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Abstract

Real-world scenes typically have complex
structure, and utterances about them con-
sequently do as well. We devise and
evaluate a model that processes descrip-
tions of complex configurations of geo-
metric shapes and can identify the de-
scribed scenes among a set of candidates,
including similar distractors. The model
works with raw images of scenes, and
by design can work word-by-word in-
crementally. Hence, it can be used in
highly-responsive interactive and situated
settings. Using a corpus of descriptions
from game-play between human subjects
(who found this to be a challenging task),
we show that reconstruction of description
structure in our system contributes to task
success and supports the performance of
the word-based model of grounded seman-
tics that we use.

1 Introduction

In this paper, we present and evaluate a language
processing pipeline that enables an automated sys-
tem to detect and understand complex referen-
tial language about visual objects depicted on a
screen. This is an important practical capability
for present and future interactive spoken dialogue
systems. There is a trend toward increasing de-
ployment of spoken dialogue systems for smart-
phones, tablets, automobiles, TVs, and other set-
tings where information and options are presented
on-screen along with an interactive speech chan-
nel in which visual items can be discussed (Ce-
likyilmaz et al., 2014). Similarly, for future sys-
tems such as smartphones, quadcopters, or self-
driving cars that are equipped with cameras, users

* The work was done while at Bielefeld University.

may wish to discuss objects visible to the system
in camera images or video streams.

A challenge in enabling such capabilities for a
broad range of applications is that human speakers
draw on a diverse set of perceptual and language
skills to communicate about objects in situated vi-
sual contexts. Consider the example in Figure 1,
drawn from the corpus of RDG-Pento games (dis-
cussed further in Section 2). In this example, a hu-
man in the director role describes the visual scene
highlighted in red (the target image) to another hu-
man in the matcher role. The scene description is
provided in one continuous stream of speech, but
it includes three functional segments each provid-
ing different referential information: [this one is
kind of a uh a blue T] [and a wooden w sort of ]
[the T is kind of malformed]. The first and third
of these three segments refer to the object at the
top left of the target image, while the middle seg-
ment refers to the object at bottom right. An ability
to detect the individual segments of language that
carry information about individual referents is an
important part of deciphering a scene description
like this. Beyond detection, actually understand-
ing these referential segments in context seems
to require perceptual knowledge of vocabulary for
colors, shapes, materials and hedged descriptions
like kind of a blue T. In other game scenarios, it’s
important to understand plural references like two
brown crosses and relational expressions like this
one has the L on top of the T.

A variety of vocabulary knowledge is needed, as
different speakers may describe individual objects
in very different ways (the object described as kind
of a blue T may also be called a blue odd-shaped
piece or a facebook). When many scenes are de-
scribed by the same pair of speakers, the pair tends
to entrain or align to each other’s vocabulary (Gar-
rod and Anderson, 1987), for example by settling
on facebook as a shorthand description for this ob-
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ject type. Finally, to understand a full scene de-
scription, the matcher needs to combine all the ev-
idence from multiple referential segments involv-
ing a group of objects to identify the target image.

In this paper, we define and evaluate a language
processing pipeline that allows many of these per-
ceptual and language skills to be integrated into
an automated system for understanding complex
scene descriptions. We take the challenging visual
reference game RDG-Pento, shown in Figure 1, as
our testbed, and we evaluate both human-human
and automated system performance in a corpus
study. No prior work we are aware of has put
forth techniques for grounded understanding of
the kinds of noisy, complex, spoken descriptions
of visual scenes that can occur in such interactive
dialogue settings. This work describes and evalu-
ates an initial approach to this complex problem,
and it demonstrates the critical importance of seg-
mentation and entrainment to achieving strong un-
derstanding performance. This approach extends
the prior work (Kennington and Schlangen, 2015;
Han et al., 2015) that assumed either that referen-
tial language from users has been pre-segmented,
or that visual scenes are given not as raw images
but as clean semantic representations, or that vi-
sual scenes are simple enough to be described with
a one-off referring expression or caption. Our
work makes none of these assumptions.

Our automated pipeline, discussed in Section 3,
includes components for learning perceptually
grounded word meanings, segmenting a stream
of speech, identifying the type of referential lan-
guage in each speech segment, resolving the ref-
erences in each type of segment, and aggregating
evidence across segments to select the most likely
target image. Our technical approach enables all
of these components to be trained in a supervised
manner from annotated, in-domain, human-human
reference data. Our quantitative evaluation, pre-
sented in Section 4, looks at the performance of
the individual components as well as the over-
all pipeline, and quantifies the strong importance
of segmentation, segment type identification, and
speaker-specific vocabulary entrainment for im-
proving performance in this task.

