
Proceedings of the SIGDIAL 2017 Conference, pages 17–22,
Saarbrücken, Germany, 15-17 August 2017. c©2017 Association for Computational Linguistics

User-initiated Sub-dialogues
in State-of-the-art Dialogue Systems

Staffan Larsson
Centre for Linguistic Theory and Studies in Probability (CLASP)

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg

sl@ling.gu.se

Abstract

We test state of the art dialogue systems
for their behaviour in response to user-
initiated sub-dialogues, i.e. interactions
where a system question is responded to
with a question or request from the user,
who thus initiates a sub-dialogue. We look
at sub-dialogues both within a single app
(where the sub-dialogue concerns another
topic in the original domain) and across
apps (where the sub-dialogue concerns a
different domain). The overall conclusion
of the tests is that none of the systems
can be said to deal appropriately with user-
initiated sub-dialogues.

Index Terms: dialogue, dialogue systems, dia-
logue management, human-machine interaction,
dialogue structure

1 Introduction

This paper follows Larsson (2015) in taking a look
at how dialogue systems from some of the major
players on the market actually deal with some con-
versational behaviours frequently encountered in
human-human dialogue. It should be noted that
the tests necessarily reflect the behaviour of the
systems tested at the time of the test. As any other
app in your mobile, conversational agents are fre-
quently updated and new behaviours are added.
The tests described here were carried out in March
2017.

The work presented here builds on the “Trindi
Tick-list” (Bos et al., 1999) which was constructed
in the TRINDI project1 to examine whether certain
dialogue behaviours can be reliably manifested by
a dialogue system. The original tick-list is still be-
ing used (Hofmann et al., 2014), and there have

1http://www.ling.gu.se/projekt/trindi/

been later revisions and amendments (although
these remain to be published). With the advent
of widely available spoken dialogue systems in
smartphones, the kind of evaluation exemplified
by the Trindi Tick-list has again become relevant.

In this paper, we will choose a small sub-
set of the questions in the current tick-list, and
investigate how systems deal with dialogue be-
haviours related to user-initiated sub-dialogues,
i.e. cases where a system question is responded
to with a user question (or request). According to
Łupkowski and Ginzburg (2013), responding to a
query with a query is a common occurrence, rep-
resenting on a rough estimate more than 20% of
all responses to queries found in the British Na-
tional Corpus. Also, many of us are used to being
able to multi-task using our computers and smart-
phones, jumping back and forth at will between
several apps or programs, and there seems to be
no particular reason why we should not be able to
do so just because we are interacting using spoken
dialogue.

2 The systems in the test

We tested five systems: Siri2, API.AI3, Houndify4,
Cortana5 and Alexa6. The choice of these sys-
tems was based on (1) availability, (2) being rea-
sonably well-known, and (3) allowing testing the
dialogue phenomena in question7. While previous
tests (Larsson, 2015) used complete off-the-shelf

2http://www.apple.com/ios/siri/
3https://api.ai/
4https://www.houndify.com/
5https://www.microsoft.com/en-us/

mobile/experiences/cortana/
6https://developer.amazon.com/alexa
7For example, the Google Assistant and Google Home

systems rarely if ever ask questions to the user; instead, they
generally try to take whatever information they have and do
something with it. This means that there no natural place to
initiate a sub-dialogue when interacting with these systems.
For these reasons, they have not been included in this test.

17



end-to-end dialogue applications (e.g. for calling
people up), the market has shifted towards offering
developers various degrees of freedom and support
in implementing dialogue applications on top of
a dialogue system (or dialogue system platform).
In this respect, the systems in the test differ to a
large extent – not only with respect to the extent to
which they support various dialogue behaviours,
but also as to whether they offer any dialogue man-
agement capabilities at all. Roughly speaking, the
systems fall into three broad classes:

• Closed systems: A fixed set of non-
configurable dialogue applications (e.g. Siri).

• Configurable service platforms provide di-
alogue management and domain implemen-
tations8; developers select domains and con-
nect services to these ready-made domain im-
plementations (e.g. SiriKit, Houndify9).

• Domain development platforms provide
generic dialogue management; developers
implement their own domains or select from
a set of predefined domains (e.g. API.AI,
(Houndify10))

• Dialogue shells offer ASR, NLU and TTS;
developers implement dialogue managers
(including domain implementations) (e.g.
Cortana, Alexa).

In Section 3, we discuss some complications
arising from applying a single test to systems of
all four classes. First, however, we provide a brief
description of each of the tested systems.

