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Abstract

Attentive listening systems are designed to
let people, especially senior people, keep
talking to maintain communication ability
and mental health. This paper addresses
key components of an attentive listening
system which encourages users to talk
smoothly. First, we introduce continuous
prediction of end-of-utterances and gen-
eration of backchannels, rather than gen-
erating backchannels after end-point de-
tection of utterances. This improves sub-
jective evaluations of backchannels. Sec-
ond, we propose an effective statement
response mechanism which detects focus
words and responds in the form of a ques-
tion or partial repeat. This can be applied
to any statement. Moreover, a flexible
turn-taking mechanism is designed which
uses backchannels or fillers when the turn-
switch is ambiguous. These techniques are
integrated into a humanoid robot to con-
duct attentive listening. We test the feasi-
bility of the system in a pilot experiment
and show that it can produce coherent dia-
logues during conversation.

1 Introduction

One major application of embodied spoken dia-
logue systems is to improve life for elderly peo-
ple by providing companionship and social inter-
action. Several conversational robots have been
designed for this specific purpose (Heerink et al.,
2008; Sabelli et al., 2011; Iwamura et al., 2011).
A necessary feature of such a system is that it be
an attentive listener. This means providing feed-
back to the user as they are talking so that they feel
some sort of rapport and engagement with the sys-
tem. Humans can interact with attentive listeners

at any time, making them a useful tool for people
such as the elderly.

Our motivation is to create a robot which can
function as an attentive listener. Towards this goal,
we use the autonomous android named Erica. Our
long-term goal is for Erica to be able to participate
in a conversation with a human user while display-
ing human-like speech and gesture. In this work
we focus on integrating an attentive listener func-
tion into Erica and describe a new approach for
this application.

The approaches to these kind of dialogue sys-
tems have focused mainly on backchanneling be-
havior and have been implemented in large-scale
projects such as SimSensei (DeVault et al., 2014),
Sensitive Artificial Listeners (Bevacqua et al.,
2012) and active listening robots (Johansson et al.,
2016). These systems are multimodal in nature,
using human-like non-verbal behaviors to give
feedback to the user. However, the backchannels
are usually generated after the end of utterance
and they do not necessarily create synchrony in
the conversation (Kawahara et al., 2015). More-
over, the dialogue systems are still based on hand-
crafted keyword matching. This means that new
lines of dialogue or extensions to new topics must
be handcrafted, which becomes impractical.

In this paper we present an approach to attentive
listening which integrates continuous backchan-
nels with responsive dialogue to user statements
to maintain the flow of conversation. We create
a continuous prediction model which is perceived
as being better than a model which predicts only
after an IPU (inter-pausal unit) has been received
from the automatic speech recognition (ASR) sys-
tem. Meanwhile, the statement response system
detects focus words of the user’s utterance and
uses them to generate responses as a wh-question
or by repeating it back to the user. We also intro-
duce a novel approach to turn-taking which uses
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backchannels and fillers to indicate confidence in
taking the speaking turn.

Our approach is not limited by the topic of con-
versation and no prior parameters about the con-
versation are required so it can be applied to open
domain conversation. We also do not require per-
fect speech recognition accuracy, which has been
identified as a limitation in other attentive listen-
ing systems (Bevacqua et al., 2012). Our system
runs efficiently in real-time and can be flexibly in-
tegrated into a larger architecture, which we will
also demonstrate through a conversational robot.

The next section outlines the architecture of our
attentive listener. In Section 3 we describe in de-
tail the major components of the attentive listener
including results of evaluation experiments. We
then implement this system into Erica as a proof-
of-concept in Section 4, before the conclusion of
the paper. Our system is in Japanese, but English
translations are used in the paper for clarity.

2 System architecture

Figure 1 summarizes the components of attentive
listening and the general system architecture. In-
puts to the system are prosodic features, which is
calculated continuously, and ASR results from the
Japanese speech recognition system Julius (Lee
et al., 2001).

We implement a dialogue act tagger which clas-
sifies an utterance into questions, statements or
others such as greetings. This is currently based
on a support vector machine and is moving to a
recurrent neural network. Questions and others
are handled by a separate module which will not
be explained in this paper. Statements are han-
dled by a statement response component. The
other two components in the attentive listener are
a backchannel generator and a turn-taking model.

