
Proceedings of the SIGDIAL 2015 Conference, pages 407–411,
Prague, Czech Republic, 2-4 September 2015. c©2015 Association for Computational Linguistics

Hyper-parameter Optimisation of Gaussian Process Reinforcement
Learning for Statistical Dialogue Management

Lu Chen1, Pei-Hao Su2 and Milica Gašić2∗
1Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Eng.

SpeechLab, Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai, China

2 Department of Engineering, University of Cambridge, Cambridge, UK
chenlusz@sjtu.edu.cn, phs26@cam.ac.uk, mg436@eng.cam.ac.uk

Abstract

Gaussian processes reinforcement learn-
ing provides an appealing framework for
training the dialogue policy as it takes
into account correlations of the objec-
tive function given different dialogue be-
lief states, which can significantly speed
up the learning. These correlations are
modelled by the kernel function which
may depend on hyper-parameters. So far,
for real-world dialogue systems the hyper-
parameters have been hand-tuned, relying
on the designer to adjust the correlations,
or simple non-parametrised kernel func-
tions have been used instead. Here, we ex-
amine different kernel structures and show
that it is possible to optimise the hyper-
parameters from data yielding improved
performance of the resulting dialogue pol-
icy. We confirm this in a real user trial.

1 Introduction

Spoken dialogue systems enable human-computer
interaction via speech. The dialogue management
component has two aims: to maintain the dialogue
state based on the current spoken language under-
standing input and the conversation history, and
choose a response according to its dialogue pol-
icy. To provide robustness to the input errors, a
number of statistical approaches are proposed to
track a distribution over all dialogue states at ev-
ery dialogue turn, called the belief state (Young et
al., 2013; Thomson and Young, 2010; Williams
et al., 2013; Henderson et al., 2014; Sun et al.,
2014). The system response is then based on the
belief state, rather than an inaccurate estimate of
the most likely dialogue state.

∗Lu Chen was supported by the NICaiA project (the EU
FP7 No. 247619). Pei-Hao Su is supported by Cambridge
Trust and the Ministry of Education, Taiwan.

The state-of-art statistical methods for policy
learning are based on reinforcement learning (RL)
(Young et al., 2013), which makes it possible
to learn from interaction with the users. How-
ever, most RL methods take too many dialogues
for policy training. In Gaussian process rein-
forcement learning (GPRL) the kernel function de-
fines prior correlations of the objective function
given different belief states, which can signifi-
cantly speeds up the policy optimisation (Gašić
and Young, 2014). Alternative methods include
Kalman temporal difference (KTD) reinforcement
learning (Pietquin et al., 2011). Typically, statis-
tical approaches to dialogue management rely on
the belief state space compression into a form of a
summary space, where the policy learning can be
tractably performed (Williams and Young, 2007;
Pinault et al., 2009; Thomson and Young, 2010;
Crook and Lemon, 2011). GPRL allows the learn-
ing to be performed directly on the full belief state.
However, only non-parametrised kernel functions
have been considered for this purpose (Gašić and
Young, 2014).

Here we address the important problem of how
to define the structure of the kernel function for
a real-world dialogue task and learn the hyper-
parameters from data for a policy that operates
on the full belief state. Using only a small-size
dataset for hyper-parameter optimisation, we show
that the policy with the optimised kernel function
outperforms both the policy with hand specified
kernel parameters and the one with a standard non-
parametrised kernel function. This is particularly
beneficial for policy training with real users.

This paper is organised as follows. In sec-
tion 2, we briefly review GP-Sarsa and the hyper-
parameter optimisation. Section 3 introduces the
kernel functions examined here. The experimental
results are shown in section 4, followed by conclu-
sions and future work directions in section 5.

407

2 GP-Sarsa and hyper-parameter
optimisation

The expected cumulative reward given belief state
b and action a is defined by the Q-function as:

Qπ(b, a) = Eπ

(
T∑

τ=t+1

γτ−t−1rτ |bt = b, at = a

)
,

where rτ is the immediate reward at τ -th dia-
logue turn, T is the number of dialogue turns and
γ ∈ [0, 1] is a discount factor. GP-Sarsa is an on-
line RL algorithm that models the Q-function as a
Gaussian process (Engel et al., 2005). It makes the
learning tractable by utilising the kernel span spar-
cification algorithm and constructing a set of rep-
resentative belief state and action called the dictio-
nary. The computational complexity of GP-Sarsa
is O(Tm2) where m is the size of the dictionary
and T is the number of turns of all interactions.

In the case of Gaussian process regression, the
kernel function parameters can be estimated by ev-
idence maximisation in such a way that they cap-
ture the correlations that occur in the data (Ras-
mussen and Williams, 2005). This approach has
been extended for the case of GP-Sarsa, however
its benefits have so far only been shown for a toy
dialogue problem (Gašić et al., 2010).

