
Proceedings of the SIGDIAL 2016 Conference, pages 404–412,
Los Angeles, USA, 13-15 September 2016. c©2016 Association for Computational Linguistics

Strategy and Policy Learning for Non-Task-Oriented Conversational
Systems

Zhou Yu, Ziyu Xu, Alan W Black and Alex I. Rudnicky
School of Computer Science
Carnegie Mellon University

{zhouyu,awb,air}@cs.cmu.edu, ziyux@andrew.cmu.edu

Abstract

We propose a set of generic conversa-
tional strategies to handle possible sys-
tem breakdowns in non-task-oriented di-
alog systems. We also design policies to
select these strategies according to dialog
context. We combine expert knowledge
and the statistical findings derived from
data in designing these policies. The pol-
icy learned via reinforcement learning out-
performs the random selection policy and
the locally greedy policy in both simu-
lated and real-world settings. In addition,
we propose three metrics for conversation
quality evaluation which consider both the
local and global quality of the conversa-
tion.

1 Introduction

Non-task-oriented conversational systems do not
have a stated goal to work towards. Nevertheless,
they are useful for many purposes, such as keep-
ing elderly people company and helping second
language learners improve conversation and com-
munication skills. More importantly, they can be
combined with task-oriented systems to act as a
transition smoother or a rapport builder for com-
plex tasks that require user cooperation. There are
a variety of methods to generate responses for non-
task-oriented systems, such as machine translation
(Ritter et al., 2011), retrieval-based response se-
lection (Banchs and Li, 2012), and sequence-to-
sequence recurrent neural network (Vinyals and
Le, 2015). However, these systems still pro-
duce utterances that are incoherent or inappropri-
ate from time to time. To tackle this problem, we
propose a set of conversational strategies, such as
switching topics, to avoid possible inappropriate
responses (breakdowns). After we have a set of
strategies, which strategy to perform according to

the conversational context is another critical prob-
lem to tackle. In a multi-turn conversation, the
user experience will be affected if the same strat-
egy is used repeatedly. We experimented on three
policies to control which strategy to use given the
context: a random selection policy that randomly
selects a policy regardless of the context, a locally
greedy policy that focuses on local context, and a
reinforcement learning policy that considers con-
versation quality both locally and globally. The
strategies and policies are applicable for non-task-
oriented systems in general. The strategies can
prevent a possible breakdown, and the probabil-
ity of possible breakdowns can be calculated using
different metrics according to different systems.
For example, a neural network generation system
(Vinyals and Le, 2015) can use the posterior prob-
ability to decide if the generated utterance is pos-
sibly causing a breakdown, thus replacing it with a
designed strategy. In this paper, we implemented
the strategies and policies in a keyword retrieval-
based non-task-oriented system. We used the re-
trieval confidence as the criteria to decide whether
a strategy needed to be triggered or not.

Reinforcement learning was introduced to the
dialog community two decades ago (Biermann
and Long, 1996) and has mainly been used in
task-oriented systems (Singh et al., 1999). Re-
searchers have proposed to design dialogue sys-
tems in the formalism of Markov decision pro-
cesses (MDPs) (Levin et al., 1997) or partially
observable Markov decision processes (POMDPs)
(Williams and Young, 2007). In a stochastic envi-
ronment, a dialog system’s actions are system ut-
terances, and the state is represented by the dialog
history. The goal is to design a dialog system that
takes actions to maximize some measure of sys-
tem reward, such as task completion rate or dia-
log length. The difficulty of such modeling lies in
the state representation. Representing the dialog
by the entire history is often neither feasible nor
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conceptually useful, and the so-called belief state
approach is not possible, since we do not even
know what features are required to represent the
belief state. Previous work (Walker et al., 1998)
has largely dealt with this issue by imposing prior
limitations on the features used to represent the ap-
proximate state. In this paper, instead of focus-
ing on task-oriented systems, we apply reinforce-
ment learning to design a policy to select designed
conversation strategies in a non-task-oriented di-
alog systems. Unlike task-oriented dialog sys-
tems, non-task-oriented systems have no specific
goal that guides the interaction. Consequently,
evaluation metrics that are traditionally used for
reward design, such as task completion rate, are
no longer appropriate. The state design in rein-
forcement learning is even more difficult for non-
task-oriented systems, as the same conversation
would not occur more than once; one slightly dif-
ferent answer would lead to a completely different
conversation; moreover there is no clear sense of
when such a conversation is “complete”. We sim-
plify the state design by introducing expert knowl-
edge, such as not repeating the same strategy in a
row, as well as statistics obtained from conversa-
tional data analysis.

