
Proceedings of the SIGDIAL 2015 Conference, pages 32–41,
Prague, Czech Republic, 2-4 September 2015. c©2015 Association for Computational Linguistics

Reinforcement Learning in Multi-Party Trading Dialog
Takuya Hiraoka

Nara Institute of Science and Technology
takuya-h@is.naist.jp

Kallirroi Georgila
USC Institute for Creative Technologies

kgeorgila@ict.usc.edu

Elnaz Nouri
USC Institute for Creative Technologies

nouri@ict.usc.edu

David Traum
USC Institute for Creative Technologies

traum@ict.usc.edu

Satoshi Nakamura
Nara Institute of Science and Technology

s-nakamura@is.naist.jp

Abstract

In this paper, we apply reinforcement
learning (RL) to a multi-party trading sce-
nario where the dialog system (learner)
trades with one, two, or three other agents.
We experiment with different RL algo-
rithms and reward functions. The nego-
tiation strategy of the learner is learned
through simulated dialog with trader sim-
ulators. In our experiments, we evaluate
how the performance of the learner varies
depending on the RL algorithm used and
the number of traders. Our results show
that (1) even in simple multi-party trad-
ing dialog tasks, learning an effective ne-
gotiation policy is a very hard problem;
and (2) the use of neural fitted Q itera-
tion combined with an incremental reward
function produces negotiation policies as
effective or even better than the policies of
two strong hand-crafted baselines.

1 Introduction

Trading dialogs are a kind of interaction in
which an exchange of ownership of items is dis-
cussed, possibly resulting in an actual exchange.
These kinds of dialogs are pervasive in many
situations, such as marketplaces, business deals,
school lunchrooms, and some kinds of games, like
Monopoly or Settlers of Catan (Guhe and Las-
carides, 2012). Most of these dialogs are non-
cooperative (Traum, 2008; Asher and Lascarides,
2013), in the sense that mere recognition of the
desire for one party to engage in a trade does not
provide sufficient inducement for the other party
to accept the trade. Usually a trade will only be
accepted if it is in the perceived interest of each

party. Trading dialogs can be considered as a kind
of negotiation, in which participants use various
tactics to try to reach an agreement. It is com-
mon to have dialogs that may involve multiple of-
fers or even multiple trades. In this way, trading
dialogs are different from other sorts of negoti-
ation in which a single decision (possibly about
multiple issues) is considered, for example parti-
tioning a set of items (Nouri et al., 2013; Georgila
et al., 2014). Another difference between trading
dialogs and partitioning dialogs is what happens
when a deal is not made. In partitioning dialogs,
if an agreement is not reached, then participants
get nothing, so there is a very strong incentive to
reach a deal, which allows pressure and can result
in a “chicken game”, where people give up value
in order to avoid a total loss. By contrast, in trad-
ing dialogs, if no deal is made, participants stick
with the status quo. Competitive two-party trading
dialogs may result in a kind of stasis, where the
wealthier party will pass up mutually beneficial
deals, in order to maintain primacy. On the other
hand, multi-party trading dialogs involving more
than two participants changes the dynamic again,
because now a single participant cannot necessar-
ily even block another from acquiring a missing
resource, because it might be available through
trades with a third party. A player who does not
engage in deals may lose relative position, if the
other participants make mutually beneficial deals.

In this paper, we present a first approach toward
learning dialog policies for multi-party trading di-
alogs. We introduce a simple, but flexible game-
like scenario, where items can have different val-
ues for different participants, and also where the
value of an item can depend on the context of other
items held. We examine a number of strategies for
this game, including random, simple, and complex

32



hand-crafted strategies, as well as several rein-
forcement learning (RL) (Sutton and Barto, 1998)
algorithms, and examine performance with differ-
ent numbers and kinds of opponents.

In most of the previous work on statistical di-
alog management, RL was applied to coopera-
tive slot-filling dialog domains. For example, RL
was used to learn the policies of dialog systems
for food ordering (Williams and Young, 2007a),
tourist information (Williams and Young, 2007b),
flight information (Levin et al., 2000), appoint-
ment scheduling (Georgila et al., 2010), and e-
mail access (Walker, 2000). In these typical slot-
filling dialog systems, the reward function de-
pends on whether the user’s goal has been accom-
plished or not. For example, in the food ordering
system presented by Williams and Young (2007a),
the dialog system earns higher rewards when it
succeeds in taking the order from the user.

