
Proceedings of the SIGDIAL 2018 Conference, pages 171–179,
Melbourne, Australia, 12-14 July 2018. c©2018 Association for Computational Linguistics

171

Discovering User Groups for Natural Language Generation

Nikos Engonopoulos and Christoph Teichmann and Alexander Koller
Saarland University

{nikos|cteichmann|koller}@coli.uni-saarland.de

Abstract

We present a model which predicts how
individual users of a dialog system under-
stand and produce utterances based on user
groups. In contrast to previous work, these
user groups are not specified beforehand,
but learned in training. We evaluate on two
referring expression (RE) generation tasks;
our experiments show that our model can
identify user groups and learn how to most
effectively talk to them, and can dynam-
ically assign unseen users to the correct
groups as they interact with the system.

1 Introduction

People vary widely both in their linguistic prefer-
ences when producing language and in their abil-
ity to understand specific natural-language expres-
sions, depending on what they know about the do-
main, their age and cognitive capacity, and many
other factors. It has long been recognized that ef-
fective NLG systems should therefore adapt to the
current user, in order to generate language which
works well for them. This adaptation needs to
address all levels of the NLG pipeline, including
discourse planning (Paris, 1988), sentence plan-
ning (Walker et al., 2007), and RE generation (Ja-
narthanam and Lemon, 2014), and depends on
many features of the user, including level of ex-
pertise and language proficiency, age, and gender.

Existing techniques for adapting the output of
an NLG system have shortcomings which limit
their practical usefulness. Some systems need
user-specific information in training (Ferreira and
Paraboni, 2014) and therefore cannot generalize to
unseen users. Other systems assume that each user
in the training data is annotated with their group,
which allows them to learn a model from the data of
each group. However, hand-designed user groups

may not reflect the true variability of the data, and
may therefore inhibit the system’s ability to flexibly
adapt to new users.

In this paper, we present a user adaptation model
for NLG systems which induces user groups from
training data in which these groups were not anno-
tated. At training time, we probabilistically assign
users to groups and learn the language preferences
for each group. At evaluation time, we assume
that our system has a chance to interact with each
new user repeatedly – e.g., in the context of a dia-
logue system. It will then calculate an increasingly
accurate estimate of the user’s group membership
based on observable behavior, and use it to gen-
erate utterances that are suitable to the user’s true
group.

We evaluate our model on two tasks involving
the generation of referring expressions (RE). First,
we predict the use of spatial relations in human-
like REs in the GRE3D domain (Viethen and Dale,
2010) using a log-linear production model in the
spirit of Ferreira and Paraboni (2014). Second, we
predict the comprehension of generated REs, in
a synthetic dataset based on data from the GIVE
Challenge domain (Striegnitz et al., 2011) with the
log-linear comprehension model of Engonopoulos
et al. (2013). In both cases, we show that our model
discovers user groups in the training data and in-
fers the group of unseen users with high confidence
after only a few interactions during testing. In the
GRE3D domain, our system outperformed a strong
baseline which used demographic information for
the users.

2 Related Work

Differences between individual users have a sub-
stantial impact on language comprehension. Fac-
tors that play a role include level of expertise and
spatial ability (Benyon and Murray, 1993); age
(Häuser et al., 2017); gender (Dräger and Koller,

{nikos|cteichmann|koller}@coli.uni-saarland.de

172

2012); or language proficiency (Koller et al., 2010).

Individual differences are also reflected in the
way people produce language. Viethen and Dale
(2008) present a corpus study of human-produced
REs (GRE3D3) for simple visual scenes, where
they note two clearly distinguishable groups of
speakers, one that always uses a spatial relation
and one that never does. Ferreira and Paraboni
(2014) show that a model using speaker-specific
information outperforms a generic model in predict-
ing the attributes used by a speaker when producing
an RE. However, their system needs to have seen
the particular speaker in training, while our system
can dynamically adapt to unseen users. Ferreira
and Paraboni (2017) also demonstrate that splitting
speakers in predefined groups and training each
group separately improves the human likeness of
REs compared to training individual user models.