We implemented and deployed a non-task-
oriented dialog system driven by a statistical pol-
icy to avoid possible system breakdowns using de-
signed general conversation strategies. We evalu-
ated the system on the Amazon Mechanical Turk
platform with metrics that consider both the local
and the global quality of the conversation. In ad-
dition, we also published the system source code
and the collected conversations 1.

2 Related Work

Many generic conversational strategies have been
proposed in previous work to avoid generating in-
coherent utterances in non-task-oriented conversa-
tions, such as introducing new topics (e.g. “Let’s
talk about favorite foods!” ) in (Higashinaka et al.,
2014), asking the user to explain missing words
(e.g. “What is SIGDIAL?”) (Maria Schmidt and
Waibel, 2015). In this paper, we propose a set
of generic strategies that are inspired by previous
work, and test their usability on human users. No
researcher has investigated thoroughly on which
strategy to use in different conversational contexts.
Compared to task-oriented dialog systems, non-

1www.cmuticktock.org

task-oriented systems have more varied conversa-
tion history, which are thus harder to formulate as
a mathematical problem. In this work, we pro-
pose a method to use statistical findings in con-
versational study to constrain the dialog history
space and to use reinforcement learning for sta-
tistical policy learning in a non-task-oriented con-
versation setting.

To date, reinforcement learning is mainly used
for learning dialogue policies for slot-filling task-
oriented applications such as bus information
search (Lee and Eskenazi, 2012), restaurant rec-
ommendations (Jurčı́ček et al., 2012), and sight-
seeing recommendations (Misu et al., 2010). Re-
inforcement learning is also used for some more
complex systems, such as learning negotiation
policies (Georgila and Traum, 2011) and tutoring
(Chi et al., 2011). Reinforcement learning is also
used in question-answering systems (Misu et al.,
2012). Question-answering systems are very sim-
ilar to non-task-oriented systems except that they
do not consider dialog context in generating re-
sponses. They have pre-existing questions that the
user is expected to go through, which limits the
content space of the dialog. Reinforcement learn-
ing has also been applied to a non-task-oriented
system for deciding which sub-system to choose to
generate a system utterance (Shibata et al., 2014).
In this paper, we used reinforcement learning to
learn a policy to sequentially decide which con-
versational strategy to use to avoid possible system
breakdowns.

The question of how to evaluate conversational
systems has been under discussion throughout the
history of dialog system research. Task comple-
tion rate is widely used as the conversational met-
ric for task oriented systems (Williams and Young,
2007). However, it is not applicable for non-task-
oriented dialog systems which don’t have a task.
Response appropriateness (coherence) is a widely
used manual annotation metric (Yu et al., 2016)
for non-task-oriented systems. However, this met-
ric only focuses on the utterance level conversa-
tional quality and is not automatically computable.
Perplexity of the language model is an automat-
ically computable metric but is hard to interpret
(Vinyals and Le, 2015). In this paper, we propose
three metrics: turn-level appropriateness, conver-
sational depth and information gain, which access
both the local and the global conversation quality
of a non-task-oriented conversation. Information
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gain is automatically quantifiable. We use super-
vised machine learning methods to built automatic
detectors for turn level appropriateness and con-
versational depth. All three of the metrics are gen-
eral enough to be applied to any non-task-oriented
system.

