
Proceedings of the SIGDIAL 2017 Conference, pages 352–355,
Saarbrücken, Germany, 15-17 August 2017. c©2017 Association for Computational Linguistics

Lessons in Dialogue System Deployment

Anton Leuski and Ron Artstein
USC Institute for Creative Technologies

12015 E Waterfront Dr
Los Angeles, CA 90094, USA

{leuski|artstein}@ict.usc.edu

Abstract

We analyze deployment of an interactive
dialogue system in an environment where
deep technical expertise might not be read-
ily available. The initial version was cre-
ated using a collection of research tools.
We summarize a number of challenges
with its deployment at two museums and
describe a new system that simplifies the
installation and user interface; reduces re-
liance on 3rd-party software; and provides
a robust data collection mechanism.

1 Introduction

New Dimensions in Testimonies (NDT) is a dia-
logue system that allows for two-way communi-
cation with a person who is not available for con-
versation in real time: a large set of statements
is prepared in advance, and users access these
statements through natural conversation that mim-
ics face-to-face interaction (Artstein et al., 2014).
Users interact with a recording of Holocaust sur-
vivor Pinchas Gutter. The system listens to their
questions, selects and plays back Mr. Gutter’s re-
sponses from a collection of video clips. We de-
ployed the system at the Illinois Holocaust Mu-
seum and Education Center in Skokie since March
2015 (Traum et al., 2015a), where a museum do-
cent relays questions from a large group audience
to the system. The system was also installed for a
few months at the U.S. Holocaust Memorial Mu-
seum in Washington, DC, and was demonstrated at
other locations by our collaborators from the USC
Shoah Foundation (SFI).

The installation proved to be a successful teach-
ing aid: student gains were reported in interest in
historical topics, critical thinking, and knowledge
of issues going on in the world. The NDT sys-
tem provided an engaging and emotional experi-

8. Web server

4. Video Player

Audio

1. AcquireSpeech

3. NPCEditor

7. ActvieMQ server

5. Launcher

6. Logger

2. Google Web ASR 
webapp

Video
G

Google ASR 
Service

Figure 1: The initial NDT system architecture.

ence (Traum et al., 2015b). However, we discov-
ered a number of issues with the system mainte-
nance and support: system installation was a deli-
cate process, there were issues maintaining the 3rd
party system dependencies, the system user inter-
face tended to overwhelm and confuse the oper-
ators, and reliable data collection proved to be a
challenge.

The lessons we learned from the deployment of
the NDT system led us back to the drawing board.
We created a new version of the NDT system that
we call Alfred. Our goal was to make the sys-
tem easier to install and maintain. We looked to
simplify and streamline the user interface; create
a better data collection and archiving mechanism;
develop support for multiple survivor databases;
and optimize the system for better performance.
This paper describes the initial NDT system ar-
chitecture and compares Alfred’s design to it. We
enumerate the challenges with encountered in the
initial deployment and discuss how we addressed
each challenge in Alfred.

2 Deployment Challenges

The initial NDT system was created from compo-
nents of the Virtual Human Toolkit (Hartholt et al.,
2013). It consists of 9 applications running on a
single computer (Figure 1).

352



The NDT system listens to the user’s audio
streaming from a microphone. Two compo-
nents handle the audio stream: AcquireSpeech (1)
records the user’s audio to a file for later analysis,
and the Google Web ASR webapp (2) sends the
audio to Google speech recognition services, re-
ceives the speech transcription, and forwards the
text to the language understanding module. The
webapp is loaded from a web server (8) running
in the background. We chose the Google speech
service because it has been shown to be highly ef-
fective and robust (Morbini et al., 2013). At the
time of the system development, the only way to
access the Google ASR was to use the Web Speech
API in the Chrome web browser1; we thus had to
include Chrome as an additional component of the
NDT system (the ninth component, not explicitly
shown on Figure 1).

The language understanding and dialogue man-
agement are handled by NPCEditor (3) (Leuski
and Traum, 2011). It uses a statistical classifier
to analyze the speech transcript and selects the ap-
propriate response from a collection of Mr. Gut-
ter’s video clips. It passes the clip identifier to a
custom Video Player (4), which handles on-the-fly
video composition such as the crossfade effect be-
tween clips and custom backgrounds for the video.

The interprocess communication between indi-
vidual components is handled by messages that
flow through the ActiveMQ message server (7).
Logger (6) records and stores all the messages for
further analysis. Finally, Launcher (5) starts and
terminates the individual components. The video
clips and the language data are packaged with the
system components inside the Launcher applica-
tion. A typical NDT installation is run on a 15-
inch MacBook Pro, connected via HDMI to an ex-
ternal monitor or television.

