module which predicts the IQ level of the
ongoing interaction at the current system-user-
exchange 2. The interaction parameters are ren-
dered on three levels (see Figure 1): the exchange
level, the window level, and the dialogue level.
The exchange level comprises parameters derived
from SDS modules Automatic Speech Recognizer,
Spoken Language Understanding, and Dialogue
Management directly. Parameters on the window
and the dialogue level are sums, means, frequen-
cies or counts of exchange level parameters. While
dialogue level parameters are computed out of all
exchanges up to the current exchange, window
level parameters are only computed out of the last
three exchanges.

These interaction parameters are used as input
variables to a statistical classification module. The
statistical model is trained based on annotated di-
alogues of the Lets Go Bus Information System in
Pittsburgh, USA (Raux et al., 2006). Each of the
4,885 exchanges (200 calls) has been annotated by
three different raters resulting in a rating agree-
ment of κ = 0.54. The final IQ value of the three
raters is derived using the median. Furthermore,
the raters had to follow labeling guidelines to en-
able a consistent labeling process (Schmitt et al.,
2012). Schmitt et al. (2011) estimated IQ with a
Support Vector Machine using only automatically

2A system turn followed by an user turn

derivable parameters achieving an unweighted av-
erage recall of 0.59.

3 Quality-Adaptive Dialogue

Within this section, we describe one part of the
main contribution of rendering the dialogue ini-
tiative adaptive to Interaction Quality and com-
pare the resulting strategy to several non-adaptive
strategies. Conventional dialogue initiative cat-
egories are user initiative, system initiative, and
mixed initiative (McTear, 2004). As there are dif-
ferent interpretations of what these initiative cate-
gories mean, we stick to the understanding of ini-
tiative as used by Litman and Pan (2002): the ini-
tiative influences the openness of the system ques-
tion and the set of allowed user responses. The
latter is realized by defining which slot values pro-
vided by the user are processed by the system and
which are discarded. Hence, for user initiative, the
system asks an open question allowing the user to
respond with information for any slot. For mixed
initiative, the system poses a question directly ad-
dressing a slot. However, the user may still pro-
vide information for any slot. This is in contrast to
the system initiative, where the user may only re-
spond with the slot addressed by the system. For
instance, if the system asks for the arrival place
and the user responds with a destination place, this
information may either be used (mixed initiative)
or discarded (system initiative).

In this work, five different strategies are cre-
ated. Three basic non-adaptive strategies are com-
pared against one adaptive and one random adap-
tive strategy. All of these strategies can be gener-
ated from the flow diagram in Figure 2 by vary-
ing the IQ value. The non-adaptive user, system,
and mixed initiative strategy are well known con-
cepts and will not further be described. In order to
keep the strategies comparable, all have a similar
structure: in each strategy, the system starts with
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Figure 2: The flow chart describing the adaptive
and non-adaptive strategies. For the adaptive strat-
egy, the course of the dialogue as well as the al-
lowed user input are influenced by the IQ value.
For the random strategy, the IQ values are gener-
ated randomly. The non-adaptive strategies are re-
alized by fixed IQ values: IQ = 5 for the user
initiative strategy always posing open requests,
IQ = 3 and IQ = 1 for mixed and system ini-
tiative explicitly requesting slot information. Pro-
vision of the bus route was not mandatory.

an open request allowing the user to respond with
information for all slots. The system first contin-
ues with confirming provided information before
continuing strategy-specific.

For adapting the initiative based on IQ, the
adaptive strategy utilizes the basic concepts of
the non-adaptive strategies, i.e., the pairs of sys-
tem question and its restriction on the user input.
Hence, the way missing information is requested
depends on the Interaction Quality. For an IQ
value of five, an open request is placed. For an IQ
value greater than two, information for all miss-
ing slots is allowed as user input (same behavior
as in the mixed initiative strategy) while only the
requested information is allowed otherwise. If un-
confirmed slot information is present, the strategy
decides to first initialize grounding before other
missing information is requested. If the user pro-

System: Request(Open)
User: Non-understanding IQ = 5

System: Request(Open)
User: Inform(Travel Time: 8pm) IQ = 5

System: Confirm(Travel Time: 8pm)
User: Deny IQ = 3

System: Request(Departure place)
User: Inform(Travel Time: now) IQ = 3

System: Confirm(Travel Time: now)
User: . . .