3 Conversational Strategy Design

We implemented ten strategies in total for re-
sponse generation. The system only selects among
Strategy 1-5 if their trigger conditions are meet.
If more than one strategy is eligible, the system
selects the higher ranked strategy. The rank of
the strategies, shown in the following list, is de-
termined via expert knowledge. The system only
selects among Strategy 6-10 if Strategy 1-5 can-
not be selected. This rule reduces the design space
of all policies. We design three different versions
of the surface form for each strategy, so the user
would get a slightly different version every time,
thus making the system seem less robotic.

We implemented these strategies in TickTock
(Yu et al., 2015). TickTock is a non-task-oriented
dialog system that takes typed text as the input
and produces text as output. It performs anaphora
detection and candidate re-ranking with respect
to history similarity to track conversation history.
For a detailed system description, please refer to
(Yu et al., 2016). This version of TickTock took
the form of a web-API, which we put on Amazon
Mechanical Turk platform to collect data from a
large number of users. The system starts the con-
versation by proposing a topic to discuss. The
topic is randomly selected from five designed top-
ics: movies, music, politics, sports and board
games. We track the topic of the conversation
throughout the interaction. Each conversation has
more than 10 turns. Table 1 is an example conver-
sation of TickTock talking with a human user. We
describe the ten strategies with their ranking order
in the following.

1. Match Response (continue): In a keyword-
based system, the retrieval confidence is the
weighted score of all the matching keywords
from the user input and the chosen utterance
from the database. When the retrieval con-
fidence score is higher than a threshold (0.3
in our experiment), we use the retrieved re-
sponse as the system’s output. If the system is
a sequence-to-sequence neural networks sys-
tem, then we select the output of the system

when the posterior probability of the gener-
ated response is higher than a certain thresh-
old.

2. Don’t Repeat (no repeat): When users re-
peat themselves, the system confronts them
by saying:“You already said that!”.

3. Ground on Named Entities (named entity)
A lot of raters assume that TickTock can
answer factual questions, so they ask ques-
tions such as “Which state is Chicago in?”
and “Are you voting for Clinton?”. We use
the Wikipedia knowledge base API to tackle
such questions. We first perform a shallow
parsing to find the named entity in the sen-
tence, and then we search the named entity
in a knowledge base, and retrieve the cor-
responding short description of it. Finally
we design several templates to generate sen-
tences using the obtained short description of
the named entity. The resulting output can
be “Are you talking about the city in Illi-
nois?” and “Are you talking about Bill Clin-
ton, the 42rd president of the United States,
or Hillary Clinton, a candidate for the Demo-
cratic presidential nomination in the 2016
election?”. This strategy is considered one
type of grounding strategy in human conver-
sations. Users feel like they are understood
when this strategy is triggered correctly. In
addition, we make sure we never ground the
same named-entity twice in single conversa-
tion.

4. Ground on Out of Vocabulary Words (oov)
If we find that the user utterance contains a
word that is out of our vocabulary, such as
“confrontational”. Then TickTock will ask:
“What is confrontational?”. We expand our
vocabulary with the new user-defined words
continuously, so we will not ask for ground-
ing on the same word twice.

5. React to Single-word Sentence (short an-
swer) We found that some users type in
meaningless single words such as ‘d’, ‘dd’,
or equations such as ‘1+2=’. TickTock will
reply: “Can you be serious and say things in
a complete sentence?” to deal with such con-
dition.

6. Switch Topic (switch) TickTock proposes a
new topic other than the current topic, such
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as “sports” or “music”. For example: “Let’s
talk about sports.” If this strategy is executed,
we will update the tracked topic to the new
topic introduced.

7. Initiate Activities (initiation) TickTock in-
vites the user to do an activity together. Each
invitation is designed to match the topic of
the current conversation. For example, the
system would ask: “Do you want to see the
latest Star Wars movie together?” when it is
talking about movies with a user.

8. End topics with an open question (end):
TickTock closes the current topic and asks an
open question, such as “ Sorry I don’t know.
Could you tell me something interesting?”.