2.1 Siri
Siri runs on the iPhone and on a variety of Apple
devices. SiriKit11 offers some minimal opportu-
nities for developers to connect their own exter-
nal services to Siri, but only for a limited range of
service types (currently VoIP calling, messaging,
payments, photo and workouts) for which ready-
made language understanding and dialogue man-
agement knowledge is provided by Siri (and un-
available for developers). For each service type, a

8Roughly, we use (dialogue) app to refer to the entity with
which a user communicates about a certain domain, given
some domain implementation encoding the knowledge re-
quired to talk about that domain.

9The openly available Houndify only allows accessing ex-
isting domains.

10Building custom domains for Houndify is currently by
invitation only. We have not been able to test this feature.

11https://developer.apple.com/sirikit/

fixed set of ”intents” (tasks) are defined, that the
developer use to connect their service. In the cur-
rent tests, we used ready-made Siri applications on
an iPhone,

2.2 API.AI

API.AI (which can be used in Google Assistant
and Google Home apps) offers an interactive GUI
tool for building a dialogue application by giving
sample user sentences and mapping these onto in-
terpretations in terms of intents and entities. The
user-defined app can be combined with a number
of pre-defined apps (not editable). For the current
test, we used a combination of one ”home-made”
application and a selection of predefined domains,
since this gave us the opportunity to define a do-
main with several intents as well as intents with
multiple parameters (necessary for performing all
our tests). Specifically, a simple phone domain
was implemented by the author using the API.AI
developer GUI. The tests were conducted using
the text interface on the API.AI developer website.

2.3 Houndify

Houndify is very similar to API.AI but we have
so far not been able to get access to the developer
tools. For this reason, we used only predefined
applications in the tests. The tests were conducted
using the text interface on the Houndify developer
website.

2.4 Cortana

Cortana runs on a variety of Windows devices, and
essentially allows developers to build apps that
use Cortana’s built-in ASR and TTS (as well as
the phone touch-screen for graphical output and
haptic input) with a Cortana look-and-feel. This
means that NLU, dialogue management and NLG
need to be implemented more or less from scratch
by the developer. In this test, we used existing
ready-made Cortana domains on a Nokia Lumia
phone.

2.5 Alexa

Amazon’s Alexa runs on the Amazon Echo, and is
similar to Cortana, except it also offers generic and
configurable NLU capabilities. For our tests, we
used ready-made Alexa domains. While broadly
classified as a ”dialogue shell”, Alexa does of-
fer a general mechanism for switching between
domains (”skills”) that is relevant for our current

18



concerns. The tests were conducted on an Ama-
zon Echo.

3 Complications

Our main interest is to evaluate general (do-
main independent) dialogue management features,
which may be problematic in some cases where
it is not clear if a certain behaviour is imple-
mented in a general dialogue manager, or if it is
produced by a domain-specific dialogue manage-
ment script. In many cases, the source of an ob-
served behaviour can be inferred from documen-
tation, but in other cases more indirect evidence
has to be used. For example, if a system displays
identical behaviours across several domains, this
may be evidence that it is produced by a general
dialogue manager.

Note that we are not mainly interested in what
is possible in a given system, but rather in what is
supported by the system. That is, the developer
should not have to implement all or most of the
code required to deal with the dialogue feature in
question. Ideally, the developer should not have
to do anything to enable it (other than possibly se-
lecting or deselecting the feature). In the case of
”dialogue shells”, very few dialogue features are
supported. Pretty much any behaviour can in prin-
ciple be implemented, but this is not necessarily
very helpful for the developer.

Another problem concerns the notion of a do-
main (or ”app”). Whereas in some cases it is clear
whether two tasks (or ”skills”) are implemented as
separate domains. We have assumed e.g. that ask-
ing about missed calls and calling people up both
belong to the ”phone” domain, while asking for
the time or setting an alarm probably instead be-
long to the ”clock” domain.

Despite these complications, we believe the
tests in this paper can be of interest, and we have
tried to make clear the specific characteristics of
the systems to enable the reader to assess the reli-
ability of the tests.

4 Results

The overall results of the tests are shown in Ta-
ble 1. In this section, we present the details of
these results and provide concrete interactions as
evidence.

4.1 User anytime jump to task within app
The first three tests consider the capabilities of the
systems to deal with user utterances that respond
to a system question related to a task T with a re-
quest or question related to another task T ′ (where
T and T ′ are both in the same domain). We re-
fer to such a request or question as ”jump to task”.
The ”anytime” refers to the fact the the jump to T ′

can occur at any point during the dialogue related
to task T (not only e.g. after T ′ is done). The tests
are the following (indexed Fn for ”feature n”):

• (F1) User anytime jump to task within
app. Does the system respond adequately to
jumps, i.e. does it shift the topic of conversa-
tion to T ′?