The ability to adapt to the comprehension and
production preferences of a user is especially im-
portant in the context of a dialog system, where
there are multiple chances of interacting with the
same user. Some methods adapt to dialog system
users by explicitly modeling the users’ knowledge
state. An early example is Paris (1988); she selects
a discourse plan for a user, depending on their level
of domain knowledge ranging between novice and
expert, but provides no mechanism for inferring the
group to which the user belongs. Rosenblum and
Moore (1993) try to infer what knowledge a user
possesses during dialogue, based on the questions
they ask. Janarthanam and Lemon (2014) adapt
to unseen users by using reinforcement learning
with simulated users to make a system able to ad-
just to the level of the user’s knowledge. They use
five predefined groups from which they generate
the simulated users’ behavior, but do not assign
real users to these groups. Our system makes no
assumptions about the user’s knowledge and does
not need to train with simulated users, or use any
kind of information-seeking moves; we instead rely
on the groups that are discovered in training and
dynamically assign new, unseen users, based only
on their observable behavior in the dialog.

Another example of a user-adapting dialog com-
ponent is SPaRKy (Walker et al., 2007), a trainable
sentence planner that can tailor sentence plans to
individual users’ preferences. This requires train-
ing on separate data for each user; in contrast to
this, we leverage the similarities between users and
can take advantage of the full training data.

3 Log-linear models for NLG in dialog

We start with a basic model of the way in which
people produce and comprehend language. In order
to generalize over production and comprehension,
we will simply say that a human language user
exhibits a certain behavior b among a range of pos-
sible behaviors, in response to a stimulus s. The
behavior of a speaker is the utterance b they pro-
duce in order to achieve a communicative goal s;
the behavior of a listener is the meaning b which
they assign to the utterance s they hear.

Given this terminology, we define a basic log-
linear model (Berger et al., 1996) of language use
as follows:

P (b|s; ρ) = exp(ρ · φ(b, s))∑
b′ exp(ρ · φ(b′, s))

(1)

where ρ is a real-valued parameter vector of length
n and φ(b, s) is a vector of real-valued feature func-
tions f1, ..., fn over behaviors and stimuli. The pa-
rameters can be trained by maximum-likelihood
estimation from a corpus of observations (b, s). In
addition to maximum-likelihood training it is pos-
sible to include some prior probability distribution,
which expresses our belief about the probability of
any parameter vector and which is generally used
for regularization. The latter case is referred to as a
posteriori training, which selects the value of ρ that
maximizes the product of the parameter probability
and the probability of the data.

In this paper, we focus on the use of such models
in the context of the NLG module of a dialogue
system, and more specifically on the generation of
referring expressions (REs). Using (1) as a compre-
hension model, Engonopoulos et al. (2013) devel-
oped an RE generation model in which the stimulus
s = (r, c) consists of an RE r and a visual context
c of the GIVE Challenge (Striegnitz et al., 2011), as
illustrated in Fig. 1. The behavior is the object b in
the visual scene to which the user will resolve the
RE. Thus for instance, when we consider the RE
r =“the blue button” in the context of Fig. 1, the
log-linear model may assign a higher probability to
the button on the right than to the one in the back-
ground. Engonopoulos and Koller (2014) develop
an algorithm for generating the RE r which maxi-
mizes P (b∗|s; ρ), where b∗ is the intended referent
in this setting.

Conversely, log-linear models can also be used to
directly capture how a human speaker would refer
to an object in a given scene. In this case, the stim-
ulus s = (a, c) consists of the target object a and

173

Figure 1: A visual scene and a system-generated
instruction from the GIVE challenge.

the visual context c, and the behavior b is the RE.
We follow Ferreira and Paraboni (2014) in training
individual models for the different attributes which
can be used in the RE (e.g., that a is a button; that
it is blue; that the RE contains a binary relation
such as “to the right of”), such that we can simply
represent b as a binary choice b ∈ {1,−1} between
whether a particular attribute should be used in the
RE or not. We can then implement an analog of
Ferreira’s model in terms of (1) by using feature
functions φ(b, a, c) = b · φ′(a, c), where φ′(a, c)
corresponds to their context features, which do not
capture any speaker-specific information.