9. Tell A Joke (joke): TickTock tells a joke such
as: “Politicians and diapers have one thing in
common. They should both be changed reg-
ularly, and for the same reason”. The jokes
are designed with respect to different topics
as well. The example joke is related to the
topic “politics”.

10. Elicit More Information (more): TickTock
asks the user to say more about the current
topic, using utterances such as “ Could we
talk more about that?”.

4 Strategy Design

As a baseline policy, we use a random selection
policy that randomly chooses among Strategies 6-
10 whenever Strategies 1-5 are not applicable. In
the conversations collected using the baseline, we
found that the sentiment polarity of the utterance
has an influence on which strategy to select. Peo-
ple tend to rate the switch strategy more favorably
if there is negative sentiment in the previous utter-
ances. For example:

TickTock: Hello, I really like politics. Let’s talk
about politics.

User: No, I don’t like politics.
TickTock: Why is that?
User: I just don’t like politics.
TickTock: OK, how about we talk about movies?

In another scenario, when all the previous three
utterances are positive, the more strategy (e.g.

Do you want to talk more about that?) is pre-
ferred over the switch strategy (e.g. Do you like
movies?).

We set out to find the optimum strategy given
the context which is the sentiment polarity of the
previous three utterances. We found all the scenar-
ios when Strategy 6-10 are triggered, then we gen-
erate five different versions of the conversations by
replacing the original used strategy with Strategies
6-10. We asked workers on Amazon Mechanical
Turk to rate the strategy’s appropriateness given
three previous utterances. For each conversation,
we collected ratings from three different raters and
used the majority vote as the final rating. Then we
constructed a table of a distribution of the proba-
bility of each strategy with respect to the context.
We collected 10 ratings for each strategy under
each context. We use the Vader (Hutto and Gilbert,
2014) sentiment predictor for automatic sentiment
prediction. The output of the sentiment predictor
is a label with three categories: positive (pos), neg-
ative(neg) and neutral (neu).

We found that the output of the rating task sup-
ports our hypothesis: different strategies are pre-
ferred with respect to different sentiment context.
In Table 3, we show the distribution of appropri-
ateness ratings for Strategy 6-10 in a context when
all the previous utterances are positive. Users rated
the more strategy more appropriate than the end
strategy and the switch strategy. One interesting
observation is that the joke strategy is rated poorly.
We examined the cases in which it is used and
found that the low appropriateness is mostly the
result of being unexpected. The initiation strategy
can be appropriate when the activity fits the pre-
vious content semantically. In another sentiment
context, when there are consecutive negative ut-
terances, the switch strategy and the end strategy
are preferred. We can see that which strategy to
use is heavily dependent on the immediately sen-
timent context of the conversation. Sentiment po-
larity captures some conversational level informa-
tion which is a discriminating factor. We then use
these findings to design the locally greedy policy.
The system chooses the strategy that is rated as the
most appropriate given the context. The context is
the sentiment polarity of previous three utterances.

We conducted another Amazon Mechanical
Turk study to test if sentiment context beyond
three utterances would influence the preferred
strategy. In order to reduce the work load, we
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Turn Participant TickTock
1 I am not sure. What’s on your mind? Well, you know, I’m not sure. Let me tell you something,

politicians and diapers have one thing in common. They
should both be changed regularly, and for the same reason.

2 Wow. That’s funny and insightful. Uhh, I can’t answer this. Can we talk about something
else?

3 How about movies. Have you seen any good movies? Of course. What do you think?
4 I love super hero movies. Have you seen Deadpool? Are you talking about Deadpool,the animation character?
5 Yes, exactly. They made a movie of him. That sounds really interesting.

Table 1: An example conversation with TickTock in the real-world setting

Turn A.L.I.C.E. TickTock
1 When do I do it? I don’t know.
2 That is interesting. Do you want to go to my friend’s party tonight?
3 Sure, just download me to your notebook or PDA and

take me along.
Sounds great. Do you want to play board games together
some time.

