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Abstract

Natural language generators for task-
oriented dialogue must effectively realize
system dialogue actions and their asso-
ciated semantics. In many applications,
it is also desirable for generators to con-
trol the style of an utterance. To date,
work on task-oriented neural generation
has primarily focused on semantic fidelity
rather than achieving stylistic goals, while
work on style has been done in contexts
where it is difficult to measure content
preservation. Here we present three dif-
ferent sequence-to-sequence models and
carefully test how well they disentangle
content and style. We use a statistical gen-
erator, PERSONAGE, to synthesize a new
corpus of over 88,000 restaurant domain
utterances whose style varies according to
models of personality, giving us total con-
trol over both the semantic content and the
stylistic variation in the training data. We
then vary the amount of explicit stylistic
supervision given to the three models. We
show that our most explicit model can si-
multaneously achieve high fidelity to both
semantic and stylistic goals: this model
adds a context vector of 36 stylistic param-
eters as input to the hidden state of the en-
coder at each time step, showing the ben-
efits of explicit stylistic supervision, even
when the amount of training data is large.

1 Introduction

The primary aim of natural language generators
(NLGs) for task-oriented dialogue is to effectively
realize system dialogue actions and their associ-
ated content parameters. This requires training
data that allows the NLG to learn how to map

semantic representations for system dialogue acts
to one or more possible outputs (see Figure 1,
(Novikova et al., 2016)). Because neural gener-
ators often make semantic errors such as delet-
ing, repeating or hallucinating content, to date
previous work on task-oriented neural generation
has primarily focused on faithfully rendering the
meaning of the system’s dialogue act (Dusek and
Jurcı́cek, 2016b; Lampouras and Vlachos, 2016;
Mei et al., 2015; Wen et al., 2015).

INFORM(NAME[THE EAGLE], EATTYPE[COFFEE SHOP],
FOOD[ENGLISH], PRICERANGE[HIGH], CUSTOMER-
RATING[AVERAGE], AREA[CITY CENTRE], FAMI-
LYFRIENDLY[YES], NEAR[BURGER KING])
The three star coffee shop, The Eagle, located near Burger
King, gives families a high priced option for English food
in the city centre.
Let’s see what we can find on The Eagle. Right, The Eagle
is a coffee shop with a somewhat average rating. The Eagle
is kid friendly, also it’s an English restaurant and expensive,
also it is near Burger King in the city centre, you see?

Figure 1: Dialogue Act Meaning Representation
(MR) with content parameters and outputs

However, in many applications it is also desir-
able for generators to control the style of an ut-
terance independently of its content. For exam-
ple, in Figure 1, the first output uses more for-
mal language and complex syntactic structures,
as one might see in written language, while the
other uses simpler syntax and pragmatic markers
characteristic of oral language (Biber, 1991). In
this paper, we create several different sequence-
to-sequence models and compare how well they
can disentangle content and style. Controlling the
style of the output requires disentangling the con-
tent from the style, but previous neural models
aimed at achieving stylistic goals have not focused
on task-oriented dialogue where specific semantic
attributes and values must be communicated (as
per the MR in Figure 1), and where semantic fi-
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Personalities Realization

MEANING NAME[FITZBILLIES], EATTYPE[PUB], FOOD[ITALIAN], PRICERANGE[MODERATE],
REPRESENTATION
(MR)

CUSTOMER RATING[DECENT], AREA[RIVERSIDE], FAMILYFRIENDLY[NO],NEAR[’THE SOR-
RENTO’]

NO-AGG/
NO-PRAG

Fitzbillies is a pub. Fitzbillies has a decent rating. Fitzbillies is moderately priced. Fitzbillies is in
riverside. Fitzbillies is an Italian restaurant. Fitzbillies is not family friendly. Fitzbillies is near The
Sorrento.

AGREEABLE Let’s see what we can find on Fitzbillies. I see, well it is a pub with a decent rating, also it is an Italian
restaurant in riverside and moderately priced near The Sorrento, also it isn’t family friendly, you see?

DISAGREEABLE I mean, everybody knows that moderately priced Fitzbillies is in riverside with a decent rating. It’s near
The Sorrento. It isn’t family friendly. It is an Italian place. It is a pub.

CONSCIENTIOUS Let’s see what we can find on Fitzbillies. I see, well it is a pub with a decent rating, it isn’t kid friendly
and it’s moderately priced near The Sorrento and an Italian restaurant in riverside.

UNCONSCIENTIOUS Oh god yeah, I don’t know. Fitzbillies is a pub with a decent rating, also it is moderately priced near
The Sorrento and an Italian place in riverside and it isn’t kid friendly.

EXTRAVERT Basically, Fitzbillies is an Italian place near The Sorrento and actually moderately priced in riverside, it
has a decent rating, it isn’t kid friendly and it’s a pub, you know.

