
Proceedings of the SIGDIAL 2017 Conference, pages 93–102,
Saarbrücken, Germany, 15-17 August 2017. c©2017 Association for Computational Linguistics

MACA: A Modular Architecture for Conversational Agents

Hoai Phuoc Truong∗, Prasanna Parthasarathi†, and Joelle Pineau‡
School of Computer Science

McGill University

Abstract

We propose a software architecture de-
signed to ease the implementation of di-
alogue systems. The Modular Architec-
ture for Conversational Agents (MACA)
uses a plug-n-play style that allows quick
prototyping, thereby facilitating the devel-
opment of new techniques and the repro-
duction of previous work. The architec-
ture separates the domain of the conver-
sation from the agent’s dialogue strategy,
and as such can be easily extended to mul-
tiple domains. MACA provides tools to
host dialogue agents on Amazon Mechan-
ical Turk (mTurk) for data collection and
allows processing of other sources of train-
ing data. The current version of the frame-
work already incorporates several domains
and existing dialogue strategies from the
recent literature.

1 Introduction

Recent research in building sophisticated AI-
based dialogue management systems has led to
many new models supporting goal oriented or
chit-chat style dialogue agents. These models have
been applied to a variety of consumer domains,
such as restaurant booking (Kim and Banchs,
2014), flight booking (Young, 2006), etc. How-
ever, the lack of tools for easy prototyping of
newer models remains an impediment to devel-
oping new models and properly benchmarking
against previous models. Furthermore, the differ-
ent types of conversational agents– e.g., generative
(Hochreiter and Schmidhuber, 1997; Serban et al.,
2015, 2016), retrieval-based (Schatzmann et al.,

∗phuoc.truong2@mail.mcgill.ca
†prasanna.p@cs.mcgill.ca
‡jpineau@cs.mcgill.ca

2005a; Lowe et al., 2015a), slot-based (Young,
2006) or POMDP agents (Png and Pineau, 2011)–
have different working mechanisms, which pose
challenges to the development of a unified plat-
form for conversational agents with multi-domain
support.

To address this gap, we propose a new, ready-
to-use, cross-platform framework for text-based
conversational agents – MACA1(Modularized
Architecture for Conversational Agents)– that
supports plug-n-play use of several existing dia-
logue agents, as well as facilitates easy prototyp-
ing of new dialogue agents. The architecture sim-
plifies the specification of different types of di-
alogue agents and plugs in an already-built dia-
logue agent. The framework also maintains a clear
separation between domain knowledge and the di-
alogue agent, which improves agent and domain
knowledge reusability. MACA separates task def-
inition from task selection and thereby supports
multi-task agents that can extend to multiple turns.

The key characteristics of the MACA frame-
work include:

• strong separation between domain knowl-
edge and a dialogue agent

• a unified architecture to support goal-
oriented, POMDP, generative, and retrieval-
based dialogue agents

• easy plug-n-play of custom-built agents
• multi-task support for domain specification
• reusability of slots across different tasks
• tool to collect data from mTurk with ease
• template to construct dialogue agents within

the framework
• independence from dialogue agents’ imple-

mentation libraries
• open source code ready for public sharing

1https://github.com/ppartha03/MACA

93

Figure 1: Overview of MACA: A Modular Architecture for Conversational Agents.

2 Related Work

There are a few proposed frameworks in recent
years that provide easy prototyping of dialogue
agents.

Ravenclaw (Bohus and Rudnicky, 2003), pro-
posed as a successor to Agenda (Allen et al.,
2001), is a two-tiered dialogue architecture sup-
porting rapid development of dialogue agents.
This flexible architecture provides a clear separa-
tion between the domain knowledge and dialogue
agent, and maintains a hierarchical task structure.
Systems can be built on the architecture with the
hierarchical task layout but adding a new task re-
quires the hierarchy to be rebuilt, which impedes
application to new domains.

A hierarchical architecture similar to Raven-
claw, called Task Completion Platform (TCP)
(Crook et al., 2016), addresses domain knowledge
extensibility with minimal changes to a configura-
tion file. In addition, it allows the goal oriented
tasks to be defined easily using a TaskForm lan-
guage to maintain slot information. Although TCP
facilitates extension of slot-based agents to multi-
ple domains, it cannot be extended for other dia-
logue agent types viz., generative models and re-
trieval models.