2 The RDG-Pento Game

The RDG-Pento (Rapid Dialogue Game-
Pentomino) game is a two player collaborative
game. RDG-Pento is a variant of the RDG-Image

Director: this one is kind of a uh a blue T and a
wooden w sort of the T is kind of mal-
formed

Matcher: okay got it

Figure 1: In the game, the director is describing
the image highlighted in red (the target image) to
the matcher, who tries to identify this image from
among the 8 possible images. The figure shows
the game interface as seen by the director includ-
ing a transcript of the director’s speech.

game described by Manuvinakurike and DeVault
(2015). As in RDG-Image, both players see 8
images on their screen in a 2X4 grid as shown
in Figure 1. One person is assigned the role of
director and the other person that of matcher.
The director’s screen has a single target image
(TI) highlighted with a red border. The goal of
the director is to uniquely describe the TI for the
matcher to identify among the distractor images.
The 8 images are shown in a different order on
the director and matcher screens, so that the
TI cannot be identified by grid position. The
players can speak freely until the matcher makes a
selection. Once the matcher indicates a selection,
the director can advance the game. Over time, the
gameplay gets progressively more challenging as
the images tend to contain more objects that are
similar in shape and color. The task is complex by
design.

In RDG-Pento, the individual images are taken
from a real-world, tabletop scene containing an ar-
rangement of between one and six physical Pen-
tomino objects. Individual images with varying
numbers of objects are illustrated in Figure 2. The
8 images at any one time always contain the same
number of objects; the number of objects increases
as the game progresses. Players play for 5 rounds,
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Figure 2: Example scene descriptions for three TIs

alternating roles. Each round has a time limit
(about 200 seconds) that creates time pressure for
the players, and the time remaining ticks down in
a countdown timer.

Data Set The corpus used here was col-
lected using a web framework for crowd-
sourced data collection called Pair Me Up (PMU)
(Manuvinakurike and DeVault, 2015). To create
this corpus, 42 pairs of native English-speakers lo-
cated in the U.S. and Canada were recruited us-
ing AMT. Game play and audio data were cap-
tured for each pair of speakers (who were not colo-
cated and communicated entirely through their
web browsers), and the resulting audio data was
transcribed and annotated. 16 pairs completed
all 5 game rounds, while the remaining crowd-
sourced pairs completed only part of the game for
various reasons. As our focus is on understanding
individual scene descriptions, our data set here in-
cludes data from the 16 complete games as well as
partial games. A more complete description and
analysis of the corpus can be found in Zarrieß et
al. (2016).

Data Annotation We annotated the transcribed
director and matcher speech through a process of
segmentation, segment type labeling, and referent
identification. The segment types are shown in
Table 1, and example annotations are provided in
Figure 2. The annotation is carried out on each tar-

Segment type Label Examples
Singular SIN this is a green t, plus sign
Multiple objects MUL two Zs at top, they’re all green
Relation REL above, in a diagonal
Others OT that was tough, lets start

Table 1: Segment types, labels, and examples

get image subdialogue in which the director and
matcher discuss an individual target image. The
segmentation and labeling steps create a complete
partition of each speaker’s speech into sequences
of words with a related semantic function in our
framework.1

Sequences of words that ascribe properties to a
single object are joined under the SIN label. Our
SIN segment type is not a simple syntactic concept
like “singular NP referring expression”. The SIN
type includes not only simple singular NPs like the
blue s but also clauses like it’s the blue s and con-
joined clauses like it’s like a harry potter and it’s
like maroon (Figure 1). The individuation crite-
rion for SIN is that a SIN segment must ascribe
properties only to a single object; as such it may
contain word sequences of various syntactic types.

Sequences of words such as the two crosses that
ascribe properties to multiple objects are joined
into a segment under the MUL label.

Sequences of words that describe a geometric
relation between objects are segmented and given
a REL label. These are generally prepositional ex-
pressions, and include both single-word preposi-
tions (underneath, below) and multi-word com-
plex prepositions (Quirk et al., 1985) which in-
clude multiple orthographic words (“next to”, “left
of” etc.). The REL segments generally describe
geometric relations between objects referred to in
SIN and MUL segments. An example would be
[MUL two crosses] [REL above] [MUL two Ts].