Figure 3: Example dialogue of the adaptive strat-
egy. As the IQ value is 5 in the beginning, the
system requests openly for information. After the
IQ value has dropped to 3, the mixed initiative is
active. Hence, the system asks for specific infor-
mation directly still allowing input for other slots.

vides information for an already confirmed slot,
this information is discarded. The same behavior
is implemented into the user and mixed initiative
strategies. Note that the thresholds between the
different adaptation levels have been defined arbi-
trarily based on human judgement. An example
dialogue is depicted in Figure 3.

The random strategy uses the same dialogue
definition as the adaptive strategy. However, the
initiative is selected randomly.

The dialogues of all strategies continue until
all mandatory slots contain a confirmed value or
the user terminates the interaction. If the user
responds with information about a slot which is
not in the set of allowed slot information, these
values are discarded. This may lead to a ’Non-
Understanding’ (or ’out-of-grammar’ user input)
even though the user has provided information.

4 Experiments and Results

Evaluation of the dialogue strategies presented in
Section 3 is performed using an adaptive dialogue
system interacting with a user simulator. A user
simulator offers an easy and cost-effective way for
getting a basic impression about the performance
of the designed dialogue strategies. Furthermore,
we describe the setup of the experiments followed
by a discussion of the results.

4.1 Let’s Go Domain

For evaluating the adaptive strategies, we use the
Let’s Go Domain as it represents a domain of suit-
able complexity. The Let’s Go Bus Information
System (Raux et al., 2006) is a live system in Pitts-
burgh, USA providing bus schedule information to
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the user. The Let’s Go User Simulator (LGUS) by
Lee and Eskenazi (2012) is used for evaluation to
replace the need for human evaluators.

The dialogue goal of Let’s Go consists of four
slots: bus number, departure place, arrival place,
and travel time. However, the bus number is not
mandatory. The original system contains more
than 300,000 arrival or departure places, respec-
tively. To acquire information about the specific
goal of the user, the system may use one out of
nine system actions to which the user responds
with a subset of six user actions. In LGUS,
the user actions are accompanied with a confi-
dence score simulating automatic speech recogni-
tion performance. The system action is either re-
questing for information or explicitly confirming
previously shared information. Hence, the user
may either provide information about a certain slot
or affirm or deny a slot value.

Any combination of the user actions is
possible—even having contradicting information
present, e.g., informing about two different values
of the same slot or affirming and denying a value
at the same time. As problems with the speech
recognition and language understanding modules
are also modeled by LGUS, these effects are re-
flected by the user action ’Non-Understanding’.

4.2 Experimental Setup

In order to evaluate the dialogue strategies, we use
the adaptive dialogue manager OwlSpeak (Ultes
and Minker, 2014), originally created by Hein-
roth et al. (2010), extended for including quality-
adaptivity (Ultes et al., 2014a). OwlSpeak is based
on the Model-View-Presenter paradigm separating
the dialogue description and dialogue state in the
model from the dialogue control logic in the pre-
senter. Originally, the interface to a voice browser
using VoiceXML (Oshry et al., 2007) is embedded
in the view. For this work, the view has been re-
placed in order to provide an interface to LGUS
which is instantiated as a server application com-
municating to other modules using JSON (Crock-
ford, 2006). Furthermore, the system has been ex-
tended to handle multi-slot user input.

For rendering the system adaptive, Ultes et
al. (2014a) included an interaction estimation
module into the system. It is based on the Support
Vector Machine (SVM (Vapnik, 1995)) implemen-
tation LibSVM (Chang and Lin, 2011) using a
linear kernel. Interaction with real users requires

a more complex system than an interaction with
a simulated user. Thus, some SDS modules are
missing and not all parameters of the IQ paradigm
are available. This results in a feature set of only
16 parameters3. The trained model achieves an
unweighted average recall4 of 0.565 on the train-
ing data using 10-fold cross-validation which is a
considerably good performance. All exchanges of
the LEGO corpus (Schmitt et al., 2012) have been
used for training.

Evaluation of the dialogue strategies is per-
formed by creating 5,000 simulated dialogues for
each strategy. Like Raux et al. (2006), short di-
alogues (≤ 5 exchanges6) which are considered
“not [to] be genuine attempts at using the system”
are excluded from all statistics in this paper.