Recently, there has been an increasing amount
of research on applying RL to negotiation dialog
domains, which are generally more complex than
slot-filling dialog because the system needs to con-
sider its own goal as well as the user’s goal, and
may need to keep track of more information, e.g.,
what has been accepted or rejected so far, propos-
als and arguments on the table, etc. Georgila and
Traum (2011) applied RL to the problem of learn-
ing negotiation dialog system policies for different
cultural norms (individualists, collectivists, and al-
truists). The domain was negotiation between a
florist and a grocer who had to agree on the tem-
perature of a shared retail space. Georgila (2013)
used RL to learn the dialog system policy in a
two-issue negotiation domain where two partici-
pants (the user and the system) organize a party,
and need to decide on both the day that the party
will take place and the type of food that will be
served. Also, Heeman (2009) modeled negotiation
dialog for a furniture layout task, and Paruchuri
et al. (2009) modeled negotiation dialog between
a seller and buyer. More recently, Efstathiou and
Lemon (2014) focused on non-cooperative aspects
of trading dialog, and Georgila et al. (2014) used
multi-agent RL to learn negotiation policies in a
resource allocation scenario. Finally, Hiraoka et
al. (2014) applied RL to the problem of learn-
ing cooperative persuasive policies using fram-
ing, and Nouri et al. (2012) learned models for
cultural decision-making in a simple negotiation
game (the Ultimatum Game). In contrast to typical

slot-filling dialog systems, in these negotiation di-
alogs, the dialog system is rewarded based on the
achievement of its own goals rather than those of
its interlocutor. For example, in Georgila (2013),
the dialog system gets a higher reward when its
party plan is accepted by the other participant.

Note that in all of the previous work mentioned
above, the focus was on negotiation dialog be-
tween two participants only, ignoring cases where
negotiation takes place between more than two in-
terlocutors. However, in the real world, multi-
party negotiation is quite common. In this paper,
as a first study on multi-party negotiation, we ap-
ply RL to a multi-party trading scenario where the
dialog system (learner) trades with one, two, or
three other agents. We experiment with different
RL algorithms and reward functions. The nego-
tiation strategy of the learner is learned through
simulated dialog with trader simulators. In our
experiments, we evaluate how the performance of
the learner varies depending on the RL algorithm
used and the number of traders. To the best of our
knowledge this is the first study that applies RL to
multi-party (more than two participants) negotia-
tion dialog management. We are not aware of any
previous research on dialog using RL to learn the
system’s policy in multi-party negotiation.1

Our paper is structured as follows. Section 2
provides an introduction to RL. Section 3 de-
scribes our multi-party trading domain. Section 4
describes the dialog state and set of actions for
both the learner and the trader simulators, as well
as the reward functions of the learner and the hand-
crafted policies of the trader simulators. In Sec-
tion 5, we present our evaluation methodology and
results. Finally, Section 6 summarizes the paper
and proposes future work.

2 Reinforcement Learning

Reinforcement learning (RL) is a machine learn-
ing technique for learning the policy of an agent

1Note that there is some previous work on using RL to
learn negotiation policies among more than two participants.
For example, Mayya et al. (2011) and Zou et al. (2014) used
multi-agent RL to learn the negotiation policies of sellers and
buyers in a marketplace. Moreover, Pfeiffer (2004) used RL
to learn policies for board games where sometimes negotia-
tion takes place among players. However, these works did
not focus on negotiation dialog (i.e., exchange of dialog acts,
such as offers and responses to offers), but only focused on
specific problems of marketing or board games. For exam-
ple, in Zou et al. (2014)’s work, RL was used to learn policies
for setting selling/purchasing prices in order to achieve good
payoffs.

33



that takes some action to maximize a reward (not
only immediate but also long-term or delayed re-
ward). In this section, we briefly describe RL
in the context of dialog management. In dialog,
the policy is a mapping function from a dialog
state to a particular system action. In RL, the
policy’s goal is to maximize a reward function,
which in traditional task-based dialog systems is
user satisfaction or task completion (Walker et al.,
1998). RL is applied to dialog modeling in the
framework of Markov decision processes (MDPs)
or partially observable Markov decision processes
(POMDPs).