4 Log-linear models with user groups

As discussed above, a user-agnostic model such
as (1) does not do justice to the variability of lan-
guage comprehension and production across dif-
ferent speakers and listeners. We will therefore
extend it to a model which distinguishes different
user groups. We will not try to model why1 users
behave differently. Instead our model sorts users
into groups simply based on the way in which they
respond to stimuli, in the sense of Section 3, and
implements this by giving each group g its own
parameter vector ρ(g). As a theoretical example,
Group 1 might contain users who reliably compre-
hend REs which use colors (“the green button”),
whereas Group 2 might contain users who more
easily understand relational REs (“the button next
to the lamp”). These groups are then discovered at
training time.

When our trained NLG system starts interacting
with an unseen user u, it will infer the group to
which u belongs based on u’s observed responses
to previous stimuli. Thus as the dialogue with u
unfolds, the system will have an increasingly pre-

1E.g., in the sense of explicitly modeling sociolects or the
difference between novice system users vs. experts.

σ(π) σ(ρ)

π ρ(g)

g

b(d) s(d)

1 ≤ g ≤ K

u ∈ U

d ∈ D(u)

Figure 2: Plate diagram for the user group model.

cise estimate of the group to which u belongs, and
will thus be able to generate language which is
increasingly well-tailored to this particular user.

4.1 Generative story
We assume training data D = {(bi, si, ui)}i which
contains stimuli si together with the behaviors bi
which the users ui exhibited in response to si. We
write D(u) = {(bu1 , su1), . . . (buN , suN)} for the data
points for each user u.

The generative story we use is illustrated in
Fig. 2; observable variables are shaded gray, unob-
served variables and parameters to be set in training
are shaded white and externally set hyperparame-
ters have no circle around them. Arrows indicate
which variables and parameters influence the prob-
ability distribution of other variables.

We assume that each user belongs to a group
g ∈ {1, . . . ,K}, where the number K of groups
is fixed beforehand based on, e.g., held out data.
A group g is assigned to u at random from the
distribution

P (g|π) = exp(πg)∑K
g′=1 exp(πg′)

(2)

Here π ∈ RK is a vector of weights, which defines
how probable each group is a-priori.

We replace the single parameter vector ρ of (1)
with group-specific parameters vectors ρ(g), thus
obtaining a potentially different log-linear model
P
(
b|s; ρ(g)

)
for each group. After assigning a

group, our model generates responses bu1 , . . . , b
u
N at

random from P
(
b|s; ρ(g)

)
, based on the group spe-

cific parameter vector and the stimuli su1 , . . . , s
u
N .

This accounts for the generation of the data.
We model the parameter vectors π ∈ RK , and

ρ(g) ∈ Rn for every 1 ≤ g ≤ K as drawn from

174

P (D; θ) =

∏
u∈U

K∑
g=1

P (g|π) ·
∏

d∈D(u)

P
(
bd|sd; ρ(g)

) ·
N (π|0, σ(π)) · K∏

g=1

N
(
ρ(g)|0, σ(ρ)

)(3)

L(θ) =
∑
u∈U

log
K∑
g=1

P (g|π) ·
∏

d∈D(u)

P
(
bd|sd; ρ(g)

)
(4)

AL(θ) =
∑
u∈U

K∑
g=1

P (g|D(u); θ(i−1)

)
·

logP (g|π) +
∑
d∈Du

logP
(
bd|sd; ρ(g)

) (5)

normal distributions N (0, σ(π)), and N (0, σ(ρ)),
which are centered at 0 with externally given vari-
ances and no covariance between parameters. This
has the effect of making parameter choices close
to zero more probable. Consequently, our models
are unlikely to contain large weights for features
that only occurred a few times or which are only
helpful for a few examples. This should reduce the
risk of overfitting the training set.

The equation for the full probability of the data
and a specific parameter setting is given in (3).
The left bracket contains the likelihood of the data,
while the right bracket contains the prior probabil-
ity of the parameters.