Another notable architecture is ClippyScript
(Seide and McDirmid, 2012), but its task defini-
tion is tied to a task condition by rule. Rules are
therefore constrained to be explicitly defined on a
per task basis. This is significantly more restrictive
than our proposed architecture.

As much research focuses on proposing dif-

ferent architectures for dialogue models, there
have also been some progress made in propos-
ing efficient protocols for agent-agent interaction
such as DialPort (Zhao et al., 2016), which pro-
vides tools for enabling multi-modal interaction
between agents. Our proposed work is different
from this line of research, focusing on a unifying
architecture for dialogue agents and little on the
inter-agent communication.

3 Architecture Description

An overview of the Modular Architecture for Con-
versational Agents (MACA) is presented in Fig-
ure 1. The system is setup as a pipeline with six
major components: Input, Pre-processing, Dia-
logue Model, Post-processing, Output, and Listen-
ers. Each component contains independent sub-
components that interact across it. All compo-
nents within the architecture abstract away their
underlying implementations and therefore allow
their extensions to be straightforward. This helps
in block-wise designing of newer systems by pre-
serving the original functionality, yet also provid-
ing a free hand in customizing of each component.

3.1 Component Details
3.1.1 Domain Knowledge
Domain knowledge contains static background in-
formation about the conversation topic. This can
take the form of training data (e.g. transcribed
conversations), constants, dictionaries, or restric-
tions on produced responses (e.g. sentence length,
banned phrases). Data stored in domain knowl-

94

edge must be independent of the model implemen-
tation, and can be shared between different models
and components.

3.1.2 Input
The Input module provides or generates input ut-
terances (i.e. statements, sentences) to the conver-
sation pipeline. This component represents an ab-
stract input device whose source of context varies
depending on the use case. This could include
a database of previous collected conversations, a
terminal interface (i.e. stdin) to acquire data in
real-time, or a web interface to a data source (e.g.
mTurk).

3.1.3 Preprocessing
The Pre-processing module serves as a bridge
between raw data acquired via the Input com-
ponent and the input format required of compo-
nents of the Dialogue model module. The sys-
tem architect may choose to include one or sev-
eral pre-processing operations within this mod-
ule. These pre-processing operations by default
are performed in parallel and their results are fed
into the next component as an array. This allows
the dialogue model to have multiple input repre-
sentations. Alternatively, the framework also al-
lows these operations to be sequentially processed
in a specified order (e.g. spelling correction, fol-
lowed by stemming).

Pre-processing operations currently imple-
mented in MACA include: getting POS tags, re-
moving stop-words, sentence tokenizing (Loper
and Bird, 2002), Byte-Pair encoding (BPE) (Gage,
1994) and can be extended to accommodate
trained sentence2vec model (Le and Mikolov,
2014), trained word2vec model (Mikolov et al.,
2013), etc. These nodes can also interact with the
Domain Knowledge component to acquire domain
specific information required for the operations.

3.1.4 Dialogue Model
This module is the core of the architecture, and
contains implementations of agents capable of
producing dialogue acts in response to the pre-
processed Input information. This module can
have up to three sub-components: Model Specific
Pre-processing, Model Internals and Model Spe-
cific Post-processing, to accommodate dialogue
agent models with various interface requirements.

The Model internals sub-module contains the
central dialogue model, which may be an exist-

ing model, such as a POMDP (Png and Pineau,
2011), Dual Encoder (Lowe et al., 2015a), HRED
agent (Serban et al., 2015), or a newly designed
model. This sub-module receives inputs from the
Model Specific Pre-processing sub-module. The
space of possible responses, vocabulary or dia-
logue acts are stored in the Domain Knowledge
module. The Model internals and Model spe-
cific Pre/Post-processing sub-modules share the
model information. Similar to the Pre-processing
component, they can access any information re-
quired for their operations by querying the Do-
main Knowledge component. A specific illustra-
tion of this interaction is in goal-oriented dialogue
agents, where the slot information – askQueries
and other attributes of the slot and these slot ob-
jects – are maintained in the domain knowledge,
which enables the framework to support multiple
agents. In such settings, the Dialogue Model is ini-
tialized with a generic agent that tries to gauge the
user intent, and then queries the domain knowl-
edge for the appropriate slots.