Using a data corpus of belief state-action pairs
and rewards, the hyper-parameters can be found
by minimising the negative log marginal likeli-
hood via a conjugate gradient method (Rasmussen
and Nickisch, 2010) to find the optimal hyper-
parameters. The computational complexity of the
gradient calculation is O(nT 3), where n is the
number of hyper-parameters and T is the total
number of dialogue turns in the corpus (see ap-
pendix A).

3 Kernel functions

In Gaussian process regression, the kernel func-
tion k(·, ·) must be positive definite (Rasmussen
and Williams, 2005). The kernel functions have
some interesting properties (Duvenaud et al.,
2013). If k1 and k2 are kernels,

• k1 + k2 is kernel. Adding two kernels can
be thought of as an OR-like operation, as the
resulting kernel will have high value if either
of the two base kernels have a high value.

• k1 · k2 is kernel. Multiplying two kernels can
be thought of as an AND-like operation, as

the function value is only expected to be sim-
ilar to some other function value if both ker-
nels have a high value.

3.1 Standard kernel functions
There are many valid kernel functions (Rasmussen
and Williams, 2005). The following three ones are
the basic kernels used in our experiments.
• Gaussian kernel: k(xi,xj) =

p2 exp(− ||xi−xj ||22
2l2

), where p and l are
the hyper-parameters. If the distance be-
tween xi and xj is more than the lengthscale
l, the outputs are uncorrelated. The output
variance p2 determines the average distance
of the function from its mean.

• Linear kernel: k(xi,xj) = ⟨xi,xj⟩
• δ-kernel: k(xi,xj) = δ(xi,xj), where the

function values are correlated if and only if
the inputs are the same.

3.2 Kernels for dialogue management
The kernel for two belief-action pairs is normally
decomposed as the product of separate kernels
over belief states and actions, kB(·, ·) and kA(·, ·).

The elements of the dialogue state are concepts
that occur in the dialogue and are described by the
underlying ontology. For instance, in a restaurant
information domain, these usually include goal-
food, goal-area, history-food, history-area and so
on. The belief tracker maintains a probability dis-
tribution for each of them. We first define kernel
function on each concept kBi(·, ·), then combine
them to form the kernel function for the whole be-
lief state kB(·, ·), as illustrated in Figure 1.

The Gaussian kernel and the linear kernel were
used as basic kernel functions for each concept in
the belief state. In the case of Gaussian kernels, if
they share the same hyper-parameters across dif-
ferent concepts, we refer to them as concept inde-
pendent, otherwise, they are called concept depen-
dent. While the linear kernel is used for problems
involving distributions (Jebara et al., 2004), Gaus-
sian kernel is a more natural choice here as the
Q-function for belief states is a non-linear smooth
function. Additionally, we investigated two inte-
gration methods: one is to sum up the kernels for
all concepts, the sum kernel; another is to multiply
kernels for all concepts, the product kernel.

The action kernel is defined on summary actions
and given that the total number of summary ac-
tions is usually small, e.g. 20, the δ-kernel is cho-
sen as the action kernel.

408

Figure 1: Kernel structure for belief state

4 Experiments and results

The training data for hyper-parameter optimisa-
tion was generated using an agenda-based user
simulator (Schatzmann et al., 2007). The dialogue
policy training and evaluation is performed both
on the user simulator and human users. The sys-
tem operates on the TopTable dialogue domain
which consists of about 150 restaurants in Cam-
bridge, UK (TopTable, 2012). Each restaurant
has 9 slots, e.g. food, area, phone, address and
so on. The state decomposes into 21 concepts.
Each concept takes from 4 to 150 values. Each
value is given a belief in [0, 1] by the BUDS state
tracker (Thomson and Young, 2010). The sum-
mary action space consists of 20 summary actions.

4.1 Experimental procedure
The hyper-parameter are optimised as follows.

1. Training data generation: We used a ran-
dom policy to generate simulated dialogues
out of which a small number of successful di-
alogues were used as training data.1

2. Interval estimation: We estimated appropri-
ate intervals for concept independent hyper-
parameters according to the properties of
Gaussian kernel as described in section 3.1.
In our experiments, we only restricted the
range of lengthscale l. For the sum Gaussian
kernel, the belief state for each concept is a
probability distribution, so the lengthscale l
is in interval (0,

√
2]. For product Gaussian

kernel, the product of Gaussian kernels is still
a Gaussian kernel, therefore the lengthscale
l should be less than the maximum distance
between two whole belief states (5.29 in the
TopTable domain).

1We used 73 dialogues for concept independent and 147
dialogues for concept dependent hyper-parameter optimisa-
tion, with respectively 505 and 1004 dialogue turns. We
found that the smaller data set was not sufficient to capture
correlations for the concept dependent kernels.