4.2 Predicting user behavior
Once we have set values θ = (π, ρ(1), . . . , ρ(K))
for all the parameters, we want to predict what
behavior b a user u will exhibit in response to a
stimulus s. If we encounter a completely new user
u, the prior user group distribution from (2) gives
the probability that this user belongs to each group.
We combine this with the group-specific log-linear
behavior models to obtain the distribution:

P (b|s; θ) =
K∑
g=1

P
(
b|s; ρ(g)

)
· P (g|π) (6)

Thus, we have a group-aware replacement for (1).
Furthermore, in the interactive setting of a dia-

logue system, we may have multiple opportunities
to interact with the same user u. We can then de-
velop a more precise estimate of u’s group based
on their responses to previous stimuli. Say that
we have made the previous observations D(u) =
{〈s1, b1〉, . . . , 〈sN , bN 〉} for user u. Then we can
use Bayes’ theorem to calculate a posterior esti-
mate for u’s group membership:

P
(
g|D(u); θ

)
∝ P

(
D(u)|ρ(g)

)
· P (g|π) (7)

This posterior balances whether a group is
likely in general against whether members of that
group behave as u does. We can use Pu(g) =
P
(
g|D(u); θ

)
as our new estimate for the group

membership probabilities for u and replace (6)
with:

P
(
b|s,D(u); θ

)
=

K∑
g=1

P
(
b|s; ρ(g)

)
· Pu(g) (8)

for the next interaction with u.
An NLG system can therefore adapt to each new

user over time. Before the first interaction with u, it
has no specific information about u and models u’s
behavior based on (6). As the system interacts with
u repeatedly, it collects observationsD(u) about u’s
behavior. This allows it to calculate an increasingly
accurate posterior Pu(g) = P

(
g|D(u); θ

)
of u’s

group membership, and thus generate utterances
which are more and more suitable to u using (8).

5 Training

So far we have not discussed how to find settings
for the parameters θ = π, ρ(1), . . . , ρ(K), which
define our probability model. The key challenge for
training is the fact that we want to be able to train
while treating the assignment of users to groups as
unobserved.

We will use a maximum a posteriori estimate
for θ, i.e., the setting which maximizes (3) when
D is our training set. We will first discuss how to
pick parameters to maximize only the left part of
(3), i.e., the data likelihood, since this is the part
that involves unobserved variables. We will then
discuss handling the parameter prior in section 5.2.

5.1 Expectation Maximization
Gradient descent based methods (Nocedal and
Wright, 2006) exist for finding the parameter set-
tings which maximize the likelihood for log-linear

175

models, under the conditions that all relevant vari-
ables are observed in the training data. If group
assignments were given, gradient computations,
and therefore gradient based maximization, would
be straightforward for our model. One algorithm
specifically designed to solve maximization prob-
lems with unknown variables by reducing them to
the case where all variables are observed, is the
expectation maximization (EM) algorithm (Neal
and Hinton, 1999). Instead of maximizing the data
likelihood from (3) directly, EM equivalently max-
imizes the log-likelihood, given in (4). It helps
us deal with unobserved variables by introducing
“pseudo-observations” based on the expected fre-
quency of the unobserved variables.

EM is an iterative algorithm which produces a
sequence of parameter settings θ(1), . . . , θ(n). Each
will achieve a larger value for (4). Each new set-
ting is generated in two steps: (1) an lower bound
on the log-likelhood is generate and (2) the new
parameter setting is found by optimizing this lower
bound. To find the lower bound we compute the
probability for every possible value the unobserved
variables could have had, based on the observed
variables and the parameter setting θ(i−1) from the
last iteration step. Then the lower bound essentially
assumes that each assignment was seen with a fre-
quency equal to these probabilities - these are the
“pseudo-observations”.

In our model the unobserved variables are the
assignments of users to groups. The probability of
seeing each user u assigned to a group, given all
the data D(u) and the model parameters from the
last iteration θ(i−1), is simply the posterior group
membership probability P

(
g|D(u); θ(i−1)

)
. The

lower bound is then given by (5). This is the sum
of the log probabilities of the data points under
each group model, weighted by P

(
g|D(u); θ(i−1)

)
.

We can now use gradient descent techniques to
optimize this lower bound.