In this paper, we follow an MDP-based ap-
proach. An MDP is defined as a tuple
⟨S,A, P, R, γ⟩ where S is the set of states (repre-
senting different contexts) which the system may
be in (the system’s world), A is the set of actions
of the system, P : S × A → P (S, A) is the set of
transition probabilities between states after taking
an action, R : S × A → ℜ is the reward function,
and γ ∈ [0, 1] a discount factor weighting long-
term rewards. At any given time step i the world
is in some state si ∈ S. When the system performs
an action αi ∈ A following a policy π : S → A, it
receives a reward ri(si, αi) ∈ ℜ and transitions
to state si+1 according to P (si+1|si, αi) ∈ P .
The quality of the policy π followed by the agent
is measured by the expected future reward, also
called Q-function, Qπ : S ×A → ℜ.

We experiment with 3 different RL algorithms:

LinQ: This is the basic Q-learning algorithm with
linear function approximation (Sutton and
Barto, 1998). The Q-function is a weighted
function of state-action features. It is updated
whenever the system performs an action and
gets a reward for that action (in contrast to
batch RL mentioned below).

LSPI: In least-squares policy iteration (LSPI), the
Q-function is also approximated by a linear
function (similarly to LinQ). However, un-
like LinQ, LSPI is a batch learning method.
It samples the training data one or more
times (batches) using a fixed system policy
(the policy that has been learned so far), and
the approximated Q-function is updated after
each batch. We use LSPI because it has been
shown to achieve higher performance than
LinQ in some tasks (Lagoudakis and Parr,
2003).

NFQ: Neural fitted Q iteration (NFQ) uses a

multi-layered perceptron as the Q-function
approximator. Like LSPI, NFQ is a batch
learning method. We introduce NFQ because
it has been shown to perform well in some
tasks (Riedmiller, 2005).

During training we use ϵ-greedy exploration,
i.e., the system randomly selects an action with a
probability of ϵ (we used a value of 0.1 for ϵ) oth-
erwise it selects the action which maximizes the
Q-function given the current state. During testing
there is no exploration and the policy is dictated
by the Q-values learned during training.

3 Multi-Party Trading Domain

Our domain is trading, where two or more traders
have a number of items that they can keep or ex-
change with the other traders in order to achieve
their goals. The value of each item for a trader is
dictated by the trader’s payoff matrix. So at the
end of the interaction each trader earns a number
of points based on the items that it holds and the
value of each item. Note that each trader has its
own payoff matrix. During the interaction, each
trader can trade an item with the other traders (i.e.,
offer an item in exchange for another item). If the
addressee of the offer accepts it, then the items of
the traders involved in this exchange are updated.
If the offer is not accepted, the dialog proceeds
without any changes in the number of items that
each trader possesses. To make the search space
of possible optimal trading policies more tractable,
we assume that each trader can only trade one item
at a time, and also that each offer is addressed only
to one other trader. Each trader can take the turn
(decide to trade) in random order, unless there is a
pending offer. That is, if a trader makes an offer
to another trader, then the addressee of that offer
has priority to take the next turn; the addressee can
decide to accept the offer, or to do nothing, or to
make a different offer. Note that the traders do not
know each other’s payoff matrices but they know
the items that each trader owns. The dialog is com-
pleted after a fixed period of time passes or when
all traders decide not to make any offers.

In our experiments, there are three types of
items: apple, orange, and grape, and each trader
may like, hate, or feel neutral about each type of
fruit. At the end of the dialog the trader earns 100
points for each fruit that he likes, 0 points for each
fruit that he is neutral to, and -100 points for each
fruit that he hates. Payoff matrices are structured

34



such that there is always one fruit that each trader
likes, one fruit that he is neutral to, and one fruit
that he hates. Furthermore, all traders can get a big
payoff for having a fruit salad, i.e., the trader earns
500 additional points if he ends up with one fruit
of each type. Thus even hated fruits may some-
times be beneficial, but only if they can be part of
a fruit salad. Thus the outcome for a trader otr is
calculated by Equation (1).

otr = Pay(appletr) ∗Num(appletr)

+ Pay(orangetr) ∗Num(orangetr)

+ Pay(grapetr) ∗Num(grapetr)