All other word sequences are assigned the type
Others and given an OT label. This segment type
includes acknowledgments, confirmations, feed-
back, and laughter, among other dialogue act types
not addressed in this work.

For each segment of type SIN, MUL, or REL,
the correct referent object or objects within the tar-
get image are also annotated.

In the data set, there are a total of 4132 target

1The annotation scheme was developed iteratively while
keeping the reference resolution task and the WAC model
(see Section 3.3.1) in mind. The annotation was done by an
expert annotator.
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image speaker transcripts in which either the di-
rector or the matcher’s transcribed speech for a
target image is annotated. There are 8030 anno-
tated segments (5451 director segments and 2579
matcher segments). There are 1372 word types
and 55,238 word tokens.

3 Language Processing Pipeline

In this section, we present our language process-
ing pipeline for segmentation and understanding
of complex scene descriptions. The modules,
decision-making, and information flow for the
pipeline are visualized in Figure 3. The pipeline
modules include a Segmenter (Section 3.1), a Seg-
ment Type Classifier (Section 3.2), and a Refer-
ence Resolver (Section 3.3).

In this paper, we focus on how our pipeline
could be used to automate the role of the matcher
in the RDG-Pento game. We consider the task of
selecting the correct target image based on a hu-
man director’s transcribed speech drawn from our
RDG-Pento corpus. The pipeline is designed how-
ever for eventual real-time operation using incre-
mental ASR results, so that in the future it can be
incorporated into a real-time interactive dialogue
system. We view it as a crucial design constraint
on our pipeline modules that the resolution pro-
cess must take place incrementally; i.e., process-
ing must not be deferred until the end of the user’s
speech. This is because humans resolve (i.e., com-
prehend) speech as it unfolds (Tanenhaus, 1995;
Spivey et al., 2002), and incremental processing
(i.e., processing word by word) is important to de-
veloping an efficient and natural speech channel
for interactive systems (Skantze and Schlangen,
2009; Paetzel et al., 2015; DeVault et al., 2009;
Aist et al., 2007). In the current study, we have
therefore provided the human director’s correctly
transcribed speech as input to our pipeline on a
word-by-word basis, as visualized in Figure 3.

3.1 Segmenter

The segmenter module is tasked with identifying
the boundary points between segments. In our
pipeline, this task is performed independently of
the determination of segment types, which is han-
dled by a separate classifier (Section 3.2).

Our approach to segmentation is similar to Ce-
likyilmaz et al. (2014) which used CRFs for a
similar task. Our pipeline currently uses linear-
chain CRFs to find the segment boundaries (im-

plemented with Mallet (McCallum, 2002)). Using
a CRF trained on the annotated RDG-Pento data
set, we identify the most likely sequence of word-
level boundary tags, where each tag indicates if the
current word ends the previous segment or not.2

An example segmentation is shown in Figure 3,
where the word sequence weird L to the top left
of is segmented into two segments, [weird L] and
[to the top left of]. The features provided to the
CRF include unigrams3, the speaker’s role, part-
of-speech (POS) tags obtained using the Stanford
POS tagger (Toutanova et al., 2003), and informa-
tion about the scene such as the number of objects.

3.2 Segment Type Classifier

The segment type classifier assigns each detected
segment with one of the type labels in Table 1
(SIN, MUL, REL, OT). This label informs the
Reference Resolver module in how to proceed
with the resolution process, as explained below.

The segment type labeler is an SVM classifier
implemented in LIBSVM (Chang and Lin, 2011).
Features used include word unigrams, word POS,
user role, number of objects in the TI, and the
top-level syntactic category of the segment as ob-
tained from the Stanford parser (Klein and Man-
ning, 2003). Figure 3 shows two examples of out-
put from the segment type classifier, which assigns
SIN to [weird L] and REL to [to the top left of].