• (F2) System resume after within-app sub-
dialogue. After finishing T ′, does the sys-
tem return the dialogue to the previous (un-
finished) topic T ?

• (F3) Signal task resumption. If the system re-
sumes T , does it also indicate this somehow?

Note that F2 and F3 are not applicable if F1 is
answered negatively, and that F3 is not applicable
if F2 is answered negatively. Here is an example of
a dialogue with a system that would yield ”yes”-
answers to all three questions:

U: Make a call
S: Who do you want to call?
U: Do I have any missed calls?
S: No. Returning to making a call. Who do

you want to call?

Here, the system’s last utterance (starting with
”No”) first shows that it can deal with the embed-
ded question by answering it (F1). It also shows
that it returns to the unfinished topic of making a
call, by repeating the question ”who do you want
to call.” (F2) Finally, it signals task resumption ex-
plicitly (”Returning to making a call”) (F3).

Siri accepts the embedded question T ′ and re-
sponds to it, but does not manage to return to the
previous unfinished topic T .

U: Make a call
S: Who do you want to call?
U: Do I have any missed calls?
S: No
U: Okay
S: -

19



Siri API.AI Houndify Cortana Alexa
F1. User anytime jump to task within app + + ? - +
F2. System resume after within-app sub-dialogue - - ? - -
F3. Signal task resumption N/A N/A ? - N/A
F4. User anytime jump across apps + - - - (+)
F5. System resume after other-app subdialog - N/A N/A N/A -
F6. Signal app (and task) resumption N/A N/A N/A N/A N/A

Table 1: Dialogue behaviours related to user-initiated sub-dialogues in five dialogue systems

API.AI produces the same behaviour as Siri,
failing to return to the unfinished topic.

Unfortunately, Houndify could not be tested for
this feature, since none of the available domains
featured (1) more than one task, whereof (2) at
least one task involved asking a question to the
user.

Since Alexa does not implement calling people
up, we instead used the clock domain for testing
F1-F3. The results were the same as for Siri and
API.AI.

U: Set the alarm
S: Alarm for what time?
U: What time is it?
S: 10.15
U: OK
S: -

Cortana did slightly worse than the other sys-
tems, failing to understand the embedded question
(again we used the clock domain)12.

U: Set the alarm
S: Set you alarm for what time?
U: What time is it?
S: What time did you want the alarm?

4.2 User anytime jump across apps

The next three tests (F4-F6) consider the capabili-
ties of the systems to deal with user utterances that
respond to a system question related to a task T in
a domain D with a request or question related to
a task T ′ in another domain D′ 6= D. We refer to
such a request or question as ”jump across apps”.
Again, ”anytime” refers to the fact the the jump to
T ′ can occur at any point during the dialogue re-
lated to task T (not only e.g. after T ′ is done). The
tests are the following:

12Cortana had no problem understanding ”What time is it”
when the question was not embedded.

• (F4) User anytime implicit jump across apps.
After having asked a question related to a task
T in a domain D, does the system respond
adequately to a request or question related to
a task T ′ belonging to a domain D′ (but not
mentioning D′), i.e. does it shift the topic of
conversation to T ′ and D′?

• (F5) System resume after other-app sub-
dialogue. After finishing T ′, does the sys-
tem return the dialogue to the previous (un-
finished) topic T ?

• (F6) Signal app (and task) resumption. If the
system resumes T , does it also indicate this
somehow?

Note that F5 and F6 are not applicable if F4 is
answered negatively, and that F6 is not applicable
if F5 is answered negatively. Here is an example of
a dialogue with a system that would yield ”yes”-
answers to F4, F5 and F6:

U: Make a call
S: Who do you want to call?
U: What time is it?
S: 8 pm. Returning to making a call. Who

do you want to call?

Siri offers user anytime jump across apps13.
The behaviour concerning F5 and F6 parallels that
of F2 and F3.

U: Call John
S: Which number for John?
U: What time is it?
S: 8 pm.
U: OK
S: -

API.AI does not provide F4:
13This assumes that calling people up and asking the time

belong to different domains

20



U: Make a call
S: Who do you want to call?
U: What time is it?
S: Who do you want to call?

For Houndify, we used a different combination
of domains to test for F4-F6, with tip calculation
taking the place of calling someone up. The result
is similar to that for API.AI, but instead of simply
ignoring the embedded request, the system indi-
cates that it does not understand it.