+ Pay(saladtr) (1)

Pay(saladtr) =


500 if Num(appletr) ≥ 1

and Num(orangetr) ≥ 1

and Num(grapetr) ≥ 1

0 otherwise

(2)

where Pay is a function which takes as argu-
ment a fruit type and returns the value of that fruit
type for the trader, and Num shows the num-
ber of items of a particular fruit type that the
trader possesses. At the beginning of each dia-
log, the initial conditions (i.e., number of items
per fruit type and payoff matrix) of the traders (ex-
cept for the learner) are randomly assigned. The
learner always has the same payoff matrix for all
dialogs, i.e., the learner always likes grape, always
feels neutral about apple, and always hates orange.
Also, the total number of fruits that the learner
holds in the beginning of the dialog is always 3.
However, the number of each fruit type that the
learner holds is randomly initialized for each di-
alog, e.g., the learner could be initialized with (1
apple, 2 oranges, 0 grapes), or (1 apple, 1 orange,
1 grape), etc. The total number of fruits for each
trader is determined based on his role (Rich: 4
items, Middle: 3 items, Poor: 2 items), which is
also randomly assigned at the beginning of each
dialog. Table 1 shows two example dialogs.

4 Methodology for Learning Multi-Party
Negotiation Policies

In this section, we present our methodology for
training the learner, including how we built our
trader simulators. The trader simulators are used
as negotiation partners of the learner for both train-
ing and evaluating the learner’s policy (see Sec-
tion 5).

4.1 Learner’s Model
Below we define the reward function, sets of ac-
tions, and state of our MDP-based learner’s model.
Note that we use two kinds of rewards.

The first type of reward is based on Equa-
tion (3). In this case, the learner is rewarded based
on its outcome only at the end of the dialog. In all
other dialog turns i its reward is 0.

rend =

{
otr if dialog ends
0 otherwise

(3)

We also introduce an incremental reward for
training, because rewarding a learning agent only
at the end of the dialog makes the learning prob-
lem very difficult, thus sub-goals can be utilized to
reward the learning agent incrementally (McGov-
ern and Barto, 2001). The incremental reward at
turn i is given by Equation (4), where otr(i) is the
outcome for a trader applied at time point i.

r
′
i =

{
γ ∗ otr(i)− otr(i− 1) if i > 0
0 if i = 0

(4)

This equation represents the improvement on the
outcome of the learner at turn i compared to its
outcome at the previous turn i − 1. Note that this
implementation of the incremental reward func-
tion is basically the same as reward shaping, and
has the following property (Ng et al., 1999; Asri
et al., 2013): the policy learned by using Equa-
tion (4) maximizes the expectation of the cumula-
tive reward given by Equation (3).

The learner’s actions are presented below. By
speaker we mean the trader who is performing the
action. In this case, the speaker is the learner, but
as we will see below this is also the set of actions
that a trader simulator can perform.
Offer(A, Is, Ia): offering addressee A to trade

the speaker’s item Is for the addressee’s item
Ia.

Accept: accepting the most recent offer addressed
to the speaker.

Keep: passing the turn without doing anything.
If there is a pending offer addressed to the
speaker, then this offer is rejected.

The dialog state consists of the offered table and
the distribution of the items among the negotia-
tors:
Offered table: The offered table consists of all

possible tuples (Trading partner, Fruit re-
quested, Fruit offered in return). If another

35



Item Outcome
Speaker Utterance TR1 TR2 TR3 TR1 TR2 TR3

Dialog 1:
1: TR1 TR2, could you give me an orange? A: 0, O: 0, G: 3 A: 1, O: 1, G: 0 A: 0, O: 1, G: 2 0 -100 100

I’ll give you a grape. (Offer)
2: TR2 Okay. (Accept) A: 0, O: 1, G: 2 A: 1, O: 0, G: 1 A: 0, O: 1, G: 2 100 0 100

Dialog 2:
1: TR2 TR1, could you give me a grape? A: 0, O: 0, G: 3 A: 1, O: 1, G: 0 A: 0, O: 1, G: 2 0 -100 100