3.3 Reference Resolver

We introduce some notation to help explain the
operation of the reference resolver (RR) module.
When a scene description is to be resolved, there is
a visual context in the game which we encode as a
context set C = I1, ..., I8 containing the eight visi-
ble images (see Figure 1). Each image Ik contains
n objects {ok

1, . . . , o
k
n}, where n is fixed per con-

text set, but varies across context sets from n = 1
to n = 6. The set of all objects in all images is
O = {ok

l }, with 0 < k ≤ 8, 0 < l ≤ n.
When the RR is invoked, the director has

spoken some sequence of words which has
been segmented by earlier modules into one
or more segments Sj = w1:mj , and where
each segment has been assigned a segment type
type(Sj) ∈ {SIN, MUL,REL,OT}. For exam-

2We currently adopt this two-tag approach rather than
BIO tagging as our tag-set provides a complete partition of
each speaker’s speech.

3Words of low frequency (i.e., <5) are replaced with a
fixed symbol.
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Figure 3: Information flow during processing of an utterance. The modules operate incrementally, word-
by-word; as shown here, this can lead to revisions of decisions.

ple, S1 = ⟨weird, L⟩, S2 = ⟨to, the, top, left, of⟩
and type(S1) = SIN, type(S2) = REL.

The RR then tries to understand the individual
words, typed segments, and the full scene descrip-
tion in terms of the visible objects ok

l and the im-
ages Ik in the context set. We describe how words,
segments, and scene descriptions are understood
in the following three sections.

3.3.1 Understanding words
We understand individual words using the Words-
as-Classifiers (WAC) model of Kennington and
Schlangen (2015). In this model, a classifier is
trained for each word wp in the vocabulary. The
model constructs a function from the perceptual
features of a given object to a judgment about how
well those features “fit” together with the word be-
ing understood. Such a function can be learned
using a logistic regression classifier, separately for
each word.

The inputs to the classifier are the low-level con-
tinuous features that represent the object (RGB
values, HSV values, number of detected edges,
x/y coordinates and radial distance from the cen-
ter) extracted using OpenCV.4 These classifiers are
learned from instances of language use, i.e., by ob-
serving referring expressions paired with the ob-

4http://opencv.org

ject referred to. Crucially, once learned, these
word classifiers can be applied to any number of
objects in a scene.

We trained a WAC model for each of the (non-
relational) words in our RDG-Pento corpus, using
the annotated correct referent information for our
segmented data. After training, words can be ap-
plied to objects to yield a score:

score(wp, o
k
l ) = wp(ok

l ) (1)

(Technically, the score is the response of the clas-
sifier associated with word wp applied to the fea-
ture representation of object ok

l .)
Note that relational expressions are trained

slightly differently than non-relational words. Ex-
amples of relational expressions include under-
neath, below, next to, left of, right of, above, and
diagonal. A WAC classifier is trained for each full
relational expression eq (treated as a single token),
and the ‘fit’ for a relational expression’s classifier
is a fit for a pair of objects: (The features used for
such a classifier are comparative features, such as
the euclidean distance between the two objects, as
well as x and y distances.)

scorerel(eq, o
k
l1 , o

k
l2) = eq(ok

l1 , o
k
l2) (2)

There are about 300 of these expressions in RDG-
Pento. [SIN x] [REL r] [SIN y] is resolved as
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r(x,y), so x and y are jointly constrained. See Ken-
nington and Schlangen (2015) for details on this
training.

3.3.2 Understanding segments
Consider an arbitrary segment Sj = w1:mj such
as S1 = ⟨weird, L⟩. For a segment (SIN or MUL),
we attempt to understand the segment as referring
to some object or set of objects. To do so, we com-
bine the word-level scores for all the words in the
segment to yield a segment-level score5 for each
object ok

l :

score(Sj , o
k
l ) = score(w1, o

k
l ) ⊙ . . . ⊙

score(wmj , o
k
l )

(3)

Each segment Sj = w1:mj hence induces an or-
der Rj on the object set O, through the scores as-
signed to each object ok

l . With these ranked scores,
we look at the type of segment to compute a final
score score∗k(Sj) for each image Ik. For SIN seg-
ments, score∗k(Sj) is the score of the top-scoring
object in Ik. For MUL segments with a cardinal-
ity of two (e.g., two red crosses), score∗k(Sj) is the
sum of the scores of the top two objects in Ik, and
so on.

Obtaining the final score score∗k(Sj) for REL
segments is done in a similar manner with some
minor differences. Because REL segments ex-
press a relation between pairs of objects (referred
to in neighboring segments), a score for the rela-
tional expression in Sj can be computed for any
pair of distinct objects ok

l1
and ok

l2
in image Ik us-

ing Eq. (2). We let score∗k(Sj) equal the score
computed for the top-scoring objects ok

l1
and ok

l2
of the neighboring segments.