U: Calculate tip
S: What is the amount of the bill?
U: What time is it
S: Sorry, I did not understand that. The bill

amount is indicated on the check. What
is the amount of the bill?

The results for Cortana were similar to those
for API.AI.

In many cases, Alexa requires the user to ex-
plicitly address the app, thus requiring what we
may call ”gated commands” as opposed to ”gate-
less commands” (wich can be issued without ex-
plicitly addressing the relevant app).

U: Alexa, play Abba on Spotify

Regardless of whether gated or gateless com-
mands were used, Alexa would switch topic as re-
quested, but did not manage to return to the origi-
nal topic.

U: Alexa, set the alarm
S: Alarm for what time?
U: Alexa, play Abba on Spotify
S: (plays music)

5 Discussion and future work

An obvious extension of the work presented here
is to include more systems, i.e. Luis (from Mi-
crosoft) and Watson (from IBM). This also points
to the need for regularly testing both new and es-
tablished systems for a wide range of dialogue
phenomena, preferably in a standardised manner.

Another obvious extension of the work pre-
sented here would be to relate the various dia-
logue behaviours to measurements of the quality,
usefulness and attractiveness of dialogue systems
that have or lack the respective features. Here,
the PARADISE framework (Walker et al., 1997)

could potentially be very useful. Such investiga-
tions, however, must take into account variability
in the usefulness of various dialogue features with
respect to the overall activity and other situational
factors. A feature which is very useful in one con-
text may be of little interest in another.

It seems likely that at least in some cases, the
user may not expect or want a conversational part-
ner to return to a previous topic. For example, the
user may switch to another topic as a way of steer-
ing the conversation away from the current topic.
How to distinguish cases where a user initiative is
intended an interruption of the ongoing topic, vs.
when it is intended as an embedded subdialogue,
is an interesting area for future research.

It is also possible that real-time factors may play
a role. If embedded sub-dialogues can be dealt
with in an efficient and highly interactive manner,
with minimal delay between turns, this reduces the
user’s perceived cost (in terms of time and effort)
of entering into a sub-dialogue, and may boost the
usefulness of such sub-dialogues.

It should be noted that although none of the
tested systems dealt adequately with user-initiated
sub-dialogues, there are systems that do handle
these phenomena. We know of at least two such
systems, Indigo14 from Artificial Solutions, and
the Talkamatic Dialogue Manager (TDM) from
Talkamatic15,16. These systems deal appropriately
with most of the phenomena listed in Table 117.

6 Conclusion

We have tested five different well-publicised di-
alogue systems for their behaviour in response
to user-initiated sub-dialogues within and across
apps. The overall conclusion of the tests is that
none of the systems tested deal appropriately with
user-initiated sub-dialogues. In light of how fre-
quent this behaviour is in human-human dialogue,
we regard this as a serious shortcoming.

We hope that the kind of evaluation presented
here can improve our understanding of the state of
the art in commercial dialogue systems, and sug-
gest ways in which to improve such systems with
respect to dialogue management.

14http://www.hello-indigo.com/
15talkamatic.se
16For transparency, it should be noted that the author is co-

founder and co-owner of Talkamatic AB.
17TDM handles all of F1-F7. Indigo handles F1-F4 and

F6-F7. However, Indigo has trouble with the over- and other-
answering tests described in Larsson (2015).

21



References
Johan Bos, Staffan Larsson, I Lewin, C Matheson, and

D Milward. 1999. Survey of existing interactive sys-
tems. Technical Report D1.3, TRINDI (Task Ori-
ented Instructional Dialogue) project.

Hansjörg Hofmann, Anna Silberstein, Ute Ehrlich,
André Berton, Christian Müller, and Angela Mahr.
2014. Development of speech-based in-car hmi
concepts for information exchange internet apps.
In Natural Interaction with Robots, Knowbots and
Smartphones, Springer, pages 15–28.

Staffan Larsson. 2015. The state of the art in dealing
with user answers. In Christine Howes and Staffan
Larsson, editors, Proceedings of the 19th Workshop
on the Semantics and Pragmatics of Dialogue (go-
DIAL).

Paweł Łupkowski and Jonathan Ginzburg. 2013. A
corpus-based taxonomy of question responses. In
IWCS 2013 (International Workshop on Computa-
tional Semantics).

M. A. Walker, D. J. Litman, C. A. Kamm, and
A. Abella. 1997. PARADISE: A framework for
evaluating spoken dialogue agents. In Proc. of the
ACL. Madrid, pages 271–280.

22