Model specific Pre-processing and Post-
processing sub-components are provided to give
the luxury of designing fine-tuned pre-processing
for a model. Model Specific Pre-processing
sub-component transforms pre-processed input(s)
into appropriate representations compatible with
the model internals (e.g. array of word indices
into vector, matrix or lookup table, etc). On the
other hand, Model Specific Post-processing sub-
component transforms model outputs into more
comprehensible forms for the next independent
component in the system (e.g. matrix/vector
representation to array of words/sentences).

Although certain interpretations suggest analo-
gies between the above sub-modules and conven-
tional units of a goal-oriented dialogue system
such as Dialogue Manager (DM) as Model inter-
nals, Natural Language Understanding (NLU) as
Model specific Pre-processing, and Natural Lan-
guage Generation (NLG) as Model specific Post-
processing, MACA does not impose any restric-
tion on how the framework’s sub-modules should
correspond with these conventional parts of a di-
alogue system. For example, the architect may
choose to have the Model internals sub-module
act as a NLU unit, while Model specific Post-
processing act as both NLG Unit and DM unit.

In addition, as the model may also be an ensem-
ble of dialogue models, the model specific pre-

95

and post-processing sub-components can also be
used to keep processing units specific to each of
the model in the architecture. For clarification, in a
typical implementation of an ensemble of models,
the Model specific Pre-processing sub-component
can be used to provide separate inputs parsed from
the Pre-processing component to the correspond-
ing models, while Model specific Post-processing
sub-component can be used to perform a majority
voting or other ensemble techniques to select the
response pool.

3.1.5 Postprocessing
The Posprocessing component connects the Dia-
logue Model and the Output components. It al-
lows the architect to choose the response in the
case of multi-response retrieval, to alter responses
based on linguistic characteristics, or to modify a
response in accordance with the conversation do-
main. It may also serve as a translation of text
to system calls, which is useful in the case where
a dialogue agent placed as the front-end interface
to another software system. Similar to the Pre-
processing module, this component includes one
or multiple post-processing operations, which pro-
cess the output in parallel or in sequence, depend-
ing on the specification of the designer. In addi-
tion, these post-processing operations within the
Post-processing component can also query the Do-
main Knowledge component for relevant data re-
quired for the generation of text response.

3.1.6 Output
Through the output component, the architecture
provides a generic way to output the response to
appropriate audience(s) depending on the use case.
Currently, implemented options are command line,
file based, web based, and database. Similar to the
Input component, the output component provides
flexibility for the architect to change the destina-
tion of produced outputs and to separate the output
programming logic from that of other components.

3.1.7 Pubsub system/Listeners
In addition to the main pipeline presented above,
the proposed system also includes a passive pub-
sub layer to facilitate monitoring, conversation
recording, and independent evaluation of the
model. This pubsub system allows the architect
to choose or plug in a wide range of peripheral
components (called Listeners) to passively moni-
tor the main system for execution behaviors and

performance. On top of several default channels
(see Operation modes section below) that the sys-
tem writes to and reads from, users can freely add
their own channels to communicate between the
main system and the pubsub layer hosting the pe-
ripherals.

Listeners, as previously mentioned, are optional
modules that can be plugged in to passively moni-
tor the system over different channels. These mod-
ules are useful when the architect is interested in
observing the system inputs and/or outputs, or vi-
sualizing internal parameters or states of the dia-
logue model at execution time. Passive monitor-
ing logic can be independently introduced into the
system without modifying the other components’
implementations.

3.2 Operation modes
MACA can be operated in three different modes:
Data Collection, Training and Execution. This
section describes the data flow in the architec-
ture along with abstract setups of the framework’s
components in these different operation modes for
several dialogue models from the recent literature.

3.2.1 Data Collection Mode

Figure 2: Data flow in data collection mode.

The goal of the data collection mode is to col-
lect conversations as training datasets for dialogue
models. In this mode, the two agents Alice and
Bob involved in the conversation are considered
the Input component and the Dialogue Model
component respectively. Figure 2 describes a typ-
ical setup for the data collection process with said
configuration. The conversation is recorded using
a database listener that receives both input (con-
text) and output (response) for each speaking turn,
similar to the scheme presented in section 3.2.3
above.

This setup realizes the infrastructure required
for two common dialogue data collection scenar-
ios. The first scenario is collection of both con-
texts and responses. In this case, both agents are
humans. In the second scenario, the goal is to col-
lect human responses for a given set of contexts.
In this case, agent Alice can be an implementation

96

of the Input component fetching contexts from a
database, while Bob is a human agent responding
to the fetched contexts.

