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Abstract

Recursive autoencoders (RAEs) for com-
positionality of a vector space model were
applied to utterance intent classification
of a smartphone-based Japanese-language
spoken dialogue system. Though the
RAEs express a nonlinear operation on the
vectors of child nodes, the operation is
considered to be different intrinsically de-
pending on types of child nodes. To re-
lax the difference, a data-driven untying
of autoencoders (AEs) is proposed. The
experimental result of the utterance intent
classification showed an improved accu-
racy with the proposed method compared
with the basic tied RAE and untied RAE
based on a manual rule.

1 Introduction

A spoken dialogue system needs to estimate the ut-
terance intent correctly despite of various oral ex-
pressions. It has been a basic approach to classify
the result of automatic speech recognition (ASR)
of an utterance into one of multiple predefined in-
tent classes, followed with slot filling specific to
the estimated intent class.

There have been active studies on word
embedding techniques (Mikolov et al., 2013),
(Pennington et al., 2014), where a continuous
real vector of a relatively low dimension is
estimated for every word from a distribu-
tion of word co-occurence in a large-scale
corpus, and on compositionality techniques
(Mitchell and Lapata, 2010), (Guevara, 2010),
which estimate real vectors of phrases and clauses
through arithmetic operations on the word em-
beddings. Among them, a series of composi-
tionality models by Socher, such as recursive
autoencoders (Socher et al., 2011), matrix-vector

model which models the dependencies explicitly
(Socher et al., 2012), compositional vector gram-
mar which combines a probabilistic context free
grammar (PCFG) parser with compositional vec-
tors (Socher et al., 2013a) and the neural ten-
sor network (Socher et al., 2013b) are gaining at-
tention. The methods which showed effective-
ness in polarity estimation, sentiment distribution
and paraphrase detection are effective in utter-
ance intent classification task (Guo et al., 2014),
(Ravuri and Stolcke, 2015). The accuracy of in-
tent classification should improve if the composi-
tional vector gives richer relations between words
and phrases compared to thesaurus combined with
a conventional bag-of-words model.

Japanese, an agglutative language, has a rela-
tively flexible word order though it does have an
underlying subject-object-verb (SOV) order. In
colloquial expressions, the word order becomes
more flexible. In this paper, we applied the re-
cursive autoencoder (RAE) to the utterance intent
classification of a smartphone-based Japanese-
language spoken dialogue system. The original
RAE uses a single tied autoencoder (AE) for all
nodes in a tree. We applied multiple AEs that
were untied depending on node types, because the
operations must intrinsically differ depending on
the node types of word and phrases. In terms of
syntactic untying, the convolutional vector gram-
mar (Socher et al., 2013a) introduced syntactic un-
tying. However, a syntactic parser is not easy to
apply to colloquial Japanese expressions.

Hence, to obtain an efficient untying of AEs, we
propose a data-driven untying of AEs based on a
regression tree. The regression tree is formed to
reduce the total error of reconstructing child nodes
with AEs. We compare the accuracies of utterance
intent classification among the RAEs of a single
tied AE, AEs untied with a manually defined rule,
and AEs untied with a data-driven split method.
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Table 1: Relative frequency distribution of utter-
ance intent classes

intent class tag freq sample utterance (translation)
CheckWeather 20.4 How’s the weather in Tokyo now?
Greetings 16.5 Good morning.
AskTime 11.3 What time is it now?
CheckSchedule 7.2 Check today’s schedule.
SetAlarm 5.7 Wake me up at 6AM tomorrow.
Thanks 3.6 Thank you.
Yes 3.1 Yes.
Goodbye 2.4 Good night.
WebSearch 2.2 Search (keyword)
Praise 2.2 You are so cute.
Time 1.9 Tomorrow.
MakeFun 1.6 Stupid.
GoodFeeling 0.9 I’m fine.
BadFeeling 0.8 I am tired
CheckTemp 0.8 What is the temperature today?
BackChannel 0.7 Sure.
AddSchedule 0.7 Schedule a party at 7 on Friday.
FortuneTeller 0.7 Tell my fortune today.
Call 0.6 Ho.
No 0.6 No way.

freq. : relative frequency distribution in percent.

2 Spoken Dialog System on Smartphone

The target system is a smartphone-based Japanese-
language spoken dialog application designed to
encourage users to constantly use its speech inter-
face. The application adopts gamification to pro-
mote the use of interface. Variations of responses
from an animated character are largely limited in
the beginning, but variations and functionality are
gradually released along with the use of the appli-
cation. Major functions include weather forecast,
schedule management, alarm setting, web search
and chatting.