Backchannels are generated by one component,
while the statement response component can gen-
erate different types of dialogue depending on the
utterance of the user. As part of our NLP func-
tionalities we have a focus word extractor trained
by a conditional random field (Yoshino and Kawa-
hara, 2015) which identifies the focus of an utter-
ance. For example, the statement “Yesterday I ate
curry.” would produce a focus word of “curry”.
We then send this information to the statement re-
sponse component which generates a question re-
sponse “What kind of curry?”. Further details of
the technical implementation are described in the

next section.
The process flow of the system is as follows.

The system performs continuous backchanneling
behavior while listening to the speaker. At the
same time, ASR results of the user are received.
When the utterance unit is detected and its dia-
logue act is tagged as a statement, then a response
is generated and then stored. However, a response
is only actually output when the system predicts
an appropriate time to take the turn. This is be-
cause the user may wish to keep talking and the
system should not interrupt. Thus, we can manage
turn-taking more flexibly.

In summary, the three major components re-
quired for attentive listening are backchanneling,
statement response and turn-taking.

3 Attentive listening components

In this section we describe the three major com-
ponents of attentive listening. We evaluate each of
these components individually.

3.1 Continuous backchannel generation

Our goal is to increase rapport (Huang et al., 2011)
with the user by showing that the system is inter-
ested in the content of the user’s speech. There
have been many works on automatic backchan-
nel generation, with most using prosodic features
for either rule-based models (Ward and Tsukahara,
2000; Truong et al., 2010) or machine learning
methods (Morency et al., 2008; Ozkan et al., 2010;
Kawahara et al., 2015).

In this work we use a model in which backchan-
neling behavior occurs continuously during the
speaker’s turn, not only at the end of an utterance.
We take a machine learning approach by imple-
menting a logistic regression model to predict if
a backchannel would occur 500ms into the future.
We predict into the future rather than at the current
time point, because in the real-time system Erica
requires processing time to generate nodding and
mouth movements that synchronize with her ut-
terance. We trained the model using a counseling
corpus. This corpus consisted of eight one-to-one
counseling sessions between a counselor and a stu-
dent and were transcribed according to the guide-
lines of the Corpus of Spontaneous Japanese (CSJ)
(Maekawa, 2003).

The model makes a prediction every 100ms by
using windows of prosodic features of sizes 100,
200, 500, 1000 and 2000 milliseconds. For a win-
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Figure 1: System architecture of attentive listener.

dow size s, feature extraction is conducted within
windows every s milliseconds before the current
time point, up to a maximum of 4s millisec-
onds. For example, for a time window of 100ms,
prosodic features are calculated inside windows
starting at 400, 300, 200 and 100 milliseconds
before the current time point. The prosodic fea-
tures are the mean, maximum, minimum, range
and slope of the pitch and intensity. Finally, we
add the durations of silence, voice activity, and
overlap of the speaker and listener.

We conducted two evaluations of the backchan-
nel timing model. The first is an objective evalu-
ation of the precision and recall. We used 8-fold
cross validation and tested on individual sessions.
We compared against a baseline model which gen-
erated a backchannel after every IPU (Fixed) and
an IPU-based model based on logistic regression
which also predicted after every IPU using addi-
tional linguistic features (IPU-based). Our model
showed that the most influential prosodic fea-
ture was the range and maximum intensity of the
speech, with larger windows located just before
the prediction point generally being more influ-
ential than other windows. Although we have no
quantitative evidence, we propose that a reduction
in the intensity of the speech provides an opportu-
nity for the listener to produce a backchannel. The
results are displayed in Table 1.

Model AUC Prec. Rec. F1

Time-based 0.851 0.344 0.889 0.496
IPU-based 0.809 0.659 0.512 0.576
Fixed 0.500 0.146 1.000 0.255

Table 1: Prediction results for backchannel tim-
ing.

We see that the time-based model performs bet-
ter than the baseline and the IPU-based model with
a high AUC and recall. The precision is fairly
low, due to predicting a large number backchan-
nels even though none in the corpus are found.

We also conducted a subjective evaluation of
this model by comparing against the same mod-
els as the objective evaluation. We also in-
cluded an additional counselor condition, in which
backchannels in the real corpus were substituted
with the same recorded pattern.