4 I like to play the Turing Game. I don’t know how to play it. Is it difficult to play?
5 Interesting gossip. It could be. Possibly.

Table 2: An example conversation of TickTock in the simulated setting

tested one condition: the previous three utterances
are all positive. We provide the complete conver-
sation history of that dialog to the raters. We found
that strategies used most recently are rated less fa-
vorably if used again. This motivates us to include
information that relates to the previous strategy us-
age and a longer history to design policy in the re-
inforcement learning setting.

Strategy App Inter Inapp
switch 0.1 0.3 0.6

initiation 0.2 0.4 0.4
joke 0.1 0.2 0.7
end 0.1 0.3 0.6

more 0.4 0.5 0.1

Table 3: Appropriateness rating distribution when
the recent three utterances are positive.

5 Reinforcement Learning

We model the conversation process as a Markov
Decision Process (MDP)-based problem, so we
can use reinforcement learning to learn a con-
versational policy that makes sequential decisions
by considering the entire context. We used Q-
learning, a model-free method to learn the conver-
sational policy for our non-task-oriented conversa-
tional system.

In reinforcement learning, the problem is de-
fined as (S,A,R, γ, α), where S is the set of states
that represents the system’s environment, in this
case the conversational context. A is a set of ac-
tions available per state. In our setting, the actions

are strategies available. By performing an action,
the agent can move from one state to another. Ex-
ecuting an action in a specific state provides the
agent with a reward (a numerical score), R(s, a).
The goal of the agent is to maximize its total re-
ward. It does this by learning which action is op-
timal to take for each state. The action that is op-
timal for each state is the action that has the high-
est long-term reward. This reward is a weighted
sum of the expected values of the rewards of all
future steps starting from the current state, where
the discount factor γ is a number between 0 and
1 that trades off the importance of sooner versus
later rewards. γ may also be interpreted as the
likelihood to succeed (or survive) at every step.
The algorithm therefore has a function that cal-
culates the quantity of a state-action combination,
Q : S × A → R. The core of the algorithm is a
simple value iteration update. It assumes the old
value and makes a correction based on the new in-
formation at each time step, t. See Equation (1)
for details of the iteration function.

The critical part of the modeling is to design
appropriate states and the corresponding reward
function. We reduce the number of the states by
incorporating expert knowledge and the statistical
findings in our analysis. We used another chatbot,
A.L.I.C.E. 2 as a user simulator in the training pro-
cess. We include features: turn index, times each
strategy was previously executed, and the senti-
ment polarity of previous three utterances. We
constructed the reward table based on the statis-

2http://alice.pandorabots.com/
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Qt+1(st, at)← Qt(st, at) + αt(st, at) ·
(
Rt+1 + γmax

a
Qt(st+1, a)−Qt(st, at)

)
(1)

Turn-level appropriateness ∗ 10 + Conversational depth ∗ 100 + round(Information gain, 5) ∗ 30 (2)

tics collected from the previous experiment. In or-
der to make the reward table tractable, we imposed
some of the rules we constructed based on expert
knowledge. For example, if certain strategies have
been used before, then the reward of using it again
is reduced. If the trigger condition of Strategy
1-5 is meet, the system chooses them over Strat-
egy 6-10. This may result in some less optimum
solutions, but reduces the state space and action
space considerably. During the training process,
we constrained the conversation to be 10 turns.
The reward function is only given at the end of
the conversation, it is a combination of the auto-
matic predictions of the three metrics that consider
the conversation quality both locally and globally,
discussed them in detail in the next section. It took
5000 conversations for the algorithm to converge.
We looked into the learned Q table and found that
the policy prefers the strategy that uses less fre-
quently if the context is fixed.