Architecture The multi-component design
stems from the origins of the VH Toolkit as a
research and development enviromnent, where
individual components can be swapped as needed.
If a component crashes, the rest of the system
continues to work. This design created several
issues for museum deployment: the system was
slow to start as each component had to be loaded
and initialized separately, and if a component
crashed, the system appeared to be running but
stopped responding. This confused system oper-
ators, many of whom were museum volunteers

1http://tinyurl.com/mxdocae

with little technical training.
To simplify operation while preserving the

multi-component design, Alfred appears as a sin-
gle application, but internally it integrates a num-
ber of dynamically loaded plugins corresponding
to individual parts of the architecture (Figure 2).
The plugins deal with audio acquisition, speech
recognition, response selection, video playback,
logging, and external communication. The plug-
ins use an internal messaging protocol to exchange
information while isolating internal plugin details
from each other. The Alfred application frame-
work also maintains an internal database (a white-
board) where the plugins can share data about the
current state of the execution.

7. Alfred framework

1. Audio 
Acquisition and 

Recording

2. Speech 
Recognition

3. Response 
Selection

5. Message 
Logging 6. Control UI

4. Video 
Playback

Audio
Video

Google Cloud 
Speech Service

Logging Server

Figure 2: The Alfred NDT system architecture.
Each box represents a dynamically loaded plugin
that shares code in the Alfred framework.

Installation The original system installation and
maintenance process is complicated by the need
to install and maintain system-level 3rd party de-
pendencies: Java SDK for Components 1, 3, 5, 6,
and 7, and Google Chrome browser and Apache
web server for Component 2. Configuring both
web and ActiveMQ servers requires modifying the
OS configuration. Google Chrome’s update mech-
anism runs in background without user’s control
and can break the system without warning. This
issue came to light when the NDT system stopped
working one morning after the web browser up-
dated itself overnight.

While many of the original toolkit components
are cross-platform, the installation packaging for
the NDT system was specific to MacOS, as both
the museum staff and SFI personnel showed that
they are more familiar with that environment. We
therefore created Alfred as a native MacOS appli-

353



cation. It has all the traditional UI features that a
native application has. It is installed by download-
ing an archive file, unpacking and dragging the ap-
plication icon into place. It does not require ad-
ministrative level OS privileges for installation. It
can be removed by dragging the application icon
into the trash. Alfred has no external dependen-
cies that we do not control – no Java runtime or
Google Chrome to maintain. Alfred integrates an
auto-update mechanism that checks our server at
regular intervals and prompts the user to update
the application if a new version is available.

User Interface Each original VH Toolkit com-
ponent was created as a research tool, with its own
user interface (UI). As the components were de-
veloped independently, the UIs are not consistent
across them. During the system startup each com-
ponent presents its own window interface. Addi-
tionally, as all the components in the system are
built to be cross-platform using Java or C libraries,
the UI elements in the components often do not
match what a user is expecting from a native appli-
cation. The number of windows and the amount of
information presented in the windows overwhelm
unexperienced system operators.

To simplify the UI design, we separated the user
interface into regular and expert configurations. In
the regular configuration, Alfred presents a single
window with the survivor’s video. This mode is
all that is required to interact with the system. The
expert mode provides an additional window with
detailed information from individual plugins. The
window contains tabs; each tab corresponds to a
UI plugin that displays concise information sum-
mary in the tab itself, with space for more detailed
information in the pane associated with the tab.
For example, a UI plugin corresponding to the au-
dio acquisition module displays the current audio
power level in its tab, while providing user con-
trols for selecting the audio source and toggling
the audio recording in its pane. A number of UI
plugins are provided, including one that supports
a Wizard-of-Oz interface (Artstein et al., 2015).

The expert mode is disabled by default, but can
be displayed on request. The expert interface is
implemented as a web app that runs in a browser
window, to allow observation and control from an-
other computer. The connection is done via the
standard http protocol so it is capable of crossing
most firewalls without issues.

Performance The overall NDT system perfor-
mance was acceptable while running on a top-of-
the-line laptop. However, we encountered several
challenges. Firstly, the system operators reported
that the system would stop responding to the user’s
input for short amounts of time. We traced the
issue to a Java garbage collection process effec-
tively pausing the system at random times. Sec-
ondly, the Video Player would occasionally stutter
during clip transitions. That issue was attributed
to the open source, cross-platform OpenCV2 li-
brary used for video decoding, which was not effi-
cient enough for video playback of high resolution
clips. Finally, Google Web Speech API is non-
standard and poorly documented. For example,
while we could request transcription in US En-
glish, that feature never worked reliably; when in-
stalling and demonstrating the system in Canada
or United Kingdom, Google Chrome would de-
tect the computer location, and the speech recog-
nition result would default to Canadian or British
spellings, throwing off the language understanding
component.

As a native application, Alfred does not suffer
from garbage collection issues. Some native com-
ponents show higher efficiency than Java-based
counterparts. For example, we re-implemented the
NPCEditor text classification and dialogue man-
agement algorithms as a C++ library, and the im-
plementation is noticeably more efficient. We con-
tinue to author the language classifiers in NPCEd-
itor, and convert the final files into the Alfred for-
mat before deployment.

We replaced the video decoding OpenCV li-
brary with AVFoundation – the native macOS me-
dia framework. We were able to optimize the play-
back, decrease the computational requirements by
a factor of three, and eliminate playback stutter.