Participants in the experiment listened to
recorded segments from the counseling corpus,
lasting around 30-40 seconds each. We chose seg-
ments where the counselor acted as an attentive
listener by only responding through the backchan-
nels used in our model. The counselor’s voice for
backchannels was generated using a recorded pat-
tern by a female voice actress. We created the
different conditions for each recording by apply-
ing our model directly to the audio signal of the
speaker. The audio channel of the counselor’s
voice was separated and so could be removed.
When the model determined that a backchannel
should be generated at a timepoint, we manually
inserted the backchannel pattern into the speaker’s
channel using audio editing software, effectively
replacing the counselor’s voice.

Each condition was listened to twice by each
participant through different recordings selected at
random. Subjects rated each recording over five
measures - naturalness and tempo of backchannels
(Q1 and Q2), empathy and understanding (Q3 and
Q4) and if the participant would like to talk with
the counselor in the recording (Q5). Each measure
was rated using a 7-point Likert scale.

For analysis we conducted a repeated measures
ANOVA with Bonferroni corrections. Results are
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shown in Table 2. Our proposed model outper-
formed the baseline models and was comparable
to the counselor condition.

Fixed IPU Couns. Time-based

Q1 2.74∗ 3.92∗ 4.55 4.48
Q2 3.06∗ 4.05 4.86 4.61
Q3 2.44∗ 3.75∗ 4.25 4.58
Q4 2.55∗ 3.95 4.38 4.39
Q5 2.35∗ 3.64∗ 4.23 4.21

Table 2: Average ratings of backchannel models.
Asterisks indicate the difference is statistically sig-
nificant from the proposed model.

The results of both evaluations show the need
for backchannel timing to be done continuously
and not just at the end of utterances.

3.2 Statement response

The statement response component is triggered for
statements and outputs when the system takes a
turn. The purpose is to encourage the user to ex-
pand on what they have just said and extend the
thread of the conversation. The statement response
tries to use a question phrase which repeats a word
that the user has previously said. For example, if
the user says “I will go to the beach.”, the state-
ment response should generate a question such as
“Which beach?”. It may also repeat the focus of
the utterance back to the user to encourage elabo-
ration, such as “The beach?”.

Our approach uses wh-questions as a means
to continue the conversation. From a linguistic
perspective, they are described in question tax-
onomies by Graesser et al. (1994) and Nielsen
et al. (2008) as concept completions (who, what,
when, where) or feature specifications (what prop-
erties does X have?). We observe that listeners in
everyday conversations use such phrases to get the
speaker to provide more information.

From a technical perspective, there are two pro-
cesses for the system. The first process is to de-
tect the focus word of the utterance. The second
is to correctly pair this with an appropriate wh-
question word to form a meaningful question. The
basic wh-question words are similar for both En-
glish and Japanese.

To detect the focus word we use a conditional
random field classifier in previous work which
uses part-of-speech tags and a phrase-level depen-

dency tree (Yoshino and Kawahara, 2015). The
model was trained with utterances from users
interacting with two different dialogue systems.
This corpus was then annotated to identify the fo-
cus phrases of sentences.

We use a decision tree in Figure 2 to decide
from one of four response types. If a focus phrase
can be detected, we take each noun in the phrase,
match them to a wh-question and select the pair
with the maximum likelihood. We used an n-
gram language model to compute the joint prob-
ability of the focus noun being associated with
each question word. The corpus used is the Bal-
anced Corpus of Contemporary Written Japanese,
which contains 100 million words from written
documents. We then consider the maximum joint
probability of this noun and a question word. If
this is over a threshold Tf , then a question on the
focus word is generated. If no question is gener-
ated, the focus noun is repeated with a rising tone.

Figure 2: Decision tree of statement response sys-
tem showing the four different response types.

If no focus phrase is found we match the predi-
cate of the utterance to a question word using the
same method as above. If this is above a threshold
Tp, then the response is a question on the pred-
icate, otherwise a formulaic expression is gener-
ated as a fallback response. We provide examples
of each of the response types in Table 3.

We evaluated this component in two different
ways. Firstly, we extracted dialogue from an ex-
isting chatting corpus created for Project Next’s
NLP task1. We selected 200 user statements from
this corpus as a test set and applied the statement
response system to them. Two annotators then
checked if the generated responses were appropri-
ate. The results are shown in Table 4.

The results showed that the algorithm could
classify the statements reasonably well. However,
in the case of a focus word being unable to be

1https://sites.google.com/
site/dialoguebreakdowndetection/
chat-dialogue-corpus
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Response type Example

Question on focus U: Yesterday I ate curry.
S: What kind of curry?