3.2.2 Training Mode

Figure 3: Data flow in training mode.

The goal of the training and validation mode
is to use the data obtained in the data collec-
tion stage to train one or multiple dialogue mod-
els, as illustrated in figure 3. Assuming a dataset
is available from the Domain Knowledge compo-
nent, training data can be fetched as batches by
the Input component and fed into the VoidPrepro-
cessing component. This component simply for-
wards the data as is to the Dialogue Model com-
ponent, which performs model training, and oc-
casionally queries the domain knowledge for val-
idation data to verify its training progress. Since
system output is irrelevant within the training sce-
nario, Post-processing and Output components are
implemented with null operations, which simply
discard their received contents. Once certain val-
idation accuracy is achieved, the model can save
its internals on to the disk and terminate the sys-
tem. In addition to the core training process, the
architect may opt to emit training information to
a listener through the training channel to monitor
the training progress.

3.2.3 Execution Mode

Figure 4: Data flow in execution mode.

Data flow in execution mode is illustrated in fig-
ure 4. In this mode, all core components in the
system are enabled and active. Given that the di-
alogue model has been successfully trained and
fine-tuned, its internal states (e.g. weights, hyper-
parameters) are loaded into the Dialogue Model

component at system initialization time. Input
data is retrieved in real time (through local user
interface (e.g. terminal, GUI) or via an interface
with the Internet (e.g. web page, chat client)). This
input then enters the pipeline and goes through
Preprocessing, Dialogue model, Postprocessing
and finally Output component. At the end of the
pipeline, the output component is responsible for
sending the generated responses to relevant audi-
ences (e.g. print to stdout, HTTP response, ...).

From the peripheral components perspective,
conversation logging and system monitoring can
be done through two default channels: input and
output. Specifically, as shown in figure 4, the pas-
sive listener receives a notification for every in-
put received from the Input component on the in-
put channel, and a notification for every output
received by the Output component on the output
channel.

4 Feature Highlights

As discussed in the previous sections, MACA can
be used to plug in different types of existing di-
alogue agents. The architecture abstracts the im-
plementation details, similar to popular machine
learning libraries such as Theano (Theano Devel-
opment Team, 2016), Tensorflow (Abadi et al.,
2016), or PyTorch. The modular design enables
rapid prototyping and should facilitate reproduc-
ing previous results. The support for experimenta-
tion, extension, and development of slot-based di-
alogue agents for goal-oriented tasks has also been
provided. In addition, the current implementation
has rule-based approach for slot disambiguation
and has provisions for the easy extension of slot
disambiguation to machine learning (ML) based
modules. The clear separation of domain knowl-
edge from the agent aids in multi-agent systems
with little dependence on the domain – the in-
tent identification is provided at a higher level to
identify and trigger the task, defined as a set of
slots and ask queries. Intent identification sup-
ports hosting of multiple tasks.

The framework provides tools for easy host-
ing of dialogue tasks as HIT (Human Intelligence
Task) on Amazon mTurk to collect human re-
sponses; the framework also supports modelling
dialogue tasks as an agent-agent interaction that
can be used to test a dialogue agent against sim-
ulated users (Schatzmann et al., 2005b). A sum-
mary of MACA’s features is provided in Table 1.

97

MACA TCP Ravenclaw
Multi Domain Support 3 3 3
Plug-and-Play 3 3 7
Adaptation for FCA 3 7 7
Agent Abstraction 3 7 7
Integration with mTurk 3 7 7

Table 1: Feature Comparison of MACA with ex-
isting similar frameworks. Note: FCA: Frequently
used Conversational Agents.

5 Implementation Highlights2

MACA’s current implementation is in Python and
includes standard libraries to ensure the frame-
work’s portability, as well as to facilitate rapid
prototyping of different dialogue model strategies.
Each component of the framework (e.g. Input
component) is described with an abstract Python
class, whose concrete implementation instances
(i.e. Python objects) are manifestations of that
component (e.g. Command line input, Database
input). This corresponds to the abstraction layer of
the architecture’s module to foster independence
of the pipeline implementation from that of the
underlying dialogue model(s). The assembly of
these components are then specified in a central
configuration file representing an instantiation of
the architecture. With this design, changes in the
instantiation specifications can be done within the
central configuration file by modifying the names
of invoked modules. On the other hand, this setup
allows system specifications to be completely con-
tained within the central configuration file, which
reduces maintenance effort and simplifies config-
uration modification during development. In ad-
dition, the open source nature of the framework
encourages sharing and reusing of components,
which allows researchers to easily develop from
existing models and save time by reusing common
components written by others.