5.1.1 Maximizing the Lower Bound
To fully implement EM we need a way to maximize
(5). This can be achieved with gradient based meth-
ods such as L-BFGS (Nocedal and Wright, 2006).
Here the gradient refers to the vector of all partial
derivatives of the function with respect to each di-
mension of θ. We therefore need to calculate these
partial derivatives.

There are existing implementations of the gradi-
ent computations our base model such as in En-
gonopoulos et al. (2013). The gradients of (5)

for each of the ρ(g) is simply the gradient for
the base model on each datapoint d weighted by
P
(
g|D(u); θ(i−1)

)
if d ∈ Du, i.e., the probability

that the user u from which the datapoint originates
belongs to group g. We can therefore compute the
gradients needed for each ρ(g) by using implemen-
tations developed for the base model.

We also need gradients for the parameters in π,
which are only used in our extended model. We
can use the rules for computing derivatives to find,
for each dimension g:

∂UL(θ)
∂πg

=
∑
u∈U

Pu(g)−
exp (πg)∑K

g′=1 exp
(
πg′
)

where Pu(g) = P
(
g|D(u); θ(i−1)

)
. Using these

gradients we can use L-BFGS to maximize the
lower bound and implement the EM iteration.

5.2 Handling the Parameter Prior
So far we have discussed maximization only for the
likelihood without accounting for the prior prob-
abilities for every parameter. To obtain our full
training objective we add the log of the right hand
side of (3):

log

N (π|0, σ(π)) · K∏
g=1

N
(
ρ(g)|0, σ(ρ)

)
i.e., the parameter prior, to (4) and (5). The gradi-

ent contribution from these priors can be computed
with standard techniques.

5.3 Training Iteration
We can now implement an EM loop, which maxi-
mizes (3) as follows: we randomly pick an initial
value θ(0) for all parameters. Then we repeatedly
compute the P

(
g|D(u); θ(i−1)

)
values and maxi-

mize the lower bound using L-BFGS to find θ(i).
This EM iteration is guaranteed to eventually con-
verge towards a local optimum of our objective
function. Once change in the objective falls below
a pre-defined threshold, we keep the final θ setting.

For our implementation we make a small im-
provement to the approach: L-BFGS is itself an
iterative algorithm and instead of running it until
convergence every time we need to find a new θ(i),
we only let it take a few steps. Even if we just
took a single L-BFGS step in each iteration, we
would still obtain a correct algorithm (Neal and

176

Hinton, 1999) and this has the advantage that we
do not spend time trying to find a θ(i) which is
a good fit for the likely poor group assignments
P
(
g|D(u); θ(i−1)

)
we obtain from early parameter

estimates.

6 Evaluation

Our model can be used in any component of a di-
alog system for which a prediction of the user’s
behavior is needed. In this work, we evaluate it in
two NLG-related prediction tasks: RE production
and RE comprehension. In both cases we evaluate
the ability of our model to predict the user’s be-
havior given a stimulus. We expect our user-group
model to gradually improve its prediction accuracy
compared to a generic baseline without user groups
as it sees more observations from a given user.

In all experiments described below we set the
prior variances σγ = 1.0 and σπ = 0.3 after trying
out values between 0.1 and 10 on the training data
of the comprehension experiment.

6.1 RE production

Task The task of RE generation can be split in
two steps: attribute selection, the selection of the
visual attributes to be used in the RE such as color,
size, relation to other objects and surface real-
ization, the generation of a full natural language
expression. We focus here on attribute selection:
given a visual scene and a target object, we want to
predict the set of attributes of the target object that
a human speaker would use in order to describe
it. Here we treat attribute selection in terms of
individual classification decisions on whether to
use each attribute, as described in Section 3. More
specifically, we focus on predicting whether the
speaker will use a spatial relation to another object
(“landmark”). Our motivation for choosing this
attribute stems from the fact that previous authors
(Viethen and Dale, 2008; Ferreira and Paraboni,
2014) have found substantial variation between dif-
ferent users with respect to their preference towards
using spatial relations.

Data We use the GRE3D3 dataset of human-
produced REs (Viethen and Dale, 2010), which
contains 630 descriptions for 10 scenes collected
from 63 users, each describing the same target ob-
ject in each scene. 35% of the descriptions in this
corpus use a spatial relation. An example of such a
scene can be seen in Fig. 3.