6 Evaluation Metrics

In the learning process of the reinforcement learn-
ing, we use a metric which is a combination of
three metrics: turn-level appropriateness, conver-
sational depth and information gain. Conversa-
tional depth and information gain measure the
quality of the conversation across multiple turns.
Since we use another chatbot as the simulator,
making sure the overall conversation quality is ac-
cessed is critical. All three metrics are related to
each other but cover different aspects of the con-
versation. We used a weighted score of the three
metrics for the learning process, which is shown
in Equation (2). The coefficients are chosen based
on empirical heuristics. We built automatic pre-
dictors for turn-level appropriateness and conver-
sation depth based on annotated data as well.

6.1 Turn-Level Appropriateness
Turn-level appropriateness reflects the coherence
of the system’s response in each conversational
turn. See Table 4 for the annotation scheme. The
inter-annotator agreement between the two experts
is relatively high (kappa = 0.73). We collapse

the “Appropriate” and “Interpretable” labels into
one class and formulate the appropriateness detec-
tion as a binary classification problem. Our de-
signed policies and strategies intend to avoid sys-
tem breakdowns (the inappropriate responses), so
we built this detector to tell whether a system re-
sponse is appropriate or not.

We annotated the appropriateness for 1256
turns. We balance the ratings by generating more
inappropriate examples by randomly pairing two
utterances. In order to reduce the variance of the
detector, we use five-fold cross-validation and a
Z-score normalizer to scale all the features into
the same range. We use early fusion, which sim-
ply concatenates all feature vectors. We use a v-
Support Vector (Chang and Lin, 2011) with a RBF
Kernel to train the detector. The performance of
the automatic appropriateness detector is 0.73 in
accuracy while the accuracy of the majority vote
is 0.5.

We use three sets of features: the strategy
used in the response, the word counts of both the
user’s and TickTock’s utterances, and the utterance
similarity features. The utterance similarity fea-
tures consist of a feature vector obtained from a
word2vec model (Mikolov et al., 2013), the co-
sine similarity score between the user utterance
and the system response, and the similarity scores
between the user response and all the previous
system responses. For the word2vec model, we
trained a 100-dimension model using the collected
data.

6.2 Conversational Depth

Conversational depth reflects the number of con-
secutive utterances that share the same topic. We
design an annotation scheme (Table 5) based on
the maximum number of consecutive utterances
on the same topic. We annotate conversations into
three categories: “Shallow”, “Intermediate” and
“Deep”. The annotation agreement between the
two experts is moderate (kappa = 0.45). Users
manually labeled 100 conversations collected us-
ing TickTock. We collapse “Shallow” and “In-
termediate” into one category and formulate the
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Label Definition Example

Inappropriate (Inapp) Not coherent with the user utterance Participant: How old are you?
TickTock: Apple. .

Interpretable (Inter) Related and can be interpreted Participant: How old are you?
TickTock: That’s too big a question for me to answer.

Appropriate (App) Coherent with the user utterance Participant: How is the weather today?
TickTock: Very good.

Table 4: Appropriateness rating scheme.

Conv. depth Consecutive utterances
Shallow < 6

Intermediate [7, 10]
Deep > 10

Table 5: Conversational depth annotation scheme

problem as a binary classification problem. We
use the same machine learning setting as the turn
level appropriateness predictor. The performance
of the automatic conversational depth detector has
a 72.7% accuracy, while the majority vote base-
line accuracy is 63.6%. The conversational depth
detector has three types of features:

1. The number of dialogue exchanges between
the user and TickTock and the number of
times TickTock uses the continue, switch and
end strategy.

2. The count of a set of keywords in the con-
versation. The keywords are “sense”, “some-
thing” and interrogative pronouns, such as
“when”, “who”, “why”, etc. “Sense” often
occurs in sentence, such as “You are not mak-
ing any sense” and “something” often oc-
curs in sentence, such as “Can we talk about
something else?” or “Tell me something you
are interested in.”. Both of them indicate a
possible change of a topic. Interrogative pro-
nouns are usually involved in questions that
probe users to go deep into the current topic.

3. We convert the entire conversation into a vec-
tor using doc2vec and also include the cosine
similarity scores between adjacent responses
of the conversation.