Three objective metrics are used to evaluate
the dialogue performance: the average dialogue
length (ADL), the dialogue completion rate (DCR)
and task success rate (TSR). The ADL is mod-
eled by the average number of exchanges per com-
pleted dialogue. A dialogue is regarded as be-
ing completed if the system provides a result—
whether correct or not—to the user. Hence, DCR
represents the ratio of dialogues for which the
system was able to provide a result, i.e., provide
schedule information:

DCR =
#completed

#all
.

TSR is the ratio of completed dialogues where the
user goal matches the information the system ac-
quired during the interaction:

TSR =
#correctResult

#completed
.

Here, only destination place, arrival place, and
travel time are considered as the bus number is not
a mandatory slot and hence not necessary for pro-
viding information to the user.

As a correlation between objective measures
and IQ is investigated, the average IQ value (AIQ)
is calculated for each strategy based on the IQ

3The parameters applied are ASRRecognitionSta-
tus, ASRConfidence, RePrompt?, #Exchanges, Activ-
ityType, Confirmation?, MeanASRConfidence, #ASR-
Success, %ASRSuccess, #ASRRejections, %ASR-
Rejections, {Mean}ASRConfidence, {#}ASRSuccess,
{#}ASRRejections, {#}RePrompts, {#}SystemQuestions.

4The arithemtic average over all class-wise recalls.
5Comparable to the best-know approaches.
6The minimum number of exchanges to successfully com-

plete the dialogue is 5.
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Figure 4: The ratio of omitted dialogues due to
their length (< 5 exchanges), the completed di-
alogues (complete), and the dialogues which have
been aborted by the user (incomplete) with respect
to the dialogue strategy. While the amount of short
dialogues is similar for each strategy, the number
of completed dialogues varies strongly.

value of the last exchange of each dialogue. Fur-
thermore, this measure is also used to investigate
if adapting the course of the dialogue to IQ also
results in higher IQ values.

4.3 Experimental Results

Figure 4 shows the ratio of complete, incomplete,
and omitted dialogues for each strategy with re-
spect to the total 5,000 dialogues. As can be seen,
about the same ratio of dialogues is omitted due
to being too short. The DCR clearly varies more
strongly for the five strategies.

The results for DCR, TSR, ADL, and AIQ are
presented in Table 1 and Figure 5. TSR is almost
the same for all strategies, meaning that, if a dia-
logue completes, the system almost always found
the correct user goal. DCR, ADL and AIQ on the
other hand vary strongly. They strongly correlate
with a Pearson’s correlation of ρ = −0.953 (α <
0.05) for DCR and ADL, ρ = 0.960 (α < 0.01)
for DCR and AIQ, and ρ = −.997 (α < 0.01) for
ADL and AIQ. This shows that by improving IQ,
being a subjective measure, an increase in objec-
tive measures may be expected.

Comparing the performance of the adaptive
strategy to the three non-adaptive strategy clearly
shows that the adaptive strategy performs signif-
icantly best for all metrics. With a DCR of of
54.27%, the performance is comparable to the rate
achieved on the training data of LGUS (cf. (Lee
and Eskenazi, 2012)). The non-adaptive strategies
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Figure 5: The average dialogue length (ADL),
task success rate (TSR), the dialogue completion
rate (DCR), and the average Interaction Quality
(AIQ) for all for dialogue strategies. With decreas-
ing DCR, also AIQ decreases and ADL increases.
(AIQ values are normalized to the interval [0–1].)

achieve a much lower DCR having the system ini-
tiative strategy as second best with only 29.48%.
This performance goes together with shorter dia-
logues shown by the ADL. Furthermore, the re-
sults for DCR clearly show that the user initiative
strategy is unusable. Thus, this strategy will not
be analyzed any further.

Furthermore, it is of interest if better objective
performance also results in better IQ values for the
complete dialogue. This is especially important
since it is imperative for the relevance of the In-
teraction Quality. Adapting to IQ to improve the
dialogue must also result in an increase of the IQ
value. This effect has been validated by these ex-
periments. The adaptive strategy has a significant
higher average IQ (AIQ) value calculated from the
IQ value for the whole dialogues, i.e., the IQ value
of the last system-user-exchange, than all other
non-adaptive strategies.

The question remains if adapting to IQ is the ac-
tual reason for the improvement. Maybe, the user
simulated with LGUS only “likes” diversified ini-
tiative prompts better which is represented by the
random strategy. While this statement is true to
some extent (see ADL), reasonably adapting to IQ
further improves the system performance signifi-
cantly as shown by DCR and AIQ.