Figure 3: A sample scene with a human-produced
RE from the GRE3D3 dataset.

Models We use two baselines for comparison:

Basic: The state-of-the-art model on this task
with this dataset, under the assumption that users
are seen in training, is presented in Ferreira and
Paraboni (2014). They define context features such
as type of relation between the target object and its
landmark, number of object of the same color or
size, etc., then train an SVM classifier to predict
the use of each attribute. We recast their model in
terms of a log-linear model with the same features,
to make it fit with the setup of Section 3.

Basic++: Ferreira and Paraboni (2014) also take
speaker features into account. We do not use
speaker identity and the speaker’s attribute fre-
quency vector, because we only evaluate on unseen
users. We do use their other speaker features (age,
gender), together with Basic’s context features; this
gives us a strong baseline which is aware of manu-
ally annotated user group characteristics.

We compare these baselines to our Group model
for values of K between 1 and 10, using the exact
same features as Basic. We do not use the speaker
features of Basic++, because we do not want to
rely on manually annotated groups. Note that our
results are not directly comparable with those of
Ferreira and Paraboni (2014), because of a different
training-test split: their model requires having seen
speakers in training, while we explicitly want to test
our model’s ability to generalize to unseen users.

Experimental setup We evaluate using cross-
validation, splitting the folds so that all speakers
we see in testing are previously unseen in training.
We use 9 folds in order to have folds of the same
size (each containing 70 descriptions coming from
7 speakers). At each iteration we train on 8 folds
and test on the 9th. At test time, we process each
test instance iteratively: we first predict for each
instance whether the user uwould use a spatial rela-
tion or not and test our prediction; we then add the

177

Figure 4: F1 scores on test data for values of K
between 1 and 10 in the production experiment.

actual observation from the corpus to the set D(u)

of observations for this particular user, in order to
update our estimate about their group membership.

Results Figure 4 shows the test F1-score (micro-
averaged over all folds) as we increase the num-
ber of groups, compared to the baselines. For our
Group models, these are averaged over all inter-
actions with the user. Our model gets F1-scores
between 0.69 and 0.76 for all values ofK > 1, out-
performing both Basic (0.22) and Basic++ (0.23).

In order to take a closer look at our model’s be-
havior, we also show the accuracy of our model as
it observes more instances at test time. We com-
pare the model with K = 3 groups against the two
baselines. Figure 5 shows that the group model’s
F1-score increases dramatically after the first two
observations and then stays high throughout the
test phase, always outperforming both baselines
by at least 0.37 F1-score points after the first ob-
servation. The baseline models of course are not
expected to improve with time; fluctuations are due
to differences between the visual scenes. In the
same figure, we plot the evolution of the entropy
of the group model’s posterior distribution over the
groups (see (7)). As expected, the model is highly
uncertain at the beginning of the test phase about
which group the user belongs to, then gets more
and more certain as the set D(u) of observations
from that user grows.

6.2 RE comprehension
Task Our next task is to predict the referent to
which a user will resolve an RE in the context
of a visual scene. Our model is given a stimulus
s = (r, c) consisting of an instruction containing an
RE r and a visual context c and outputs a probabil-
ity distribution over all possible referents b. Such a
model can be used by a probabilistic RE generator
to select an RE which is highly likely to be cor-
rectly understood by the user or predict potential

Figure 5: F1-score evolution with increasing num-
ber of observations from the user in the production
experiment.

misunderstandings (see Section 3).

Data We use the GIVE-2.5 corpus for training
and the GIVE-2 corpus for testing our model (the
same used by Engonopoulos et al. (2013)). These
contain recorded observations of dialog systems
giving instructions to users who play a game in a
3D environment. Each instruction contains an RE
r, which is recorded in the data together with the vi-
sual context c at the time the instruction was given.
The object b which the user understood as the ref-
erent of the RE is inferred by the immediately sub-
sequent action of the user. In total, we extracted
2927 observations by 403 users from GIVE-25 and
5074 observations by 563 users from GIVE-2.