3.3.3 Understanding scene descriptions
In general, a scene description consists of seg-
ments S1, ..., Sz . Composition takes segments
S1, ..., Sz and produces a ranking over images.
For this particular task, we make the following as-
sumption: in each segment, the speaker is attempt-
ing to refer to a specific object (or set of objects),
which from our perspective as matcher could be
in any of the images. A good candidate Ik for
the target image will have high scoring objects, all
drawn from the same image, for all the segments
S1, ..., Sz .

We therefore obtain a final score for each image
as shown in Eq. (4):

5The composition operator⊙ is left-associative and hence
incremental. In this paper, word-level scores are composed
by multiplying them.

Label Precision Recall F-Score
SEG 0.85 0.74 0.79
NOSEG 0.93 0.97 0.95

Table 2: Segmenter performance

Label Precision Recall F-score % of segments
SIN 0.91 0.96 0.93 57
REL 0.97 0.85 0.91 6
MUL 0.86 0.60 0.71 3
OT 0.96 0.97 0.96 34

Table 3: Segment type classifier performance

score(Ik) =
z∑

j=1

score∗k(Sj) (4)

The image I∗k selected by our pipeline for a full
scene description is then given by:

I∗k = argmax
k

score(Ik) (5)

4 Experiments & Evaluations

We first evaluate the segmenter and segment type
classifier as individual modules. We then evalu-
ate the entire processing pipeline and explore the
impact of several factors on pipeline performance.

4.1 Segmenter Evaluation
Task & Data We used the annotated RDG-
Pento data to perform a “hold-one-dialogue-pair-
out” cross-validation of the segmenter. The task is
to segment each speaker’s speech for each target
image by tagging each word using the tags SEG
and NOSEG. The SEG tag here indicates the last
word in the current segment. Figure 3 gives an
example of the tagging.

Results The results are presented in Table 2.
These results show that the segmenter is working
with some success, with precision 0.85 and recall
0.74 for the SEG tag indicating a word bound-
ary. Note that occasional errors in segment bound-
aries may not be overly problematic for the overall
pipeline, as what we ultimately care most about is
accurate target image selection. We evaluate the
overall pipeline below (Section 4.3).

4.2 Segment Type Classifier Evaluation
Task & Data We used the annotated RDG-
Pento data to perform a hold-one-pair-out cross-
validation of the segment type classifier, training a
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SVM classifier to predict labels SIN, MUL, REL,
and OT using the features described in Section 3.2.

Results The results are given in Table 3. We also
report the percentage of segments that have each
label in the corpus. The segment type classifier
performs well on most of the class labels. Of slight
concern is the low-frequency MUL label. One fac-
tor here is that people use number words like two
not just to refer to multiple objects, but also to de-
scribe individual objects, e.g., the two red crosses
(a MUL segment) vs. the one with two sides (a
SIN segment).

4.3 Pipeline Evaluation

We evaluated our pipeline under varied conditions
to understand how well it works when segmenta-
tion is not performed at all, when the segmentation
and type classifier modules produce perfect output
(using oracle annotations), and when entrainment
to a specific speaker is possible. We evaluate our
pipeline on the accuracy of the task of image re-
trieval given a scene description from our data set.

4.3.1 Three baselines
We compare against a weak random baseline (1/8
= 0.125) as well as a rather strong one, namely the
accuracies of the human-human pairs in the RDG-
Pento corpus. As Table 4 shows, in the simplest
case, with only one object per image, the average
human success rate is 85%, but this decreases to
60% when there are four objects/image. It then in-
creases to 68% when 6 objects are present, possi-
bly due to the use of a more structured description
ordering in the six object scenes. We leave further
analysis of the human strategies for future work.
These numbers show that the game is challenging
for humans.

We also include in Table 4 a simple Naive Bayes
classification approach as an alternative to our en-
tire pipeline. In our study, there were only 40 pos-
sible image sets that were fixed in advance. For
each possible image set, a different Naive Bayes
classifier is trained using Weka (Hall et al., 2009)
in a hold-one-pair-out cross-validation. The eight
images are treated as atomic classes to be pre-
dicted, and unigram features drawn from the union
of all (unsegmented) director speech are used to
predict the target image. This method is broadly
comparable to the NLU model used in (Paetzel et
al., 2015) to achieve high performance in resolv-
ing references to pictures of single objects. As can

be seen, the accuracy for this method is as high
as 43% for single object TIs in the RDG-Pento
data set, but the accuracy rapidly falls to near the
random baseline as the number of objects/image
increases. This weak performance for a classifier
without segmentation confirms the importance of
segmenting complex descriptions into references
to individual objects in the RDG-Pento game.