5 Reward Modelling with Interaction
Quality

The presented results clearly show that AIQ and
DCR are correlated. As almost all completed di-
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Strategy DCR TSR ADL AIQ

adaptive 54.27% 99.18% 11.86 3.47**

random 49.53% 99.22% 11.82** 3.44**

system initiative 29.48% 98.75% 13.30* 3.23
mixed initiative 22.91% 99.20% 14.40* 3.15**

user initiative 5.32% 97.92% 18.04 2.66

Table 1: The results of the experiments for the
five strategies given by dialogue completion rate
(DCR), task success rate (TSR), average dialogue
length (ADL) and average Interaction Quality
(AIQ) rating the complete interaction for all com-
pleted dialogues. All results for DCR and TSR
are significantly different (chi-squared test). Sig-
nificant differences in ADL (unpaired t-test) and
AIQ (Mann-Whitney U test) with the respective
column below are marked with ** for the level of
α < 0.01 and with * for α < 0.05. All other
comparisons between non-neighbors are signifi-
cant with α < 0.01

alogues were also successful, a correlation be-
tween AIQ and task success may also be assumed.
In this section, we investigate if this correlation
may be exploited for modelling the reward func-
tion for reinforcement learning approaches to di-
alogue management. This would be very benefi-
cial, as for state-of-the-art reinforcement learning
approaches to dialogue management, e.g., (Lemon
and Pietquin, 2012; Young et al., 2013), a positive
or negative reward is added at the end of each dia-
logue depending on the successful achievement of
the task. However, to do this, usually, the true user
goal has to be know. This is either possible by ask-
ing the user or by using a user simulator for train-
ing. Here, Gašić et al. have shown that optimizing
the strategy with real user dialogues yields better
strategies than using a user simulator. However,
asking the user to provide whether they consider
the dialogue to be successful is time consuming
and interruptive thus only possible in artificial lab
settings. If there was a metric which allowed to au-
tomatically detect successful, or, more generally,
good dialogues, this metric would be very useful
for the described situation yielding the opportunity
to optimize on real dialogues without disrupting
the users.

Therefore, the correlation of the final IQ value
and task success is analyzed. Based on all strate-
gies, the dialogues are evaluated regarding the suc-
cess rate with respect to the final IQ value and the
dialogue length. An example for dialogue lengths

DL IQ success failure # dialogues

9

1 0.0% 100.0% 487
2 0.0% 100.0% 40
3 37.2% 62.9% 253
4 93.8% 6.3% 512
5 0.0% 100.0% 2

10

1 0.0% 100.0% 452
2 0.0% 100.0% 38
3 42.4% 57.6% 172
4 96.6% 3.5% 406
5 0.0% 100.0% 3

11

1 0.0% 100.0% 405
2 2.9% 97.1% 35
3 47.8% 52.3% 178
4 84.0% 16.0% 100
5 - - 0

12

1 0.3% 99.7% 329
2 23.1% 76.9% 52
3 78.5% 21.6% 297
4 96.3% 3.7% 270
5 0.0% 100.0% 1

Table 2: Example of the task success rate with re-
spect to IQ and the dialogue length (DL). Disre-
garding rows with less then 15 dialogues, there is
clearly a trend for higher task success rates if the
IQ value increases as well.

of 9–12 is depicted in Table 2. To compute those,
again, dialogues with less than five exchanges are
excluded. Clearly, a trend can be identified for
higher task success rates when having a high final
IQ for all dialogue lengths7.

Based on this finding, an IQ threshold may be
defined which separates dialogues regarded as be-
ing successful and dialogues regarded as being not
successful. For a threshold of four, for example,
all dialogues with a final IQ of five and four may
be regarded as successful while all other dialogues
are regarded as failure. However, not all dialogues
above the threshold are necessarily actually suc-
cessful and not all dialogues below the threshold
are necessarily actually unsuccessful. Hence, to
find a good threshold, the precision—representing
this relationship—is calculated for both success
and failure dialogues for different thresholds. The
results are depicted in Table 3.

The best overall threshold indicated by a maxi-
mum unweighted average precision8 (UAP) is four
achieving a precision of 0.863 for success and of
0.826 for failure. While a threshold of four is also

7Rows with less than 15 dialogues are disregarded as suf-
ficient data is needed to compute reasonable task success
rates.

8The arithmetic average over all class-wise precisions.