Most of user utterances are short phrases and
words, with a few sentences of complex contents
and nuances. The authors reviewed ASR log data
of 139,000 utterances, redifined utterance intent
classes, and assigned a class tag to every utterance
of a part of the data. Specifically, three of the au-
thors annotated the most frequent 3,000 variations
of the ASR log, which correspond to 97,000 utter-
ances i.e. 70.0 % of the total, redefined 169 utter-
ance intent classes including an others class, and
assigned a class tag to each 3,000 variations.

Frequent utterance intent classes and their rela-
tive frequency distribution are listed in Table 1. A
small number of major classes occupy more than
half of the total number of utterances, while there
are a large number of minor classes having small
portions.

xi xj

x’i x’j d

W(2), b(2) W(label), b(label)

W(1), b(1)

reconstruction error        classification error

yi,j

Figure 1: Model parameters and error functions of
the recursive autoencoder

3 Intent Class Estimation based on
Untied RAE

3.1 Training of Basic RAE

Classification based on RAE takes word embed-
dings as leaves of a tree and applies an AE to
neighboring node pairs in a bottom-up manner re-
peatedly to form a tree. The RAE obtains vec-
tors of phrases and clauses at intermediate nodes,
and that of a whole utterance at the top node of
the tree. The classification is performed by an-
other softmax layer which takes the vectors of the
words, phrases, clauses and whole utterance as in-
puts and then outputs an estimation of classes.

An AE applies a neural network of model pa-
rameters: weighting matrix W(1), bias b(1) and ac-
tivation function f to a vector pair of neighboring
nodes xi and x j as child nodes, and obtains a com-
position vector y(i, j) of the same dimension as a
parent node.

y(i, j) = f (W (1)[xi; x j] + b(1)) (1)

The AE applies another neural network of an in-
version which reproduces xi and x j as x′i and x′j
from y(i, j) as accurately as possible. The inversion
is expressed as equation (2).

[x′i ; x′j] = f (W(2)y(i, j) + b(2)) (2)

The error function is reconstruction error Erec in
(3).

Erec =
1
2
|[x′i ; x′j] − [xi; x j]|2 (3)

The tree is formed in accordance with a syn-
tactic parse tree conceptually, but it is formed by
greedy search minimizing the reconstruction error
in reality. Among all pairs of neighboring nodes
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at a time, a pair that produces the minimal recon-
struction error Erec is selected to form a parent
node.

Here, the AE applied to every node is a single
common one, specifically, a set of model param-
eters W(1), b(1), W(2) and b(2). The set of model
parameters of the tied RAE is trained to minimize
the total of Erec for all the training data.

The softmax layer for intent classification takes
the vectors of nodes as inputs, and outputs pos-
terior probabilities of K units. It outputs dk ex-
pressed in equation (4).

dk = f (W (label)y + b(label)) (4)

The correct signal is one hot vector.

t = [0, . . . , 0, 1, 0, . . . , 0]t (5)

The error function is cross-entropy error Ece ex-
pressed in (6).

Ece(y, t) = −
K∑

k=1

tk log dk(y) (6)

Figure 1 lists the model parameters and error
functions of RAE. While AE aims to obtain a con-
densed vector representation best reproducing two
child nodes of neighboring words or phrases, the
whole RAE aims to classify the utterance intent
accurately. Accordingly, the total error function
is set as a weighted sum of two error functions in
equation (7).

E = αErec + (1 − α)Ece (7)

The training of RAE optimizes the model pa-
rameters in accordance with a criterion of mini-
mizing the total error function for all training data.

3.2 Rule-based Syntactic Untying of RAE
To relax the difference of the nonlinear operation
depending on types of nodes, we designed a rule to
switch two AEs depending on types of two child
nodes manually. At the leaf level of a tree, most
of words are nouns, while a sentence or a phrase
is composed of a predicate with a subject or an
object or a complement. The operation of vec-
tors between words and noun phrases, and that
between phrases and clauses are assumed to dif-
fer considerably. Hence, the manual rule switches
two AEs, one for words and noun phrases, and the
other for phrases and clauses. Along a tree, the

1) Preparation

Attach part-of-speech tags to all morphemes 

of training data.

2) Training a tied RAE of a single AE

Train a tied RAE of a single AE for all nodes.

3) Data collection for split

Apply the RAE to training data, and tally Erec

for each node type. 

4) Selection of an AE to split

Select an AE of the maximum total Erec.

5) Binary split for untying of the AE

Split the AE into two classes based on a 

regression tree with a response of Erec.

6) Retraining of the untied RAE

Retrain the RAE. Softmax layer is kept single. 

Untied RAE

Figure 2: Procedure for training RAE of multiple
AEs with data-driven untying

AE for words and noun phrases is applied at lower
nodes around leaves, and the AE for phrases and
clauses is applied at upper nodes close to the root
node.