Alfred uses the platform-native Google Cloud
Speech API library.3 The speech recognition plu-
gin streams the audio from the acquisition plugin
directly to the Google Cloud server. The native
Google Cloud API is efficient, robust, and allows
us to control the spelling variety reliably.

Scaling The initial NDT system stores both the
software and the data together into a single ap-
plication. Our assumption was that it would pro-
vide a single package that encapsulated the rele-
vant pieces in one place. However, after the suc-

2http://opencv.org
3https://cloud.google.com/speech/

354



cess of the initial installation, the decision was
made to extend the project by recording 11 addi-
tional Holocaust survivors, allowing the museum
docents to switch between them. In Alfred, each
survivor database is a document bundle – a folder
masquerading as a single file. The document con-
tains the video clips, the language database, and
the dialogue manager scripts. Alfred opens the
survivor document and loads the required infor-
mation initializing the individual plugins. The
document interface is a window that presents the
survivor video on the screen. Closing the win-
dow closes the document and unloads its resources
from memory. Switching between survivors is as
easy as closing a document and opening another.

Data Collection The NDT system records both
the user’s audio and the inter-component messages
as log files which are stored locally on the com-
puter. The logs are used to monitor the system,
evaluate its performance, and adapt the response
selection algorithm. Our intention was to down-
load the logs from the machine at the museum at
regular intervals. However, access to these logs
proved to be a challenge as the computer was lo-
cated behind a firewall. Alfred archives both the
user utterance audio and the inter-plugin messages
and uploads them to our server automatically. The
files are uploaded as soon as they are created. If
the upload fails or the network is unavailable, Al-
fred attempts to upload the files again at a later
time. Alfred uses a lossless codec to archive the
audio, which results in files that approximately
four times smaller than the files produced by the
initial NDT system.

3 Conclusion

In this paper we described our analysis of an inter-
active dialogue system deployment in an environ-
ment where deep technical expertise might not be
readily available. The initial version was created
using a collection of research components and de-
ployed at two museums. As the result of obser-
vations from the deployment, we designed a new
system architecture to simplify and streamline the
system installation and user interface; create a bet-
ter data collection and archiving mechanism; de-
velop support for multiple dialogue databases; and
optimize the system for better performance.

We have deployed a beta version of the Al-
fred system both at SFI and Illinois earlier this
year. The response was overwhelmingly positive:

our users love the improved performance, simpli-
fied interface, and support for multiple survivor
databases. We had no reports of system perfor-
mance issues and the data is being collected on
our servers automatically.

Acknowledgments

New Dimensions in Testimony is a collaboration
between the USC Institute for Creative Technolo-
gies, the USC Shoah Foundation, and Conscience
Display, and was made possible by generous do-
nations from private foundations and individuals.
We are extremely grateful to the Illinois Holocaust
Museum and Education Center for hosting the ex-
hibit and providing invaluable feedback.

References
Ron Artstein, Anton Leuski, Heather Maio, Tomer

Mor-Barak, Carla Gordon, and David Traum. 2015.
How many utterances are needed to support time-
offset interaction? In Proceedings of FLAIRS 28.

Ron Artstein, David Traum, Oleg Alexander, An-
ton Leuski, Andrew Jones, Kallirroi Georgila, Paul
Debevec, William Swartout, Heather Maio, and
Stephen Smith. 2014. Time-offset interaction with a
Holocaust survivor. In Proceedings of IUI’14. pages
163–168.

Arno Hartholt, David Traum, Stacy C. Marsella,
Ari Shapiro, Giota Stratou, Anton Leuski, Louis-
Philippe Morency, and Jonathan Gratch. 2013.
All together now: Introducing the Virtual Human
toolkit. In Proceedings of IVA’13. Edinburgh, UK.

Anton Leuski and David Traum. 2011. NPCEditor:
Creating virtual human dialogue using information
retrieval techniques. AI Magazine 32(2):42–56.

Fabrizio Morbini, Kartik Audhkhasi, Kenji Sagae, Ron
Artstein, Doğan Can, Panayiotis Georgiou, Shri
Narayanan, Anton Leuski, and David Traum. 2013.
Which ASR should I choose for my dialogue sys-
tem? In Proceedings of the SIGDIAL’13. Metz,
France, pages 394–403.

David Traum, Kallirroi Georgila, Ron Artstein, and
Anton Leuski. 2015a. Evaluating spoken dialogue
processing for time-offset interaction. In Proceed-
ings of SIGDIAL’15. Prague, Czech Republic.

David Traum, Andrew Jones, Kia Hays, Heather Maio,
Oleg Alexander, Ron Artstein, Paul Debevec, Ale-
sia Gainer, Kallirroi Georgila, Kathleen Haase,
Karen Jungblut, Anton Leuski, Stephen Smith, and
William Swartout. 2015b. New dimensions in
testimony: Digitally preserving a holocaust sur-
vivor’s interactive storytelling. In Proceedings of
ICIDS’15. Copenhagen, Denmark, pages 269–281.

355