Table 1: Sample neural model output realizations for the same MR for PERSONAGE’s personalities

delity can be precisely measured.1

One of the main challenges is the lack of paral-
lel corpora realizing the same content with differ-
ent styles. Thus we create a large, novel parallel
corpus with specific style parameters and specific
semantics, by using an existing statistical genera-
tor, PERSONAGE (Mairesse and Walker, 2010), to
synthesize over 88,000 utterances in the restaurant
domain that vary in style according to psycholin-
guistic models of personality.2 PERSONAGE can
generate a very large number of stylistic variations
for any given dialogue act, thus yielding, to our
knowledge, the largest style-varied NLG training
corpus in existence. The strength of this new cor-
pus is that: (1) we can use the PERSONAGE gener-
ator to generate as much training data as we want;
(2) it allows us to systematically vary a specific
set of stylistic parameters and the network archi-
tectures; (3) it allows us to systematically test the
ability of different models to generate outputs that
faithfully realize both the style and content of the
training data.3

We develop novel neural models that vary the
amount of explicit stylistic supervision given to
the network, and we explore, for the first time,
explicit control of multiple interacting stylistic
parameters. We show that the no-supervision
(NO-SUP) model, a baseline sequence-to-sequence
model (Sutskever et al., 2014; Dusek and Jurcı́cek,
2016b), produces semantically correct outputs, but

1We leave a detailed review of related work to Section 6.
2Our stylistic variation for NLG corpus is available at:

nlds.soe.ucsc.edu/stylistic-variation-nlg
3 Section 4 quantifies the naturalness of PERSONAGE out-

puts.

eliminates much of the stylistic variation that it
saw in the training data. MODEL TOKEN provides
minimal supervision by allocating a latent variable
in the encoding as a label for each style, similar to
the use of language labels in machine translation
(Johnson et al., 2017). This model learns to gen-
erate coherent and stylistically varied output with-
out explicit exposure to language rules, but makes
more semantic errors. MODEL CONTEXT adds
another layer to provide an additional encoding
of individual stylistic parameters to the network.
We show that it performs best on both measures
of semantic fidelity and stylistic variation. The
results suggest that neural architectures can ben-
efit from explicit stylistic supervision, even with a
large training set.

2 Corpus Creation

We aim to systematically create a corpus that can
be used to test how different neural architectures
affect the ability of the trained model to disentan-
gle style from content, and faithfully produce se-
mantically correct utterances that vary style. We
use PERSONAGE, an existing statistical generator:
due to space, we briefly explain how it works,
referring the interested reader to Mairesse and
Walker (2010, 2011) for details.

PERSONAGE requires as input: (1) a meaning
representation (MR) of a dialogue act and its con-
tent parameters, and (2) a parameter file that tells
it how frequently to use each of its stylistic pa-
rameters. Sample model outputs are shown in the
second row of Figure 1 and in Table 1, illustrating
some stylistic variations PERSONAGE produces.

To generate our novel corpus, we utilize the



182

MRs from the E2E Generation Challenge.4 The
MR in Figure 1 illustrates all 8 available attributes.
We added a dictionary entry for each attribute to
PERSONAGE so that it can express that attribute.5

These dictionary entries are syntactic representa-
tions for very simple sentences: the NO-AGG/NO-
PRAG row of Table 1 shows a sample realization
of each attribute in its own sentence based on its
dictionary entry.

Number of Attributes in MR
Dataset 3 4 5 6 7 8
TRAIN 0.13 0.30 0.29 0.22 0.06 0.01
TEST 0.02 0.04 0.06 0.15 0.35 0.37

Table 2: Percentage of the MRs in training and
test in terms of number of attributes in the MR

We took advantage of the setup of the E2E Gen-
eration Challenge and used their MRs, exactly du-
plicating their split between training, dev and test
MRs, because they ensured that the dev and test
MRs had not been seen in training. The frequen-
cies of longer utterances (more attribute MRs)
vary across train and test, with actual distribu-
tions in Table 2, showing how the test set was
designed to be challenging, while the test set in
Wen et al. (2015) averages less than 2 attributes
per MR (Nayak et al., 2017). We combine their
dev and training MRs resulting in 3784 unique
MRs in the training set, and generate 17,771 ref-
erence utterances per personality for a training set
size of 88,855 utterances. The test set consists of
278 unique MRs and we generate 5 references per
personality for a test size of 1,390 utterances.