Partial repeat U: I’ll go and run a marathon.
S: A marathon?

Question on predicate U: Then I went out.
S: Where did you go?

Formulaic expression U: That’s beautiful.
S: Yeah.

Table 3: Examples of response types for user statements. Bold words indicate the detected focus noun
or predicate of the utterance, while underlined words indicate matched question words.

Response type Precision Recall

Question on focus 0.63 0.46
Partial repeat 0.72 0.86
Question on predicate 0.14 0.30
Formulaic expression 0.94 0.78

Table 4: Classification accuracy of statement re-
sponse system for chatting corpus.

found correctly identifying a question word for a
predicate is a challenge.

Next, we evaluated our statement response sys-
tem by testing if it could reduce the number of fall-
back responses used by the system. We conducted
this experiment with 22 participants, and gathered
data on their utterances during a first-time meeting
with Erica. In most cases the participants asked
questions that could be answered by the system,
but sometimes the users said statements for which
the question-answering system could not formu-
late a response. In these cases a generic fallback
response was generated.

From the data we found that 39 out of 226
(17.2%) user utterances produced fallback re-
sponses. We processed all these utterances of-
fline through the statement response component.
From these 39 statements, 19 (47.7%) result in a
statement which could be categorized into either a
question on focus, partial repeat, or a question on
predicate. Furthermore, the generated responses
were deemed to be coherent with the correct fo-
cus and question words being applied. This would
have continued the flow of conversation.

3.3 Flexible turn-taking

The goal of turn-taking is to manage the floor
of the conversation. The system decides when
it should take the turn using a decision model.
One simple approach is to wait for a fixed dura-
tion of silence from the user before starting the
speaking turn. However, we have found this is
highly user-dependent and very challenging when
the user continues talking. The major problem
is that if the user has not finished their turn and
the system begins speaking, they must then wait
for the system’s utterance to finish. This disrupts
the flow of the conversation and makes the user
frustrated. Solving this problem is not trivial so
several works have attempted to develop a robust
model for turn-taking (Raux and Eskenazi, 2009;
Selfridge and Heeman, 2010; Ward et al., 2010).

Figure 3 displays our approach towards turn-
taking behavior, rather than having to make a bi-
nary decision about whether or not to take the turn.
When the user has the floor and the system re-
ceives an ASR result, our model outputs a likeli-
hood score between 0 and 1 that the system should
take the turn. The actual likelihood score deter-
mines the system’s response. The system has four
possible responses - silence, generate a backchan-
nel, generate a filler or take the turn by speaking.

The novelty of our approach is that we do not
have to immediately take a turn based on a hard
threshold. Backchannels encourage the user to
continue speaking and signal that the system will
not take the turn. Fillers are known to indicate a
willingness to take the turn (Clark and Tree, 2002;
Ishi et al., 2006) and so are used to grab the turn
from the user. However, the user may still wish to
continue speaking and if they do the system won’t
grab the turn and so doesn’t interrupt the flow of
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Figure 3: Conceptual diagram of Erica’s turn-
taking behavior. The decision of the system is de-
pendent on the model’s likelihood of the speaker
has finished their turn. Decision thresholds are ap-
plied manually.

conversation. To guarantee that Erica will eventu-
ally take the turn, we set a threshold for the user’s
silence time and automatically take the turn once
it elapses.

To implement this system, we used a logistic
regression model with the same features as our
backchanneling model. We train using the same
counseling corpus and features that were used for
the backchanneling model. We found 25% of the
outputs within the corpus to be turn changes.

Our proposed model requires two likelihood
score thresholds (T1 and T2) to decide whether or
not to be silent (≤ T1) or take the turn (≥ T2). We
set a threshold for deciding between backchannels
and fillers to 0.5. We determined T1 to be 0.45
and T2 to be 0.85 based on Figure 4, which dis-
plays the distributions of likelihood score for the
two classes.

The performance of this model is shown in Ta-
ble 5. We compared the proposed model to a lo-
gistic regression model with a single threshold at
0.5. Results are shown in Table 5.

These two thresholds degrade the recall of turn-
taking ground-truth actions because the cases in
between them are discarded. However we improve
the precision of taking the turn, which is critical
in spoken dialogue systems, from 0.428 to 0.624.
The cases discarded in this stage will be recovered
by uttering fillers or backchannels.