Experimental setup We follow the training
method described in Section 3. At test time, we
present the observations from each user in the or-
der they occur in the test data; for each stimulus,
we ask our models to predict the referent a which
the user understood to be the referent of the RE,
and compare with the recorded observation. We
subsequently add the recorded observation to the
dataset for the user and continue.

Models As a baseline, we use the Basic model
described in Section 3, with the features of the
“semantic” model of Engonopoulos et al. (2013).
Those features capture information about the ob-
jects in the visual scene (e.g. salience) and some
basic semantic properties of the RE (e.g. color, po-
sition). We use those features for our Group model
as well, and evaluate for K between 1 and 10.

Results on GIVE data Basic had a test accu-
racy of 72.70%, which was almost identical with
the accuracy of our best Group model for K = 6
(72.78%). This indicates that our group model does
not differentiate between users. Indeed, after train-
ing, the 6-group model assigns 81% prior probabil-

178

ity to one of the groups, and effectively gets stuck
with this assignment while testing; the mean en-
tropy of the posterior group distribution only falls
from an initial 1.1 to 0.7 after 10 observations.

We speculate that the reason behind this is that
the features we use are not sensitive enough to cap-
ture the differences between the users in this data.
Since our model relies completely on observable
behavior, it also relies on the ability of the features
to make relevant distinctions between users.

Results on synthetic data In order to test this
hypothesis, we made a synthetic dataset based on
the GIVE datasets with 1000 instances from 100
users, in the following way: for each user, we ran-
domly selected 10 scenes from GIVE-2, and re-
placed the target the user selected, so that half of
the users always select the target with the highest
visual salience, and the other half always select the
one with the lowest. Our aim was to test whether
our model is capable of identifying groups when
they are clearly present in the data and exhibit dif-
ferences which our features are able to capture.

We evaluated the same models in a 2-fold cross-
validation. Figure 6 shows the prediction accuracy
for Basic and the Group models for K from 1 to
10. All models for K > 1 clearly outperform
the baseline model: the 2-group model gets 62.3%
vs 28.6% averaged over all test examples, while
adding more than two groups does not further im-
prove the accuracy. We also show in Figure 7 the
evolution of the accuracy asD(u) grows: the Group
model with K = 2 reaches a 64% testing accuracy
after seeing two observations from the same user.
In the same figure, the entropy of the posterior dis-
tribution over groups (see production experiment)
falls towards zero as D(u) grows. These results
show that our model is capable of correctly assign-
ing a user to the group they belong to, once the
features are adequate for distinguishing between
different user behaviors.

6.3 Discussion

Our model was shown to be successful in discover-
ing groups of users with respect to their behavior,
within datasets which present discernible user vari-
ation. In particular, if all listeners are influenced
in a similar way by e.g. the visual salience of an
object, then the group model cannot learn different
weights for the visual salience feature; if this hap-
pens for all available features, there are effectively
no groups for our model to discover.

Figure 6: Prediction accuracies in the comprehen-
sion experiment with synthetic data.

Figure 7: Accuracy evolution with increasing num-
ber of observations from the user in the comprehen-
sion experiment with synthetic data.

Once the groups have been discovered, our
model can then very quickly distinguish between
them at test time. This is reflected in the steep
performance improvement even after the first user
observation in both the real data experiment in 6.1
and the synthetic data experiment in 6.2.

7 Conclusion

We have presented a probabilistic model for NLG
which predicts the behavior of individual users of
a dialog system by dynamically assigning them to
user groups, which were discovered during train-
ing2. We showed for two separate NLG-related
tasks, RE production and RE comprehension, how
our model, after being trained with data that is not
annotated with user groups, can quickly adapt to un-
seen users as it gets more observations from them
in the course of a dialog and makes increasingly
accurate predictions about their behavior.

Although in this work we apply our model to
tasks related to NLG, nothing hinges on this choice;
it can also be applied to any other dialog-related
prediction task where user variation plays a role. In
the future, we will also try to apply the basic prin-
ciples of our user group approach to more sophisti-
cated underlying models, such as neural networks.