Name Kernel Learnt Combine Concept dep.
GHSI Gaussian N Sum N
GLSI Gaussian Y Sum N
GLSD Gaussian Y Sum Y

LS Linear / Sum /
GHPI Gaussian N Prod N
GLPI Gaussian Y Prod N
GLPD Gaussian Y Prod Y

LP Linear / Prod /

Table 1: Summary of kernels

3. Concept independent hyper-parameter
optimisation: We sampled initial concept
independent hyper-parameters from the
estimated intervals and then minimised the
negative log likelihood to find the concept
independent optimised hyper-parameters.
We repeated this N times, and the hyper-
parameters with the overall smallest negative
log likelihood was chosen as the final
concept independent hyper-parameters.

4. Concept dependent hyper-parameter opti-
misation: We initialised them as concept in-
dependent hyper-parameters, then minimised
the negative log likelihood to get the concept
dependent optimised hyper-parameters.

After the hyper-parameters are obtained, we
trained and evaluated the policies with these op-
timised kernels. For comparison, the policies with
hand-tuned Gaussian kernel hyper-parameters and
linear kernel were also trained and evaluated.

4.2 The results on the user simulator

During training, intermediate policies were
recorded at every 1000 dialogues. Each policy was
then evaluated using 1000 dialogues when testing.
The reward was calculated as 20 for a successful
dialogue, deducted for the number of turns.

We compared four different sum and product
kernels (Table 1) and the results are given in Fig-
ure 2. The results in Figure 2(a) show that the poli-
cies with optimised sum Gaussian kernels perform
significantly better than the policy using hand-
tuned hyper-parameters (GHSI) and the linear ker-
nel (LS). Also, in the later learning stages, the
policy with concept dependent kernel (GLSD) ap-
pears to have reached a better performance than
the one with concept independent kernel (GLSI).

The policies using the product kernels follow
similar trends, except that the concept dependent
product kernel (GLPD) performs significantly bet-

409

(a) Sum kernels.

(b) Product kernels.

Figure 2: Comparison of policies with two ker-
nels. Vertical bars denote standard errors. The
average success rates for GHSI and GHPI are re-
spectively 91.8% and 92.9% at the end of training.

ter than other kernels at the initial stages of train-
ing (Figure 2(b)).2 The best performing product
(GLPD) and sum (GLSD) kernel converge to sim-
ilar performance, with the product kernel perform-
ing better in the early stages of training, at the ex-
pense of a larger dictionary.

4.3 Human experiments
In order to further evaluate the effect of the opti-
mised kernels, policies were trained using crowd-
sourcing via the Amazon Mechanical Turk service
in a set-up similar to (Jurčı́ček et al., 2011; Su et
al., 2015). At the end of each dialogue, a recur-
rent neural network (RNN) model was used to pre-
dict the dialogue success used as the reinforcement
feedback (Su et al., 2015).

The GLSD kernel and the GLPD kernel were
selected for on-line policy training and compared
to the LS kernel. Figure 3 shows the learning curve
of the reward during training, demonstrating the
advantage of Gaussian kernels over the simple lin-
ear kernel.

2The result of the product linear kernel (LP) is not re-
ported due to poor performance. In the TopTable domain two
belief states for history concepts are typically very different,
so the linear kernel for these concepts is often close to 0. This
results in a very small overall kernel value that leads to slow
convergence.

To confirm this result, all optimised policies
were evaluated after 500 training dialogues. The
results are given in Table 2. It can be seen that
the policies with optimised kernels, especially the
GLPD kernel, perform much better than the policy
with linear kernel. 3

0 100 200 300 400 500
Dialogues

15

10

5

0

5

10

M
ov

in
g

av
er

ag
e

re
w

ar
d

GLPD
GLSD
LS

Figure 3: Learning curve of reward during on-line
policy optimisation. For both plots, the moving
average was calculated using a window of 100 di-
alogues. Yellow lines are standard errors.

Kernel #Diags Reward Success(%)
LS 347 8.46 ± 0.57 77.2 ± 2.3

GLSD 336 9.56 ± 0.56 79.5 ± 2.2
GLPD 423 10.52 ± 0.47 82.3 ± 1.9

Table 2: Evaluation of policies with three kernels.

5 Conclusions and Future work

This paper has investigated the problem of ker-
nel structure and hyper-parameter optimisation of
Gaussian process reinforcement learning for sta-
tistical dialogue management. We have demon-
strated that the optimised kernels yield signifi-
cant improvements in the policy performance both
when training with a simulated user and real users.

The work in this paper has focused on optimis-
ing the kernel function for the belief state space
off-line. The future work will consider joint op-
timisation of the hyper-parameters and the policy.
This will rely on finding a less computationally ex-
pensive method for hyper-parameter optimisation,
also allowing more complex actions kernels to be
investigated.