6.3 Information Gain
Information gain reflects the number of unique
words that are introduced into the conversation
from both the system and the user. We believe

that the more information the conversation has, the
better the conversational quality is. This metric is
calculated automatically by counting the number
of unique words after the utterance is tokenized.

7 Results and Analysis

We evaluate the three policies with respect to
three evaluation metrics: turn-level appropriate-
ness, conversational depth and information gain.
We show the results in the simulated setting in
Table 6 and the real-world setting in Table 7. In
the simulated setting, users are simulated using a
chatbot, A.L.I.C.E.. We show an example sim-
ulated conversion in Table 2. In the real-world
setting, the users are people recruited on Amazon
Mechanical Turk. We collected 50 conversations
for each policy. We compute turn-level appropri-
ateness and conversational depth using automatic
predictors in the simulated setting and use manual
annotations in the real-world setting.

The policy learned via reinforcement learning
outperforms the other two policies in all three
metrics with statistical significance (p < 0.05)in
both the simulated setting and the real-world set-
ting. The percentage of inappropriate turns de-
creases when the policy considers context in se-
lecting strategies. However, the percentage of ap-
propriate utterances is not as high as we hoped.
This is due to the fact that in some situations,
no generic strategy is appropriate. For example,
none of the strategies can produce an appropriate
response for a content-specific question, such as
“What is your favorite part of the movie?” How-
ever, the end strategy can produce a response, such
as: “Sorry, I don’t know, tell me something you
are interested.” This strategy is considered “Inter-
pretable” which in turn saves the system from a
breakdown. The goal of designing strategies and
policies is to avoid system breakdowns, so using
the end strategy is a good choice in such a sit-
uation. These generic strategies are designed to
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Policy Appropriateness Conversational depth Info gain
Random Selection 62% 32% 50.2
Locally Greedy 72% 34% 62.4
Reinforcement Learning 82% 45% 68.2

Table 6: Performance of different policies in the simulated setting

Policy App Inter Inapp Conversational depth Info gain
Random Selection 30% 36% 32% 30% 56.3
Locally Greedy 30% 42% 27% 52% 71.7
Reinforcement Learning 34% 43% 23% 58% 73.2

Table 7: Performance of different policies in the real-world setting.

avoid system breakdowns, so some times they are
not “Appropriate”, but only “Interpretable”.

Both the reinforcement learning policy and the
locally greedy policy outperform the random se-
lection policy with a huge margin in conversa-
tional depth. The reason is that they take context
into consideration in selecting strategies, while the
random selection policy uses the switch strategy
randomly without considering the context. As a
result, it cannot keep the user on the same topic for
long. However, the reinforcement learning policy
only outperforms the locally greedy policy with a
small margin. Because there are cases when the
user has very little interest in a topic, the reinforce-
ment learning policy will switch the topic to sat-
isfy the turn-level appropriateness metric, while
the locally greedy policy seldom selects the switch
strategy according to the learned statistics.

The reinforcement learning policy has the best
performance in terms of information gain. We be-
lieve the improvement mostly comes from using
the more strategy appropriately. The more strategy
elicits more information from the user compared
to other strategies in general.

In Table 2, we can see that the simulated user is
not as coherent as a human user. In addition, the
simulated user is less expressive than a real user,
so the depth of the conversation is generally lower
in the simulated setting than in the real-world set-
ting.

8 Conclusion and Future Work

We design a set of generic conversational strate-
gies, such as switching topics and grounding on
named-entities, to handle possible system break-
downs in any non-task-oriented system. We also
learn a policy that considers both the local and
global context of the conversation for strategy

selection using reinforcement learning methods.
The policy learned by reinforcement learning out-
performs the locally greedy policy and the ran-
dom selection policy with respect to three evalu-
ation metrics: turn-level appropriateness, conver-
sational depth and information gain.

In the future, we wish to consider user’s engage-
ment in designing the strategy selection policy in
order to elicit high quality responses from human
users.
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