The experiments are based on two types of pa-
rameters provided with PERSONAGE: aggregation
parameters and pragmatic parameters.6 The NO-
AGG/NO-PRAG row of Table 1 shows what PER-
SONAGE would output if it did not use any of its
stylistic parameters. The top half of Table 3 illus-
trates the aggregation parameters: these parame-
ters control how the NLG combines attributes into
sentences, e.g., whether it tries to create complex
sentences by combining attributes into phrases and

4http://www.macs.hw.ac.uk/
InteractionLab/E2E/

5PERSONAGE supports a one-to-many mapping from at-
tributes to elementary syntactic structures for expressing that
attribute, but here we use only one dictionary entry. PERSON-
AGE also allows for discourse relations such as justification or
contrast to hold between content items, but the E2E MRs do
not include such relations.

6We disable parameters related to content selection, syn-
tactic template selection and lexical choice.

Attribute Example
AGGREGATION OPERATIONS

PERIOD X serves Y. It is in Z.
“WITH” CUE X is in Y, with Z.
CONJUNCTION X is Y and it is Z. & X is Y, it is Z.
ALL MERGE X is Y, W and Z & X is Y in Z
“ALSO” CUE X has Y, also it has Z.

PRAGMATIC MARKERS
ACK DEFINITIVE right, ok
ACK JUSTIFICATION I see, well
ACK YEAH yeah
CONFIRMATION let’s see what we can find on X,

let’s see ....., did you say X?
INITIAL REJECTION mmm, I’m not sure, I don’t know.
COMPETENCE MIT. come on, obviously, everybody

knows that
FILLED PAUSE STATIVE err, I mean, mmhm
DOWN KIND OF kind of
DOWN LIKE like
DOWN AROUND around
EXCLAIM !
INDICATE SURPRISE oh
GENERAL SOFTENER sort of, somewhat, quite, rather
DOWN SUBORD I think that, I guess
EMPHASIZER really, basically, actually, just
EMPH YOU KNOW you know
EXPLETIVES oh god, damn, oh gosh, darn
IN GROUP MARKER pal, mate, buddy, friend
TAG QUESTION alright?, you see? ok?

Table 3: Aggregation and Pragmatic Operations

what types of combination operations it uses. The
pragmatic operators are shown in the second half
of Table 3. Each parameter value can be set to
high, low, or don’t care.

To use PERSONAGE to create training data map-
ping the same MR to multiple personality-based
variants, we set values for all of the parame-
ters in Table 3 using the stylistic models defined
by Mairesse and Walker (2010) for the following
Big Five personality traits: agreeable, disagree-
able, conscientiousness, unconscientiousness, and
extravert. Figure 2 shows that each personality
produces data that represents a stylistically dis-
tinct distribution. These models are probabilistic
and specified values are automatically broadened
within a range, thus each model can produce 10’s
of variations for each MR. Note that while each
personality type distribution can be characterized
by a single stylistic label (the personality), Fig-
ure 2 illustrates that each distribution is character-
ized by multiple interacting stylistic parameters.

Each parameter modifies the linguistic structure
in order to create distributionally different subcor-
pora. To see the effect of each personality us-
ing a different set of aggregation operators, cross-
reference the aggregation operations in Table 3
with an examination of the outputs in Table 1. The

http://www.macs.hw.ac.uk/InteractionLab/E2E/
http://www.macs.hw.ac.uk/InteractionLab/E2E/
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(a) Aggregation Operations

(b) Pragmatic Markers

Figure 2: Frequency of the Top 2 most frequent
Aggregation and Pragmatic Markers in Train

simplest choice for aggregation does not combine
attributes at all: this is represented by the PERIOD

operator, which, if used persistently, results in an
output with each content item in its own sentence
as in the NO-AGG/NO-PRAG row, or the content
being realized over multiple sentences as in the
DISAGREEABLE row (5 sentences). However, if
the other aggregation operations have a high value,
PERSONAGE prefers to combine simple sentences
into complex ones whenever it can, e.g., the EX-
TRAVERT personality example in Table 1 com-
bines all the attributes into a single sentence by
repeated use of the ALL MERGE and CONJUNC-
TION operations. The CONSCIENTIOUS row in Ta-
ble 1 illustrates the use of the WITH-CUE aggre-
gation operation, e.g., with a decent rating. Both
the AGREEABLE and CONSCIENTIOUS rows in Ta-
ble 1 provide examples of the ALSO-CUE aggre-
gation operation. In PERSONAGE, the aggrega-
tion operations are defined as syntactic operations
on the dictionary entry’s syntactic tree. Thus to
mimic these operations correctly, the neural model

must derive latent representations that function as
though they also operate on syntactic trees.

The pragmatic operators in the second half of
Table 3 are intended to achieve particular prag-
matic effects in the generated outputs: for exam-
ple the use of a hedge such as sort of softens a
claim and affects perceptions of friendliness and
politeness (Brown and Levinson, 1987), while the
exaggeration associated with emphasizers like ac-
tually, basically, really influences perceptions of
extraversion and enthusiasm (Oberlander and Gill,
2004; Dewaele and Furnham, 1999). In PERSON-
AGE, the pragmatic parameters are attached to the
syntactic tree at insertion points defined by syn-
tactic constraints, e.g., EMPHASIZERS are adverbs
that can occur sentence initially or before a scalar
adjective. Each personality model uses a variety
of pragmatic parameters. Figure 2 shows how
these markers distribute differently across person-
ality models, with examples in Table 1.