I’ll give you a apple. (Offer)
2: TR1 I want to keep my fruits. (Keep) A: 0, O: 0, G: 3 A: 1, O: 1, G: 0 A: 0, O: 1, G: 2 0 -100 100
3: TR3 TR2, could you give me an apple? A: 0, O: 0, G: 3 A: 1, O: 1, G: 0 A: 0, O: 1, G: 2 0 -100 100

I’ll give you a grape. (Offer)
4: TR2 Okay. (Accept) A: 0, O: 0, G: 3 A: 0, O: 1, G: 1 A: 1, O: 1, G: 1 0 100 500

Table 1: Examples of two trading dialogs among traders TR1, TR2, and TR3. In these examples, the
payoff matrix of TR1 is (apple: -100, orange: 100, grape: 0), that of TR2 is (apple: -100, orange: 0,
grape: 100), and that of TR3 is (apple: 0, orange: -100, grape: 100). Item and Outcome show the number
of items per fruit type of each trader and the points that each trader has accumulated after an action. A
stands for apple, O for orange, and G for grape.

agent makes an offer to the learner then the
learner’s offered table is updated. The dia-
log state is represented by binary variables
(or features). In Example 1, we can see a dia-
log state in a 2-party dialog, after the learner
receives an offer to give an orange and in re-
turn take an apple.

Number of items: The number of items for each
fruit type that each negotiator possesses.
Once a trade is performed, this part of the di-
alog state is updated in the dialog states of all
agents involved in this trade.

4.2 Trader Simulator

In order to train the learner we need trader sim-
ulators to generate a variety of trading episodes,
so that in the end the learner learns to follow ac-
tions that lead to high rewards and avoid actions
that lead to penalties. The trader simulator has the
same dialog state and actions as the learner. We
have as many trader simulators as traders that the
learner negotiates with. Thus in a 3-party nego-
tiation we have 2 trader simulators. The policy of
the trader simulator can be either hand-crafted, de-
signed to maximize the reward function given by
Equation (3); or random.

The hand-crafted policy is based on planning.
More concretely, this policy selects an action
based on the following steps:

1. Pre-compute all possible sets of items (called
“hands”, by analogy with card games, where

� �
Example 1: Status of the learner’s dialog
state’s features in a 2-party trading dialog
(learner vs. Agent 1). Agent 1 has just of-
fered the learner 1 apple for 1 of the learner’s
2 oranges (but the learner has not accepted
or rejected the offer yet). This is why the
(Agent 1, orange, apple) tuple has value 1.
Initially the learner has (O apples, 2 oranges,
1 grape) and Agent 1 has (1 apple, 0 oranges,
1 grape). Note that if we had more negotiators
e.g., Agent 2, the dialog state would include
features for offer tuples for Agent 2, and the
number of items that Agent 2 possessed.

Trading Item requested Item given Occurrence
partner by partner by partner binary value

to learner (used as feature)
Agent 1 apple orange 0

apple grape 0
orange apple 1
orange grape 0
grape apple 0
grape orange 0

Agent who Fruit type Number of fruits
possesses fruits (used as feature)

apple 0
learner orange 2

grape 1
apple 1

Agent 1 orange 0
grape 1� �

36



each item is represented by a card), given the
role of the trader (Rich, Middle, Poor) and
how many items there can be in the hand.

2. Compute the valuation of each of the hands,
according to the payoff matrix.

3. Based on the possible trades with the other
agents, compute a set of achievable hands,
and order them according to the valuations
defined in step 2. A hand is “achievable” if
there are enough of the right types of items in
the deal. For example, if the hand is 4 apples,
and there are only 3 apples in the deal, then
this hand is not achievable.

4. Remove all hands that have a lower valuation
than the current hand. The remaining set is
the set of achievable goals.

5. Calculate a set of plans for each achievable
goal. A plan is a sequence of trades (one
item in hand for one item out of hand) that
will lead to the goal. There are many possible
plans for each goal. For simplicity, we ignore
any plans that involve cycles, where the same
hand appears more than once.

6. Calculate the expected utility (outcome) of
each plan. Each plan will have a prob-
ability distribution of outcomes, based on
the probability that each trade is successful.
The outcome will be the hand that results
from the end state, or the state before the
trade that fails. For example, suppose the
simulator’s hand is (apple, apple, orange),
and the simulator’s plan is (apple→orange,
orange→grape). The three possible out-
comes are:

(apple, orange, grape) (i.e., if the plan suc-
ceeds) the probability is calculated as
P (t1) ∗ P (t2).