2Our code and data is available in https://bit.ly/
2jIu1Vm

https://bit.ly/2jIu1Vm
https://bit.ly/2jIu1Vm

179

References
David Benyon and Dianne Murray. 1993. Developing

adaptive systems to fit individual aptitudes. In Pro-
ceedings of the 1st international conference on Intel-
ligent user interfaces. ACM, pages 115–121.

Adam L. Berger, Stephen A. Della Pietra, and Vincent
J. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics 22.

Markus Dräger and Alexander Koller. 2012. Genera-
tion of landmark-based navigation instructions from
open-source data. In Proceedings of the Thirteenth
Conference of the European Chapter of the ACL.

Nikos Engonopoulos and Alexander Koller. 2014. Gen-
erating effective referring expressions using charts.
In Proceedings of the INLG and SIGDIAL 2014
Joint Session. pages 6–15.

Nikos Engonopoulos, Martı́n Villalba, Ivan Titov, and
Alexander Koller. 2013. Predicting the resolution
of referring expressions from user behavior. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. pages 1354–
1359.

Thiago Castro Ferreira and Ivandré Paraboni. 2017.
Improving the generation of personalised descrip-
tions. In Proceedings of the 10th International
Conference on Natural Language Generation. pages
233–237.

Thiago Castro Ferreira and Ivandr Paraboni. 2014. Re-
ferring expression generation: taking speakers pref-
erences into account. In Proceedings of the Interna-
tional Conference on Text, Speech, and Dialogue.

Katja Häuser, Jutta Kray, and Vera Demberg. 2017.
Age differences in language comprehension during
driving: Recovery from prediction errors is more ef-
fortful for older adults. In Proceedings of CogSci.

Srinivasan Janarthanam and Oliver Lemon. 2014.
Adaptive generation in dialogue systems using dy-
namic user modeling. Computational Linguistics
40.

Alexander Koller, Kristina Striegnitz, Andrew Gargett,
Donna Byron, Justine Cassell, Robert Dale, Johanna
Moore, and Jon Oberlander. 2010. Report on the
Second NLG Challenge on Generating Instructions
in Virtual Environments (GIVE-2). In Proceedings
of the 6th International Natural Language Genera-
tion Conference.

Radford M. Neal and Geoffrey E. Hinton. 1999. A
view of the em algorithm that justifies incremen-
tal, sparse, and other variants. In Michael I. Jor-
dan, editor, Learning in graphical models, MIT
Press, Cambridge, MA, USA, pages 355–368.
http://dl.acm.org/citation.cfm?id=308574.308679.

Jorge Nocedal and Stephen Wright. 2006. Numerical
Optimization. Springer.

Cecile Paris. 1988. Tailoring object descriptions to a
user’s level of expertise. Computational Linguistics
14.

J. A. Rosenblum and J. D. Moore. 1993. Participating
in instructional dialogues: Finding and exploiting
relevant prior explanations. In Proceedings of the
World Conference on Artificial Intelligence in Edu-
cation.

Kristina Striegnitz, Alexandre Denis, Andrew Gargett,
Konstantina Garoufi, Alexander Koller, and Mariet
Theune. 2011. Report on the Second Second Chal-
lenge on Generating Instructions in Virtual Environ-
ments (GIVE-2.5). In Proceedings of the 13th Euro-
pean Workshop on Natural Language Generation.

Jette Viethen and Robert Dale. 2008. The use of spa-
tial relations in referring expression generation. In
Proceedings of the Fifth International Natural Lan-
guage Generation Conference. Association for Com-
putational Linguistics, pages 59–67.

Jette Viethen and Robert Dale. 2010. Speaker-
dependent variation in content selection for referring
expression generation. In Proceedings of the Aus-
tralasian Language Technology Association Work-
shop 2010. pages 81–89.

Marilyn Walker, Amanda Stent, Francois Mairesse, and
Rashmi Prasad. 2007. Individual and domain adap-
tation in sentence planning for dialogue. Journal of
AI Research 30.

http://dl.acm.org/citation.cfm?id=308574.308679
http://dl.acm.org/citation.cfm?id=308574.308679
http://dl.acm.org/citation.cfm?id=308574.308679
http://dl.acm.org/citation.cfm?id=308574.308679