6 Case Studies

MACA was deployed for several studies within
our research group. All conducted studies have the
same template for the central configuration file,
whose content is then modified corresponding to
the purpose of each study. Listing 1 shows the
configuration template representing a system with
a simple dialogue agent, which repeats its input

2Some of the configuration file samples provided in the
listings in this section are slightly modified to fit the page
limit constraint.

(echo agent). The configuration file requires sev-
eral attributes to be mentioned and provides a gen-
eral outlook of the experiment being run. The tem-
plate contains the following attributes: input, out-
put, preprocessing, postprocessing, agent, domain
knowledge and listeners. The class sub-attribute
of the attributes refers to the Python class imple-
mentation of the component being invoked.

6.1 Building a simple agent
The Echo agent is designed to simply listen and
store the input to file; this is a good first test case
for new users of MACA. In this setup, the in-
put attribute is instantiated with StdinInputDevice,
which is the commandline inputs, and the out-
put attribute is instantiated with FileOutputDevice,
which writes the results to a file. Likewise, the
instantiations of the other attributes, like postpro-
cessing, preprocessing and domain knowledge,
point to VoidPostprocessor, VoidPreprocessor,
and EmptyDomainKnowledge respectively, since
Echo agent does not require them. The agent at-
tribute is instantiated with the appropriate dialogue
agent, which in this case is Echo agent. Along
with these components, LoggingListener, which
logs the input and output of the system on to an
output file, is included as a listener component.

1 ’input’ : { ’class’ : StdinInputDevice },
2 ’output’ : {
3 ’class’ : FileOutputDevice,
4 ’args’ : [’out.gods’]
5 },
6 ’preprocessing’ : {
7 ’modules’ : [{ ’class’ : VoidPreprocessor, }],
8 ’parallel’ : False, # Optional
9 },

10 ’postprocessing’ : {
11 ’output index’ : 0, # Index of the pipe to output
12 ’parallel’ : False, # Optional
13 ’modules’ : [{ ’class’ : VoidPostprocessor, }]
14 },
15 ’agent’ : { ’class’ : EchoAgent },
16 ’domain knowledge’ : { ’class’ : EmptyDomainKnowledge },
17 ’listeners’ : { ’unnamed’: [{ ’class’ : LoggingListener }] }

Listing 1: Configuration Template.

6.2 Building a goal oriented system
Next, we consider using MACA to build goal ori-
ented agents for the restaurant, flight booking, and
other toy domains. These slot-based agents were
developed using the tools provided in the frame-
work that aids in hierarchical task decomposition
and slot sharing across tasks (as in the example
reusing the same Python variables). With regard to
hosting a multi-task agent, the invocation of Goal

98

oriented policies/sub-agents for each task happens
with the description of slots – askQuery, disam-
biguation strategy etc. As with providing multi-
agent support, the architecture can handle multi-
ple intents with intent triggers defined for each of
them. For example, ”I would like to book a flight”
will trigger the flight booking policy which will fill
in slots specific to this task based on the informa-
tion provided in the domain knowledge, whereas
”What’s a good restaurant nearby?” will trigger
the restaurant booking policy. The configuration
file modification in the agent and domain knowl-
edge attributes is provided in Listing 2.

1 first name slot = Slot(’first name’)
2 last name slot = Slot(’last name’)
3 ’agent’ : {
4 ’class’ : PersonalInformationAskingModel,
5 ’kwargs’ : {
6 ’intents’ : [
7 AddressAskingAgent(’address’),
8 NameAskingAgent(’name’)
9]

10 }
11 },
12 ’domain knowledge’ : {
13 ’class’ : GoalOrientedDomainKnowledge,
14 ’args’ : [{
15 ’address’ : [
16 first name slot, last name slot,
17 Slot(’street’, [’apt’, ’street name’]),
18 Slot(’city’),
19 Slot(’country’),
20 Slot(’zip code’, enabling condition = \
21 lambda slots: slots[’country’].value() == ”US”)
22],
23 ’flight booking’ : [
24 first name slot, last name slot,
25 Slot(’origin’),
26 Slot(’destination’),
27 Slot(’return date’)
28]
29 }]
30 },

Listing 2: Sample Agent attribute in Goal Ori-
ented Dialogue models’ Configuration.