(apple, orange, orange) (i.e., if the first
trade succeeds and the second fails) the
probability is calculated as P (t1) ∗ (1−
P (t2)).

(apple, apple, orange) (i.e., if the first trade
fails) the probability is calculated as 1−
P (t1).

Therefore, the simulator can calculate the ex-
pected utility of each plan, by multiplying the
probability of each trade with the valuation of
each hand from step 2. We set the probability
of success of each trade to 0.5 (i.e., uninfor-
mative probability). This value of probability
represents the fact that the simulator does not

know a priori whether the trade will succeed
or not.

7. Select the plan which has the highest ex-
pected utility as the plan that the policy will
follow.

8. Select an action implementing the plan that
was chosen in the previous step, as follows:
if the plan is completed (i.e., the simulator
reached the goal), the policy will select Keep
as an action. If the plan is not completed and
there is a pending offer which will allow the
plan to move forward, the policy will select
Accept as an action. Otherwise, the policy
will select Offer as an action. The addressee
of the offer is randomly selected from the
traders holding the item which is required for
moving the plan forward.

In addition to the above hand-crafted trader sim-
ulator’s policy, we also use a random policy.

5 Evaluation

In this section, we evaluate the learner’s policies
learned with (1) different algorithms i.e., LinQ,
LSPI, and NFQ (see Section 2), (2) different re-
ward functions i.e., Equations 3 and 4 (see Sec-
tion 4.1), and (3) different numbers of traders.

The evaluation is performed in trading dialogs
with different numbers of participants (from 2
players to 4 players), and different trader simula-
tor’s policies (hand-crafted policy or random pol-
icy as presented in Section 4.2). More specifically,
there are 9 different setups:

H: 2-party dialog, where the trader simulator fol-
lows a hand-crafted policy.

R: 2-party dialog, where the trader simulator fol-
lows a random policy.

HxH: 3-party dialog, where both trader simula-
tors follow hand-crafted policies.

HxR: 3-party dialog, where one trader simulator
follows a hand-crafted policy and the other
one follows a random policy.

RxR: 3-party dialog, where both trader simula-
tors follow random policies.

HxHxH: 4-party dialog, where all three trader
simulators follow hand-crafted policies.

HxHxR: 4-party dialog, where two trader sim-
ulators follow hand-crafted policies and the
other one follows a random policy.

HxRxR: 4-party dialog, where one trader simu-
lator follows a hand-crafted policy and the
other ones follow random policies.

37



RxRxR: 4-party dialog, where all three trader
simulators follow random policies.

There are also 9 different learner policies:

AlwaysKeep: weak baseline which always passes
the turn.

Random: weak baseline which randomly selects
one action from all possible valid actions.

LinQ-End: learned policy using LinQ and re-
ward given at the end of the dialog.

LSPI-End: learned policy using LSPI and reward
given at the end of the dialog.

NFQ-End: learned policy using NFQ and reward
given at the end of the dialog.

LinQ-Incr: learned policy using LinQ and an in-
cremental reward.

LSPI-Incr: learned policy using LSPI and an in-
cremental reward.

NFQ-Incr: learned policy using NFQ and an in-
cremental reward.

Handcraft1: strong baseline following the hand-
crafted policy presented in Section 4.2.

Handcraft2: strong baseline similar to Hand-
craft1 except the plan is randomly selected
from the set of plans produced by step 6,
rather than picking only the highest utility
one (see Section 4.2).

We use the Pybrain library (Schaul et al., 2010)
for the RL algorithms LinQ, LSPI, and NFQ. The
learning parameters follow the default Pybrain set-
tings except for the discount factor γ; we set the
discount factor γ to 1. We consider 2000 dialogs
as one epoch, and learning is finished when the
number of epochs becomes 200 (400,000 dialogs).
The policy at the epoch where the average reward
reaches its highest value is used in the evaluation.

We evaluate the learner’s policy against trader
simulators. We calculate the average reward of the
learner’s policy in 20000 dialogs. Furthermore,
we show how fast the learned policies converge
as a function of the number of epochs in training.