The node type is determined as follows. At leaf
nodes, every word of a sentence is given a part-of-
speech tag as a node type by Japanese morpheme
analyzer (Kudo et al., 2004). The number of tags
is set at 10. At upper nodes, the node type is de-
termined by the combination of node types of two
child nodes. A look-up table of the node type is
defined on the basis of Japanese grammar. An-
other look-up table determining which AE to ap-
ply on the basis of the node type is defined as well.

3.3 Data-driven Untying of RAE

To obtain a more effective untied RAE, we de-
signed a training method including data-driven un-
tying of RAE. The method is based on sequentially
splitting an AE with regression trees to reduce the
total reconstruction error Erec. Specifically, the
method splits an AE into two on the basis of a re-
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Table 2: Precision, recall, and accuracy of utterance intent classification of 65 classes
.

method training set test set
prec. recall acc. prec. recall acc.

(1) Cosine similarity of bag-of-words (BoW) - - - 76.0% 74.2% 85.1%
(2) Tied RAE based on random word vectors 37.2% 33.2% 70.6% 32.0% 65.6% 66.4%
(3) Tied RAE based on word2vec vectors 81.2% 78.8% 88.7% 74.7% 70.5% 82.7%
(4) RAE of two AEs untied by manual rule 65.9% 68.3% 88.1% 63.0% 62.5% 84.0%
(5) RAE of two AEs untied by data-driven split 80.3% 79.8% 91.3% 72.4% 72.3% 85.6%
(6) RAE of three AEs untied by data-driven split 73.9% 75.2% 90.3% 70.8% 67.9% 84.8%

gression tree with the response of the reconstruc-
tion error Erec, and optimizes the model parame-
ters of split AEs alternatively.

Figure 2 shows the procedure. The procedure
starts with giving a part-of-speech tag to every
word of a sentence. While forming a tree, a unique
node type is given according to the node types
of child nodes. To be precise, a new node type
is given to an unseen combination of node types
of two child nodes, whereas the same node type
is given when the combination of node types has
been seen before.

Initially, a single tied AE for all node types
is trained. Applying the AE to all training data,
reconstruction error Erec is tallied for each node
type. Then, a class of all node types is split into
two classes based on a regression tree of CART
(Breiman et al., 1984) with the response of Erec.
The predictor variables are the node types of the
left and right child nodes. Then, the AEs are re-
trained with L2 regularization after every binary
split. Note that the softmax layer is kept single in
order not to make the generated vector space com-
pletely different.

4 Experiments

4.1 Experimental Setup

An experiment of utterance intent classification
was conducted with the annotated data described
in Section 2. The number of classes was reduced
to 65 by merging classes with few pieces of data
with a similar class or into the others class. Con-
sidering the balance of frequent utterances and
less-frequent ones, the frequencies of utterances
were smoothed by applying a square root function.
The numbers of utterances in the training and test
sets were 7,833 and 870, respectively. The ratio of
unknown utterances in the test set was 15 percent.

4.2 Conditions of Experiments

Two types of word vectors, ramdom word vec-
tors and word2vec vectors, were compared as the
minimal elements of a tree. A total of 1.08 mil-
lion word2vec vectors were trained with Japanese
wikipedia texts of 1.1 billion words. The dimen-
sion of the vectors was fixed at 100. The word2vec
vectors were trained by using skip-gram mode on
the basis of results of preliminary experiments.

Three types of RAE, that is, a single tied AE,
two AEs untied by the manual rule, and multiple
AEs untied by the data-driven split, and a baseline
method of cosine similarity of bag-of-words were
evaluated.

4.3 Experimental Results

Table 2 shows the precision, recall, and accu-
racy of the classification for the training and test
sets. The baseline method (1) showed relatively
high performance, because the test set randomly
chosen in consideration of the smoothed frequen-
cies contained many known utterances and words
seen in the training set. The tied RAE based on
word2vec vectors (3) showed significantly better
performance than the tied RAE based on random
word vectors (2). While the RAE of two AEs un-
tied by a manual rule (4) made a slight improve-
ment, the RAE of two AEs untied by data-driven
split (5) made more improvement. The resulting
split was not simple, but one of the two AEs was
to add a modifier, roughly speaking. However, the
RAE of three AEs untied by data-driven split (6)
showed a fall. We believe that the RAE was prob-
ably overlearned with thousands pieces of training
data.

5 Conclusions

RAE was applied to utterance intent classification
of a smartphone-based Japanese-language spoken
dialogue system. To improve the classification ac-
curacy, we examined the RAE of multiple AEs un-
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tied by a manual rule and RAEs of multiple AEs
untied by data-driven split.

Comparing the untied RAEs of two AEs be-
tween the manual rule and data-driven split, the
AEs untied by the data-driven split showed better
accuracy. This means that splitting AEs based on
a regression tree with the response of the recon-
stuction error is effective to some extent.

Reducing the model parameters effectively to
circumvent overlearning, and utterance intent clas-
sification with more variations of utterances are
future work.
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