An overview of the architecture components in
the goal oriented setting is provided in Table 2.

6.3 Building a neural response generation
agent

We also used MACA to prototype neural re-
sponse generation agents based on the Hierarchi-
cal Encoder-Decoder framework (Serban et al.,
2015).

6.3.1 HRED in training mode
MACA’s training mode was tested with the train-
ing process of an HRED agent. The modifica-
tions for the central configuration files for this

Component Description Note

Domain Knowledge
GoalOriented Do-
mainKnowledge

Specifying slots
information for
known domains.

Input StdInputDevice Inputs from stdin.
Preprocessing VoidPreprocessor None.

Model
Preprocessing VoidProcessing None.
Postprocessing Model specific None.

Internal
PersonalInformation

AskingModel

Intent
disambiguation
and execution

policies.
Postprocessing VoidProcessing None.
Output FileOutputDevice Output to a file.

Listeners LoggingListener
Log all pubsub

notifications to file.

Table 2: Setup for goal oriented system in execu-
tion mode.

setup are presented in Listing 3. HREDTraining-
InputDevice simply invokes the training process
by sending an initiate message to the model while
the dialogue model HREDAgent, configured to be
in training mode, starts its regular training pro-
cess and writes the trained weights to disk. The
training dataset is specified using the prototype
sub-attribute (in compliance with the HRED code
base) within the train args attribute of agent. All
other components of the pipeline are unchanged as
it is unnecessary to postprocess or to output data.
The HRED agent was trained using both the Twit-
ter Corpus (Ritter et al., 2011) and Ubuntu Dia-
logue Corpus (Lowe et al., 2015b).

1 ’input’ : {
2 ’class’ : HREDTrainingInputDevice
3 }, ...
4 ’agent’ : {
5 ’class’ : HREDAgent,
6 ’kwargs’ : {
7 ’train args’ : { ’prototype’ : ’ubuntu HRED’ },
8 ’mode’ : system modes.TRAINING,
9 }

10 },

Listing 3: Modified attributes for HRED training.

6.3.2 HRED in execution mode
We also tested using a trained HRED agent in ex-
ecution and data collection modes. In the execu-
tion mode, MACA used the command-line as the
input and the output units to fetch user responses
and show model responses from HRED. In the
data collection mode, MACA was hosted on a lo-
cal psiTurk (Gureckis et al., 2016) server emulat-
ing mTurk. A layout that lets the users chat and
score the model responses was provided, and user
inputs were logged by a database listener through
the pubsub architecture. In this scenario, the pre-

99

trained HRED model can be seen as a case of cus-
tom built dialogue agent adapted to MACA.

1 ’agent’ : {
2 ’class’ : HREDAgent,
3 ’kwargs’ : {
4 ’ignore unknown words’ : True,
5 ’normalize’ : False,
6 ’prototype’ : ’prototype twitter HRED’,
7 ’train dialogues’ : ’Training.dialogues.pkl’,
8 ’test dialogues’ : ’Test.dialogues.pkl’,
9 ’valid dialogues’ : ’Validation.dialogues.pkl’,

10 ’dictionary path’ : ’Dataset.dict.pkl’,
11 ’model prefix’ : ’./334.74 Model’
12 }
13 },

Listing 4: Agent attribute in HRED Configuration.

The central configuration file from Listing 1 is
updated for HRED in execution mode, as shown
in Listing 4. The model specific arguments, pro-
vided between lines 3 and 14, in Listing 4 demon-
strate MACA’s support for plugging in customized
or pre-trained dialogue agents. Furthermore, an
overview of the architecture, with the instantiated
components, and their roles is provided in Table 3.

Component Description Role
Domain Knowledge EmptyDomainKnowledge An empty domain.
Input StdInputDevice Inputs from stdin.

Preprocessing HredPreprocessing
Tokenize input

sentence.

Model
Preprocessing Model specific

Add model specific
tokens.

Postprocessing Model specific
Remove speaker

tokens.
Internal HredAgent HRED internals.

Postprocessing VoidProcessing None.
Output FileOutputDevice Output to a file.

Listeners LoggingListener
Log all pubsub

notifications to file.

Table 3: Setup of HRED system: Execution mode.

6.4 Building a neural response retrieval agent
Finally, we built an architecture that incorporates a
neural response retrieval agent operating using the
Dual Encoder method (Lowe et al., 2015a).