In terms of comparing the average rewards of
policies (see Figure 1), NFQ-Incr achieves the best
performance in almost every situation. In 2-party
trading, the performance of NFQ-Incr is almost
the same as that of Handcraft2 which achieves
the best score, and better than the performance
of Handcraft1. In both 3-party and 4-party trad-
ing, the performance of NFQ-Incr is better than
that of the two strong baselines, and achieves the

best score. In contrast to NFQ-Incr, the perfor-
mance of the other learned policies is much worse
than that of the two strong baselines. As the
number of trader simulators who follow a ran-
dom policy increases, the difference in perfor-
mance between NFQ-Incr and the other learned
policies tends to also increase. One reason is that,
as the number of trader simulators who follow
a random policy increases, the variability of di-
alog flow also increases. Trader simulators that
follow a hand-crafted policy behave more strictly
than trader simulators that follow a random pol-
icy. For example, if the trader simulator following
a hand-crafted policy reaches its goal, then there
is nothing else to do except for Keep. In con-
trast, if a trader simulator following a random pol-
icy reaches its goal, there is still a chance that it
will accept an offer which will be beneficial to the
learner. As a result there are more chances for the
learner to gain better outcomes, when the com-
plexity of the dialog is higher. In summary, our
results show that combining NFQ with an incre-
mental reward produces the best results.

Moreover, the learning curve in 2-party trad-
ing (Figure 2 in the Appendix) indicates that, ba-
sically, only the NFQ-Incr achieves stable learn-
ing. NFQ-Incr reaches its best performance from
epoch 140 to epoch 190. On the other hand, LSPI
somehow converges fast, but its performance is
not so high. Moreover, LinQ converges in the first
epoch, but it performs the worst.

6 Conclusion

In this paper, we used RL to learn the dialog sys-
tem’s (learner’s) policy in a multi-party trading
scenario. We experimented with different RL al-
gorithms and reward functions. The negotiation
policies of the learner were learned and evalu-
ated through simulated dialog with trader simula-
tors. We presented results for different numbers of
traders. Our results showed that (1) even in simple
multi-party trading dialog tasks, learning an effec-
tive negotiation policy is a very hard problem; and
(2) the use of neural fitted Q iteration combined
with an incremental reward function produces as
effective or even better negotiation policies than
the policies of two strong hand-crafted baselines.

For future work we will expand the dialog
model to augment the dialog state with informa-
tion about the estimated payoff matrix of other
traders. This means expanding from an MDP-

38



Figure 1: Comparison of RL algorithms and types of reward functions. The upper figure corresponds
to 2-party dialog, the middle figure to 3-party dialog, and the lower figure to 4-party dialog. In these
figures, the performances of the policies are evaluated by using the reward function given by Equation 3.

based dialog model to a POMDP-based model.
We will also apply multi-agent RL (Georgila et al.,
2014) to multi-party trading dialog. Furthermore,
we will perform evaluation with human traders.
Finally, we will collect and analyze data from hu-
man trading dialogs in order to improve our mod-
els and make them more realistic.

Acknowledgments
This research was partially supported by the 2014 Global Ini-

tiatives Program, JSPS KAKENHI Grant Number 24240032,

and the Commissioned Research of the National Institute

of Information and Communications Technology (NICT),

Japan. This material was also based in part upon work sup-

ported by the National Science Foundation under Grant Num-

ber IIS-1450656, and the U.S. Army. Any opinions, findings,

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of the National Science Foundation or the United

States Government, and no official endorsement should be

inferred.

39



References
Nicholas Asher and Alex Lascarides. 2013. Strategic

conversation. Semantics and Pragmatics, 6:2:1–62.

Layla El Asri, Romain Laroche, and Olivier Pietquin.
2013. Reward shaping for statistical optimisation of
dialogue management. In Proc. of SLSP.

Ioannis Efstathiou and Oliver Lemon. 2014. Learn-
ing non-cooperative dialogue behaviours. In Proc.
of SIGDIAL.

Kallirroi Georgila and David Traum. 2011. Reinforce-
ment learning of argumentation dialogue policies in
negotiation. In Proc. of INTERSPEECH.

Kallirroi Georgila, Maria K. Wolters, and Johanna D.
Moore. 2010. Learning dialogue strategies from
older and younger simulated users. In Proc. of SIG-
DIAL.