4.3.2 Five versions of the pipeline
Table 4 includes results for 5 versions of our
pipeline. The versions differ in terms of which
segment boundaries and segment type labels are
used, and in the type of cross-validation per-
formed. A first version (I) explores how well the
pipeline works if unsegmented scene descriptions
are provided and a SIN label is assumed to cover
the entire scene description. This model is broadly
comparable to the Naive Bayes baseline, but sub-
stitutes a WAC-based NLU component. The
evaluation of version (I) uses a hold-one-pair-out
(HOPO) cross-validation, where all modules are
trained on every pair except for the one being used
for testing. A second version (II) uses automati-
cally determined segment boundaries and segment
type labels, in a HOPO cross-validation, and rep-
resents our pipeline as described in Section 3. A
third version (III) substitutes in human-annotated
or “oracle” segment boundaries and type labels,
allowing us to observe the performance loss asso-
ciated with imperfect segmentation and type label-
ing in our pipeline. The fourth and fifth versions
of the pipeline switch to a hold-one-episode-out
(HOEO) cross-validation, where only the specific
scene description (“episode”) being tested is held
out from training. When compared with a HOPO
cross-validation, the HOEO setup allows us to in-
vestigate the value of learning from and entrain-
ing to the specific speaker’s vocabulary and speech
patterns (such as calling the purple object in Fig-
ure 2 a “harry potter”).

4.3.3 Results
Table 4 summarizes the image retrieval accura-
cies for our three baselines and five versions of
our pipeline. We discuss here some observations
from these results. First, in comparing pipeline
versions (I) and (II), we observe that the use of
automated segmentation and a segment type clas-
sifier in (II) leads to a substantial increase in ac-
curacy of 5-20% (p<0.001)6 depending on the

6wilcoxon rank sum test
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#objects per TI
1 2 3 4 6

Random baseline 0.13 0.13 0.13 0.13 0.13
Naive Bayes baseline 0.43 0.20 0.14 0.14 0.13

Seg+lab X-validation
(I) None HOPO 0.47 0.20 0.24 0.13 0.15
(II) Auto HOPO 0.52 0.40 0.31 0.24 0.23

(III) Oracle HOPO 0.54 0.42 0.32 0.30 0.26
(IV) Auto HOEO 0.60 0.46 0.37 0.25 0.23
(V) Oracle HOEO 0.64 0.50 0.41 0.34 0.44
Human-human baseline 0.85 0.73 0.66 0.60 0.68

Table 4: Image retrieval accuracies for five ver-
sions of the pipeline and three baselines.

number of objects/image. Comparing (II) and
(III), we see that if our segmenter and segment
type classifier could reproduce the human segment
annotations perfectly, an additional improvement
of 1-6% (p<0.001) accuracy would be possible.
Comparing (II) to (IV), we see that exposing our
pipeline training to the idiosyncratic speech and
vocabulary of a given speaker would hypotheti-
cally enable an increase in accuracy of up to 8%
(p<0.001). Note however that this setup can-
not easily be replicated in a real-time system, as
our HOEO training provides not only samples of
the transcribed speech of the same speaker, but
also human annotations of the segment bound-
aries, segment types, and correct referents for this
speech (which would not generally be available for
immediate use in a run-time system). Comparing
(IV) to (V), we see that oracle segment boundaries
and types also improve accuracies in a HOEO
evaluation between 4-19% (p<0.001). Compar-
ing our fully automated HOPO pipeline (II) to
the baselines, we see that our pipeline performs
considerably better than the random and Naive
Bayes baselines. At the same time, there is still
much room for improvement when we compare to
human-human accuracy. Segmentation is harder
the more objects (and hence segments) there are.
Compared to HOEO, HOPO is additionally hurt
by idiosyncratic vocabulary that isn’t learned, so
even with oracle segmentations, performance does
not increase as much.