6.4.1 Dual Encoder in training mode
Listing 5 presents changes to the template con-
figuration to incorporate a Dual Encoder dialogue
agent in training mode. Similar to the HRED
model training case, we replace the Input and
Model modules in the template configuration. In
the case of Dual Encoder, the specified data set
will be loaded into DomainKnowledge and will
become accessible after initialization. During the
training process, RetrievalModelTrainingInputDe-
vice retrieves the data from the specified train-

ing data set via DomainKnowledge and feeds it
to the Dialogue Model while the RetrievalMode-
lAgent contains the relevant training parameters.
Once training finishes, RetrievalModelTrainingIn-
putDevice issues a message to the agent to write
out trained weights to disk.

1 ’input’ : {
2 ’class’ : RetrievalModelTrainingInputDevice,
3 ’kwargs’ : { ’n epochs’ : 500, ’shuffle batch’ : False }
4 }, ...
5 ’agent’ : {
6 ’class’ : RetrievalModelAgent,
7 ’args’ : [’twitter dataset/W twitter bpe.pkl’],
8 ’kwargs’ : {
9 ’model fname’ : ’model.pkl’,

10 ’mode’ : system modes.TRAINING,
11 ’model params’ : {
12 ’encoder’ : ’lstm’,
13 ’batch size’ : 512, ’hidden size’ : 200,
14 ’optimizer’ : ’adam’, ’lr’ : 0.001,
15 }
16 }
17 }, ...
18 ’dataset’ : {
19 ’class’ : RetrievalTwitterDataset,
20 ’args’ : [’twitter dataset’, ’dataset twitter bpe.pkl’]
21 },

Listing 5: Modified attributes for Dual Encoder
training.

6.4.2 Dual Encoder in execution mode
We also tested the Dual Encoder agent in execu-
tion mode, which is an instance of adapting a re-
trieval based model to the proposed framework.
The execution mode in this case obtained inputs
from a database of previously collected context-
response pairs. The configuration file for the Dual
Encoder model looks mostly similar to the generic
template, with modification on the agent attribute,
described in Listing 6.

1 ’preprocessing’ : {
2 ’modules’: [{
3 ’class’ : RetrievalModelPreprocessor,
4 ’args’ : [’./retrieval/BPE/Twitter Codes 5000.txt’]
5 }],
6 }, ...
7 ’agent’ : {
8 ’class’ : RetrievalModelAgent,
9 ’args’ : [’../../twitter dataset/W twitter bpe.pkl’],

10 ’kwargs’ : {
11 ’model params’ : {
12 ’encoder’ : ’lstm’,
13 ’batch size’ : 512, ’hidden size’ : 100,
14 ’input dir’ : ’../../twitter dataset’,
15 ’W fname’ : ’W twitter bpe.pkl’
16 }
17 }
18 },

Listing 6: Agent attribute in Dual Encoder (Re-
trieval Model) Configuration.

100

The configuration file’s flexibility allows cus-
tomized agents to be plugged in with ease, while
providing the parameters for the model to run
in the model params sub-attribute. Further, an
overview of MACA with its instantiated com-
ponents and their roles is provided in Table 4;
specification of these attributes within MACA is
achieved through the configuration file.

Component Description Role
Domain Knowledge EmptyDomainKnowledge An empty domain.
Input StdInputDevice Inputs from stdin.

Preprocessing RetrievalModelPreprocessing
Compute BPE on

all utterances.

Model
Preprocessing Model specific None.
Postprocessing Model specific None.

Internal RetrievalModelAgent
Dual Encoder

internals.
Postprocessing VoidProcessing None.
Output FileOutputDevice Output to a file.

Listeners LoggingListener
Log all pubsub

notifications to file.

Table 4: Setup for Dual Encoder system in execu-
tion mode.

7 Discussion

MACA offers a unified architecture for dialogue
agents that supports the plug-n-play of different
types of dialogue agents and different domains.
We hope that this will facilitate the fast develop-
ment of new models, but also foster reproducibil-
ity in dialogue system research.

A few possible limitations in the current imple-
mentation of MACA include simplicity of the pub-
sub system, lack of support for distributed hosting
of different components of the architecture, and
lack of support for parallel conversations. As fu-
ture work, the pubsub system could be improved
by capturing a wider range of system information
with more monitoring pubsub channels. In ad-
dition, we plan to incorporate new domains and
agents as they become available, along with com-
prehensive ML based slot-disambiguation mod-
ules.