380



Success Precision UAP
IQ ≥ Success Failure

5 0.448 0.669 0.559
4 0.863 0.826 0.845
3 0.652 0.888 0.770
2 0.646 0.995 0.820
1 0.331 - 0.166

Table 3: The precision of success and failure di-
alogues (along with the unweighted average pre-
cision (UAP)) when setting all dialogue with final
IQ greater or equal a given IQ value to be success-
ful and the remainder to be a failure.

Success Recall UAR
IQ ≥ Success Failure

5 0.008 0.995 0.502
4 0.595 0.953 0.774
3 0.798 0.789 0.794
2 0.992 0.730 0.861
1 1.000 - 0.500

Table 4: The recall of success and failure dia-
logues (along with the unweighted average recall
(UAR)) when setting all dialogue with final IQ
greater or equal a given IQ value to be successful
and the remainder to be a failure.

the best threshold for success, the highest preci-
sion for failure is a threshold of two, i.e., regarding
all dialogues as being a failure with a final IQ of
one. Hence, to further maximize UAP, two thresh-
olds may be defined: four for success and two for
failure. This results in an UAP of 0.929 not regard-
ing all dialogues with a final IQ of two or three.

Defining a threshold based on precision yields
the downside that some actually successful di-
alogues are regarded as failure and vice versa.
In fact, defining a threshold of four results in a
recall—representing the percentage of dialogues
being regarded as successful out of all truly suc-
cessful dialogues—of 0.595 as shown in Table 4.
This means that more than 40% of all truely suc-
cessful dialogues are regarded as failure which is
not ideal. Additionally, a recall of 0.953 for fail-
ure means that less than 5% of all truely failing
dialogues are regarded as success. However, using
the two thresholds defined above results in better
rates. Still, 4.7% of all failing dialogues are re-
gared as success. However, only 0.8% of all suc-
cessful dialogues are regarded as failure which is
much better. Having two thresholds, though, re-
sults in the need for more training dialogues as all
dialogues between the two thresholds are obmit-
ted: only 64% of all dialogues are used for train-

ing resulting in the need for 56% more dialogues
for training.

6 Conclusion and Future Work

The contribution of this work is two-fold: first, we
analyzed the performance of an adaptive dialogue
strategy adapting the dialogue initiative to Interac-
tion Quality and answered the question if IQ and
objective measures correlate in such a setting. By
comparing five different strategies, we could show
that the dialogue completion rate, the average di-
alogue length, and the average interaction quality
strongly correlate. In addition, we could show that
the adaptive strategy clearly outperforms all non-
adaptive strategies as well as the random strategy.
Hence, not only the grounding strategy but also
the dialogue initiative is suitable for rule-based
quality-adaptive dialogue.

Second, we performed a more detailed analy-
sis of the correlation of task success and Interac-
tion Quality showing that by defining IQ thresh-
olds separating dialogues regarded as success and
failure is a reasonable approach achieving an un-
weighted average precision of 0.929. This is of
special interest for reinforcement learning where
this could be used to automatically detect task suc-
cess. However, not all dialogues could be used for
training the dialogue strategy resulting in the need
for 56% more dialogues. Moreover, the effects on
the resulting strategy of regarding dialogues which
are truly failing as successful (in the sense of keep-
ing the user satisfied) is unclear and must be an-
lyzed in a further study performing reinforcement
learning with the proposed method.

For future work on quality-adaptive dialogue,
the same adaptation techniques should be tested
with real users. While user simulators offer a
good means of evaluating dialogues easily, real
users usually give new insight by showing unseen
behavior. Furthermore, other adaptation mecha-
nisms may be applied, e.g., in a statistical dialogue
management setting (Ultes et al., 2011).

Acknowledgments

This work was supported by the Transregional
Collaborative Research Centre SFB/TRR 62
“Companion-Technology for Cognitive Technical
Systems” which is funded by the German Re-
search Foundation (DFG). Additionally, we would
like to thank Sungjin Lee and Maxine Eskenazi for
providing access to the Let’s Go User Simulator.

381



References
Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-

SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technol-
ogy, 2:27:1–27:27. Software available at http://
www.csie.ntu.edu.tw/˜cjlin/libsvm.

Douglas Crockford. 2006. RFC 4627 - The applica-
tion/json Media Type for JavaScript Object Notation
(JSON). Technical report, IETF, July.

Klaus-Peter Engelbrecht, Florian Gödde, Felix Har-
tard, Hamed Ketabdar, and Sebastian Möller. 2009.
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