4.4 Evaluation of Object Retrieval

Table 4 shows that even when there is just one ob-
ject in each of the eight images, our pipeline (II)
only selects the correct image 52% of the time
given the complete scene description, while hu-
mans succeed 85% of the time. We further in-
vestigated our performance at understanding de-

n 1 2 3 4 6
accuracy 1 .88 .77 .60 .66

Table 5: Accuracy for object retrieval in target im-
ages with n objects.

scriptions of individual objects by defining a con-
structed “object retrieval” problem. In this prob-
lem, individual SIN segments from the RDG-
Pento corpus are considered one at a time, and the
correct target image is provided by an oracle. The
only task is to use the WAC model to select the
correct referent object within the image for a sin-
gle SIN segment. An example of the object re-
trieval problem is to select the correct referent for
the SIN segment and a wooden w sort of in the
known target image of Figure 1.

The results are shown in Table 5. We can ob-
serve that object retrieval is by itself a non-trivial
problem for our WAC model, especially as the
number of objects increases. This is somewhat by
design in that the multiple objects present within
an image are often selected to be fairly similar in
their properties, and multiple objects may match
ambiguous SIN segments such as the T or the plus
sign. We speculate that we could gain here from
factoring in positional information implicit in de-
scription strategies such as going from top left to
bottom right in describing the objects.

5 Related Work

The work described in this paper directly builds
off of Paetzel et al. (2015) as the same RDG game
scenario was used, however reference was only
made to single objects in that work. The work
here also builds off of Kennington and Schlangen
(2015) in the same way in that their work only fo-
cused on reference to single objects. The exten-
sion of this previous work to handle more com-
plex scene descriptions required substantial com-
position on the word and segment levels. The seg-
mentation presented here was fairly straight for-
ward (similar in spirit to chunking as in Marcus
(1995)). Composition is currently an active area
in distributional semantics where word meanings
are represented by high-dimensional vectors and
composition amounts to some kind of vector op-
eration (see (Milajevs et al., 2014) for a compar-
ison of methods). An important difference is that
here words and segments are composed at the de-
notational level (i.e., on the scores given by the
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WAC model, akin to referentially afforded concept
composition (Mcnally and Boleda, 2015)). Also
related are the recent efforts in automatic image
captioning and retrieval, where the task is to gen-
erate a description (a caption) for a given image
or retrieve one being given a description. A fre-
quently taken approach is to use a convolutional
neural network to map the image into a dense vec-
tor, and then to condition a neural language model
on this to produce an output string or using it to
map the description into the same space (Vinyals
et al., 2015; Devlin et al., 2015; Socher et al.,
2014). See also Fang et al. (2015), which is more
directly related to our model in that they use “word
detectors” to propose words for image regions.

6 Conclusions & Future work

We have presented an approach to understand-
ing complex, multi-utterance references to im-
ages containing spatially complex scenes. The ap-
proach by design works incrementally, and hence
is ready to be used in an interactive system. We
presented evaluations that go end-to-end from ut-
terance input to resolution decision (but not yet
taking in speech). We have shown that segmen-
tation is a critical component for understanding
complex visual scene descriptions. This work
opens avenues for future explorations in various
directions. Intra- and inter-segment composition
(through multiplication and addition, respectively)
are approached somewhat simplistically, and we
want to explore the consequences of these deci-
sions more deeply in future work. Additionally, as
discussed above, there seems to be much implicit
information in how speakers go from one refer-
ence to the next, which might be possible to cap-
ture in a transition model. Finally, in an online
setting, there is more than just the decision “this is
the referent”; one must also decide when and how
to act based on the confidence in the resolution.
Lastly, our results have shown that human pairs do
align on their conceptual description frames (Gar-
rod and Anderson, 1987). Whether human users
would also do this with an artificial interlocutor, if
it were able to do the required kind of online learn-
ing, is another exciting question for future work,
enabled by the work presented here. We also plan
to extend our work in the future to include descrip-
tions which contain relations between non singular
objects (Ex: [MUL two red crosses] [REL above]
[SIN brown L], [MUL two red crosses] [REL on

top of] [MUL two green Ts] etc.). However, such
descriptions were very rare in the corpus.

Obtaining samples for training the classifiers
is another issue. One source of sparsity is
idiosyncratic descriptions like ’harry potter’ or
’facebook’. In dialogue (our intended setting),
these could be grounded through clarification re-
quests. A more extensive solution would ad-
dress metaphoric or meronymic usage (”looks like
xyz”). We will explore this in future work.
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