Acknowledgments

Acknowledgements The authors gratefully ac-
knowledge financial support for this work by
the Samsung Advanced Institute of Technology
(SAIT) and the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S Corrado, A. Davis, J. Dean, and

M. et. al Devin. 2016. Tensorflow: Large-scale
machine learning on heterogeneous distributed sys-
tems. arXiv:1603.04467 .

J. F Allen, D. K Byron, M. Dzikovska, G. Ferguson,
L. Galescu, and A. Stent. 2001. Toward conversa-
tional human-computer interaction. AI magazine .

D. Bohus and A. I Rudnicky. 2003. Ravenclaw: Dialog
management using hierarchical task decomposition
and an expectation agenda .

PA Crook, A Marin, V Agarwal, K Aggarwal, T Anas-
tasakos, R Bikkula, D Boies, A Celikyilmaz,
S Chandramohan, and Z et. al Feizollahi. 2016. Task
completion platform: A self-serve multi-domain
goal oriented dialogue platform. NAACL HLT .

P. Gage. 1994. A new algorithm for data compression.
The C Users Journal .

T. M. Gureckis, J. Martin, J. McDonnell, A. S. Rich,
D. Markant, A. Coenen, D. Halpern, J. B. Ham-
rick, and P. Chan. 2016. psiturk: An open-source
framework for conducting replicable behavioral ex-
periments online. Behavior research methods .

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural computation .

S. Kim and R. E. Banchs. 2014. R-cube: a dialogue
agent for restaurant recommendation and reserva-
tion. In Asia-Pacific Signal and Information Pro-
cessing Association, 2014 Annual Summit and Con-
ference (APSIPA). IEEE.

Q. V. Le and T. Mikolov. 2014. Distributed representa-
tions of sentences and documents. In ICML.

E. Loper and S. Bird. 2002. Nltk: The natural lan-
guage toolkit. In Proceedings of the ACL-02 Work-
shop on Effective tools and methodologies for teach-
ing natural language processing and computational
linguistics-Volume 1.

R. Lowe, N. Pow, I. Serban, and J. Pineau. 2015a.
The ubuntu dialogue corpus: A large dataset for re-
search in unstructured multi-turn dialogue systems.
arXiv:1506.08909 .

R. Lowe, N. Pow, I. Serban, and J. Pineau. 2015b. The
ubuntu dialogue corpus: A large dataset for research
in unstructured multi-turn dialogue systems. In 16th
Annual Meeting of the Special Interest Group on
Discourse and Dialogue.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013.
Efficient estimation of word representations in vec-
tor space. arXiv:1301.3781 .

S. Png and J. Pineau. 2011. Bayesian reinforcement
learning for pomdp-based dialogue systems. In
Acoustics, Speech and Signal Processing (ICASSP),
IEEE International Conference on. IEEE.

A. Ritter, C. Cherry, and W. B. Dolan. 2011. Data-
driven response generation in social media. In
EMNLP.

J. Schatzmann, K. Georgila, and S. Young. 2005a.
Quantitative evaluation of user simulation tech-
niques for spoken dialogue systems. In 6th SIGdial
Workshop on DISCOURSE and DIALOGUE.

J. Schatzmann, K. Georgila, and S. Young. 2005b.
Quantitative evaluation of user simulation tech-
niques for spoken dialogue systems. In 6th SIGdial
Workshop on DISCOURSE and DIALOGUE.

101

F. Seide and S. McDirmid. 2012. Clippyscript: A pro-
gramming language for multi-domain dialogue sys-
tems. In Thirteenth Annual Conference of the Inter-
national Speech Communication Association.

I. Serban, A. Sordoni, Y. Bengio, A. Courville, and
J. Pineau. 2015. Building end-to-end dialogue sys-
tems using generative hierarchical neural network
models. arXiv:1507.04808 .

I. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau,
A. Courville, and Y. Bengio. 2016. A hierarchical
latent variable encoder-decoder model for generat-
ing dialogues. arXiv:1605.06069 .

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv:1605.02688 .

S. Young. 2006. Using pomdps for dialog manage-
ment. In Spoken Language Technology Workshop.
IEEE.

T. Zhao, K. Lee, and M. Eskenazi. 2016. Dialport:
Connecting the spoken dialog research community
to real user data. arXiv:1606.02562 .

102