3In (Gašić and Young, 2014), summary space-based poli-
cies were outperforming full-space policies because the sum-
mary space kernels could be regarded carefully hand-coded
kernels on full-belief space and full-space kernels were not
optimised.

410

References
Paul A Crook and Oliver Lemon. 2011. Lossless value

directed compression of complex user goal states
for statistical spoken dialogue systems. In INTER-
SPEECH, pages 1029–1032.

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, and Zoubin Ghahramani.
2013. Structure discovery in nonparametric regres-
sion through compositional kernel search. In Pro-
ceedings of the 30th International Conference on
Machine Learning, pages 1166–1174.

Y Engel, S Mannor, and R Meir. 2005. Reinforcement
learning with Gaussian processes. In ICML ’05:
Proceedings of the 22nd international conference on
Machine learning, pages 201–208, New York, NY.

Milica Gašić and Steve Young. 2014. Gaussian pro-
cesses for pomdp-based dialogue manager optimiza-
tion. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 22(1):28–40.

M Gašić, F Jurčı́ček, S Keizer, F Mairesse, J Schatz-
mann, B Thomson, K Yu, and S Young. 2010.
Gaussian processes for fast policy optimisation of
pomdp-based dialogue managers. In Proceedings of
SIGDIAL.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014. Word-based dialog state tracking
with recurrent neural networks. In Proceedings of
15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue.

T Jebara, R Kondor, and A Howard. 2004. Probability
product kernels. J. Mach. Learn. Res., 5:819–844,
December.

Filip Jurčı́ček, Simon Keizer, Milica Gašić, Franois
Mairesse, Blaise Thomson, Kai Yu, and Steve
Young. 2011. Real user evaluation of spoken di-
alogue systems using amazon mechanical turk. In
Proceedings of Interspeech, pages 3061–3064.

Olivier Pietquin, Matthieu Geist, and Senthilkumar
Chandramohan. 2011. Sample Efficient On-line
Learning of Optimal Dialogue Policies with Kalman
Temporal Differences. In IJCAI 2011, pages 1878–
1883, Barcelona, Spain, July.

Florian Pinault, Fabrice Lefèvre, and Renato de Mori.
2009. Feature-based summary space for stochas-
tic dialogue modeling with hierarchical semantic
frames. In INTERSPEECH.

Carl Edward Rasmussen and Hannes Nickisch. 2010.
Gaussian processes for machine learning (gpml)
toolbox. The Journal of Machine Learning Re-
search, 11:3011–3015.

Carl Edward Rasmussen and Christopher K. I.
Williams. 2005. Gaussian processes for machine
learning. MIT Press.

J Schatzmann, B Thomson, K Weilhammer, H Ye, and
SJ Young. 2007. Agenda-Based User Simulation

for Bootstrapping a POMDP Dialogue System. In
HLT/NAACL, Rochester, NY.

Pei-Hao Su, David Vandyke, Milica Gašić, Dongho
Kim, Nikola Mrksic, Tsung-Hsien Wen, and Steve
Young. 2015. Learning from real users: Rating di-
alogue success with neural networks for reinforce-
ment learning in spoken dialogue systems. Submit-
ted to Interspeech.

Kai Sun, Lu Chen, Su Zhu, and Kai Yu. 2014. A gener-
alized rule based tracker for dialogue state tracking.
In Proceedings of IEEE Spoken Language Technol-
ogy Workshop (SLT).

Blaise Thomson and Steve Young. 2010. Bayesian
update of dialogue state: A pomdp framework for
spoken dialogue systems. Computer Speech & Lan-
guage, 24(4):562–588.

TopTable. 2012. Toptable. https://www.
toptable.com.

JD Williams and SJ Young. 2007. Scaling POMDPs
for Spoken Dialog Management. IEEE Transac-
tions on Audio, Speech, and Language Processing,
15(7):2116–2129.

Jason Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan Black. 2013. The dialog state track-
ing challenge. In Proceedings of the SIGDIAL Con-
ference, pages 404–413.

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160–1179.

A Marginal log likelihood for GPRL

Algorithm 1 Log likelihood and gradient

Require:
rewards r, belief state-action pairs B, Gram
matrix: K(θθθ), ∂

∂θj
(K(θθθ) + σ2I), Θ = {θθθ, σ},

∀i,H[i, i] = 1,H[i, i + 1] = −γ,H[i, j] =
0, j ̸= i, j ̸= i + 1

1: Find ααα so that LLTααα = r
2: L(Θ) = 1

2r
Tααα +

∑T
i=1 Lii + T

2 log 2π
3: Find W so that LLTW = I
4: For j = 0 to dim(Θ) − 1 do

Dj =
∂

∂θj
(K(θθθ) + σ2I)

∂

∂θj
L = −1

2
tr((ααααααT −W)HDjHT)

5: end for
6: return L(Θ), ∂

∂θj
L(Θ)

411