Figure 4: Distribution of likelihood scores for
turn-taking.

Model Precision Recall F1

3-tier

Don’t take turn 0.856 0.683 0.760
Take turn 0.624 0.231 0.337

Binary

Don’t take turn 0.848 0.731 0.785
Take turn 0.428 0.605 0.501

Table 5: Performance of turn-taking model com-
pared to single-threshold logistic regression.

Moreover, the ground-truth labels are based on
actual turn-taking actions made by the human lis-
tener, and there should be more Transition Rel-
evance Places (Sacks et al., 1974), where turn-
taking would be allowed. This should be ad-
dressed in future work.

4 System

In this section we describe the overall system with
the attentive listener being integrated into the con-
versational android Erica.

4.1 ERICA

Erica is an android robot that takes the appearance
of a young woman. Her purpose is to use conver-
sation to play a variety of social roles. The phys-
ical realism of Erica necessitates that her conver-
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sational behaviors are also human-like. Therefore
our objective is not only to undertake natural lan-
guage processing, but to also address a variety of
conversational phenomena.

The environment we create for Erica reduces the
need to use a physical interface such as a hand-
held microphone or headset to have a conversa-
tion. Instead we use a spherical microphone array
placed on a table between Erica and the user. A
photo of this environment is shown in Figure 5.

Figure 5: Photo of user interacting with Erica.

Based on the microphone array and the Kinect
sensor, we are able to reliably determine the
source of speech. Erica only considers speech
from a particular user and ignores unrelated noises
such as ambient sounds and her own voice.

4.2 Pilot study

We conducted an initial evaluation of our system
as a pilot study to demonstrate its appropriateness
for attentive listening. We have observed from pre-
vious demonstrations that users often do not speak
with Erica as if she is an attentive listener. Rather,
they simply ask Erica questions and wait for her
answers. To overcome this issue in order to eval-
uate the statement response system, we first pro-
vided the subjects with dialogue prompts in the
form of scripts. This allowed users familiarize
themselves with Erica for free conversation. Two
male graduate students were subjects in the exper-
iment and interacted with Erica in these two dif-
ferent tasks.

The first task was to read from four conversa-
tional scripts of 3 to 5 turns each. These scripts
were not hand-crafted, but taken from a corpus
of real attentive listening conversations with a
Wizard-of-Oz controlled robot. Subjects were in-
structed to pause after each sentence in the script
to wait for a statement response. If Erica replied
with a question they could answer it before con-

tinuing the scripted conversation.
The second task was to speak with Erica freely

while she did attentive listening. In this scenario
the subjects talked freely on the subject of their
favorite travel memories. They could end the con-
versation whenever they wished. Statistics of the
subjects’ turns are shown in Table 6.

Script Free talk

Turns 77 13
Avg. length per turn (sec.) 3.94 2.90
Avg. characters per turn 20.9 16.4

Table 6: Statistics for the speaking turns of the
subjects.

We find that the subjects reading from the script
had longer turns but the speaking rate was lower
than for free talk. In other words, script reading
was slower and longer. We also analyzed the dis-
tribution of response types generated from the sys-
tem as shown in Table 7.

Script Free talk Total

Backchannel 77 13 90
Q. on focus 14 10 24
Partial repeat 10 1 11
Q. on predicate 2 1 3
Formulaic 29 6 35

Total 132 31 163

Table 7: Distribution of response types from
statement response component.

Backchannels were generated most frequently,
while both questions on focus and formulaic ex-
pressions were the most common response types,
with questions on focus words having the highest
frequency in free conversation. Partial repeats had
a much higher frequency in the scripts than in free
conversation. This is because the script readings
were taken from conversations which used more
complex sentences than the free talk, and focus
nouns for which a suitable question word could
not be reliably matched.

4.3 Subjective ratings

We evaluated the system by asking 8 evaluators
to listen to the recording of both the scripts and
free conversation. Each evaluator was assigned
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Speaker Japanese utterance English translation Component
User Kono mae, tomodachi to Awa-

jishima ni ryokou ni ikimashita.
I once took a trip with friends
to Awajishima island

Erica unun mhm Backchannel
Erica Doko e itta no desuka? Where did you go? Question on predicate

User Awajishima ni itte, sono ato
bokujo nado wo-

Awajishima, then-

Erica un mm Backchannel

User mi ni ikimashita. went to visit a farm.