Kallirroi Georgila, Claire Nelson, and David Traum.
2014. Single-agent vs. multi-agent techniques for
concurrent reinforcement learning of negotiation di-
alogue policies. In Proc. of ACL.

Kallirroi Georgila. 2013. Reinforcement learning of
two-issue negotiation dialogue policies. In Proc. of
SIGDIAL.

Markus Guhe and Alex Lascarides. 2012. Trading in
a multiplayer board game: Towards an analysis of
non-cooperative dialogue. In Proc. of CogSci.

Peter A. Heeman. 2009. Representing the reinforce-
ment learning state in a negotiation dialogue. In
Proc. of ASRU.

Takuya Hiraoka, Graham Neubig, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2014. Re-
inforcement learning of cooperative persuasive dia-
logue policies using framing. In Proc. of COLING.

Michail G. Lagoudakis and Ronald Parr. 2003. Least-
squares policy iteration. The Journal of Machine
Learning Research, 4:1107–1149.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
2000. A stochastic model of human-machine in-
teraction for learning dialog strategies. In Proc. of
ICASSP.

Yun Mayya, Lee Tae Kyung, and Ko Il Seok. 2011.
Negotiation and persuasion approach using rein-
forcement learning technique on broker’s board
agent system. In Proc. of IJACT.

Amy McGovern and Andrew G. Barto. 2001. Auto-
matic discovery of subgoals in reinforcement learn-
ing using diverse density. In Proc. of ICML.

Andew Y. Ng, Daishi Harada, and Stuart Russell.
1999. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In
Proc. of ICML.

Elnaz Nouri, Kallirroi Georgila, and David Traum.
2012. A cultural decision-making model for nego-
tiation based on inverse reinforcement learning. In
Proc. of CogSci.

Elnaz Nouri, Sunghyun Park, Stefan Scherer, Jonathan
Gratch, Peter Carnevale, Louis-Philippe Morency,
and David Traum. 2013. Prediction of strategy
and outcome as negotiation unfolds by using basic
verbal and behavioral features. In Proc. of INTER-
SPEECH.

Praveen Paruchuri, Nilanjan Chakraborty, Roie Zivan,
Katia Sycara, Miroslav Dudik, and Geoff Gordon.
2009. POMDP based negotiation modeling. In
Proc. of MICON.

Michael Pfeiffer. 2004. Reinforcement learning of
strategies for Settlers of Catan. In Proc. of the Inter-
national Conference on Computer Games: Artificial
Intelligence, Design and Education.

Martin Riedmiller. 2005. Neural fitted Q iteration
- first experiences with a data efficient neural rein-
forcement learning method. In Proc. of ECML.

Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Mar-
tin Felder, Frank Sehnke, Thomas Rückstieß, and
Jürgen Schmidhuber. 2010. Pybrain. The Journal
of Machine Learning Research, 11:743–746.

Richard S. Sutton and Andrew G. Barto. 1998. Rein-
forcement learning: An introduction. MIT Press.

David Traum. 2008. Extended abstract: Computa-
tional models of non-cooperative dialogue. In Proc.
of SEMDIAL-LONDIAL.

Marilyn A. Walker, Diane J. Litman, Candace A.
Kamm, and Alicia Abella. 1998. Evaluating spoken
dialogue agents with PARADISE: Two case studies.
Computer Speech and Language, 12(4):317–347.

Marilyn A. Walker. 2000. An application of reinforce-
ment learning to dialogue strategy selection in a spo-
ken dialogue system for email. Journal of Artificial
Intelligence Research, 12:387–416.

Jason D. Williams and Steve Young. 2007a. Partially
observable Markov decision processes for spoken
dialog systems. Computer Speech and Language,
21(2):393–422.

Jason D. Williams and Steve Young. 2007b. Scal-
ing POMDPs for spoken dialog management. IEEE
Trans. on Audio, Speech, and Language Processing,
15(7):2116–2129.

Yi Zou, Wenjie Zhan, and Yuan Shao. 2014. Evolution
with reinforcement learning in negotiation. PLoS
One, 9(7).

40



Figure 2: Number of epochs vs. performance of learned policies in 2-party trading. The upper figure
shows the performance when the reward is given by Equation 3. The lower figure shows the performance
when the reward is given by Equation 4.

41