Erica Doko no bokujo desu ka? Where was the farm? Question on focus

User Etto, namae ha chotto oboete-
nain desukeredomo-

Um, I don’t remember the
name of it, but-

Erica un mm Backchannel

User -ee, hitsuji toka wo mimashita. -we saw sheep and other ani-
mals.

Table 8: Example dialogue of user free talk conversation with attentive listening Erica.

one random script and both free conversations to
evaluate. The evaluators rated each of Erica’s
backchannels and statement responses in terms of
coherence (coherent, somewhat coherent, or inco-
herent) and timing (fast, appropriate, or slow). We
used a majority vote to determine the overall rating
of each speech act. The ratings on the coherence
of each statement are shown in Figure 6.

Figure 6: Rating on coherence for each response
type.

We see that the results are similar to the previ-
ous evaluation of the statement response system.
More than half of questions on focus words were
coherent, although most of these were in response
to the scripts. Formulaic expressions were mostly
coherent even though they were selected at ran-
dom.

Similarly, we categorized system utterances
into backchannels or statements and analyzed tim-
ing. The results are shown in Figure 7.

Figure 7: User rating of timing for backchannels
and statements.

We can see that while most backchannels have
suitable timing, statement responses are slow due
to the processing of the utterance that is required.

4.4 Generated dialogue

Table 8 shows dialogue from a free talk con-
versation. User utterances were punctuated by
backchannels and the system is able to extract a
focus noun or predicate and produce a coherent
response.

We also found that the system could produce a
coherent response even in the case of ASR errors.
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In one case the subject said “sakana tsuri wo shi-
mashita (I went fishing.).”. The ASR system gen-
erated “sakana wo sore wo sumashita”, which is
nonsensical. In this case, the word “fish” was suc-
cessfully detected as the focus noun and a coherent
response could be generated.

4.5 Analysis of incoherent statements

We also examined 17 utterances determined to be
incoherent (excluding backchannels and formulaic
expressions) and analyzed the reasons for these.
Table 9 shows the sources of errors in the state-
ment response with their associated frequencies.

Error source Frequency

Incorrect question word match 5
Incoherent focus noun/predicate 4
Repeated statement 4
ASR errors 3
Focus word undetected 1

Table 9: Errors found in the generated statement
responses.

Incorrect question word matching was found
several times. For example, the user said “Tokyo
ni ryokou ni ittekimashita (I went on a trip to
Tokyo)”, generating the reply “Donna Tokyo desu
ka? (What kind of Tokyo?)” which does not make
sense. Another source of error was the system de-
tecting a focus noun or predicate which did not
make sense. Repeated statements were also found.
The subject had already explained something dur-
ing the conversation but the system asked a ques-
tion on it. This can be addressed by keeping a his-
tory of the dialogue. The ASR word error rate
was approximately 10% for both script reading
and free talk, so was not a major issue. In most
cases, incorrect ASR results cannot be parsed and
so a formulaic expression is produced.

4.6 Lessons from pilot study

Our pilot study showed that our system is feasi-
ble with no technical failures. Backchannels can
be generated at appropriate times. Coherent re-
sponses could be generated by the system and er-
rors in Erica’s dialog can be addressed. We chose
third-party evaluations for this experiment due to
the small sample size and also because the sub-
jects could not evaluate specific utterances while
they were using the system.

However we intend to conduct a more com-
prehensive study where the subjects evaluate their
own interaction with Erica. Subjects should en-
gage in free talk, but we have found that moti-
vating them to do so is not trivial. A reasonable
metric for a full experiment is the subject’s will-
ingness to continue the interaction with with Erica
which indicates engagement with the system. We
can also use more objective metrics such as the
number and length of turns taken by the user. Our
strategy of using fillers and backchannels to regu-
late turn-taking should also be evaluated.

5 Conclusion and future work

In this paper we described our approach towards
creating an attentive listening system which is in-
tegrated inside the android Erica. The major com-
ponents are backchannel generation, statement re-
sponse system, and a turn-taking model. We
presented individual evaluations of each of these
components and how they work together to form
the attentive listening system. We also conducted a
pilot study to demonstrate the feasibility of the at-
tentive listener. We intend to conduct a full exper-
iment with the system to discover if it is compa-
rable to human conversational behavior. Our aim
is for this system to be used in a practical setting,
particularly with elderly people.
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