3 Model Architectures

Our neural generation models build on the open-
source sequence-to-sequence (seq2seq) TGen sys-
tem (Dusek and Jurcı́cek, 2016a)7, implemented
in Tensorflow (Abadi et al., 2016). The system is
based on seq2seq generation with attention (Bah-
danau et al., 2014; Sutskever et al., 2014), and uses
a sequence of LSTMs (Hochreiter and Schmidhu-
ber, 1997) for the encoder and decoder, combined
with beam-search and reranking for output tuning.

The input to TGen are dialogue acts for each
system action (such as inform) and a set of at-
tribute slots (such as rating) and their values (such
as high for attribute rating). The system inte-
grates sentence planning and surface realization
into a single step to produce natural language out-
puts. To preprocess the corpus of MR/utterance
pairs, attributes that take on proper-noun values
are delexicalized during training i.e., name and
near. During the generation phase on the test set,
a post-processing step re-lexicalizes the outputs.
The MRs (and resultant embeddings) are sorted
internally by dialogue act tag and attribute name.

The models are designed to systematically test
the effects of increasing the level of supervision,
with novel architectural additions to accommodate
these changes. We use the default parameter set-
tings from TGen (Dusek and Jurcı́cek, 2016a) with
batch size 20 and beam size 10, and use 2,000

7https://github.com/UFAL-DSG/tgen

https://github.com/UFAL-DSG/tgen
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training instances for parameter tuning to set the
number of training epochs and learning rate. Fig-
ure 3 summarizes the architectures.

Figure 3: Neural Network Model Architecture

MODEL NOSUPERVISION. The simplest model
follows the baseline TGen architecture (Dusek and
Jurcı́cek, 2016b), with training using all 88K utter-
ances in a single pool for up to 14 epochs based on
loss monitoring for the decoder and reranker.
MODEL TOKEN. The second model adds a token
of additional supervision by introducing a new di-
alogue act, convert, to encode personality, inspired
by the use of a language token for machine trans-
lation (Johnson et al., 2017). Unlike other work
that uses a single token to control generator output
(Fan et al., 2017; Hu et al., 2017), the personality
token encodes a constellation of different parame-
ters that define the style of the matching reference.
Uniquely here, the model attempts to simultane-
ously control multiple style variables that may in-
teract in different ways. Again, we monitor loss
on the validation set and training continues for up
to 14 epochs for the decoder and reranker.
MODEL CONTEXT. The most complex model in-
troduces a context vector, as shown at the top right
of Figure 3. The vector explicitly encodes a set of
36 style parameters from Table 3. The parameters
for each reference text are encoded as a boolean
vector, and a feed-forward network is added as a
context encoder, taking the vector as input to the
hidden state of the encoder and making the param-
eters available at every time step to a multiplica-
tive attention unit. The activations of the fully
connected nodes are represented as an additional

time step of the encoder of the seq2seq architec-
ture (Sutskever et al., 2014). The attention (Bah-
danau et al., 2014) is computed over all of the en-
coder states and the hidden state of the fully con-
nected network. Again, we set the learning rate,
alpha decay, and maximum training epochs (up to
20) based on loss monitoring on the validation set.

4 Quantitative Results

Here, we present results on controlling stylistic
variation while maintaining semantic fidelity.

4.1 Evaluating Semantic Quality
It is widely agreed that new evaluation metrics
are needed for NLG (Langkilde-Geary, 2002; Belz
and Reiter, 2006; Bangalore et al., 2000; Novikova
et al., 2017a). We first present automated met-
rics used in NLG to measure how well model out-
puts compare to PERSONAGE input, then intro-
duce novel metrics designed to fill the gap left by
current evaluation metrics.
Automatic Metrics. The automatic evaluation
uses the E2E generation challenge script.8 Ta-
ble 4 summarizes the results for BLEU (n-gram
precision), NIST (weighted n-gram precision),
METEOR (n-grams with synonym recall), and
ROUGE (n-gram recall). Although the differences
in metrics are small, MODEL CONTEXT shows a
slight improvement across all of the metrics.

Model BLEU NIST METEOR ROUGE L
NOSUP 0.2774 4.2859 0.3488 0.4567
TOKEN 0.3464 4.9285 0.3648 0.5016
CONTEXT 0.3766 5.3437 0.3964 0.5255

Table 4: Automated Metric Evaluation

Deletions, Repetitions, and Substitutions. Auto-
mated evaluation metrics are not informative about
the quality of the outputs, and penalize models for
introducing stylistic variation. We thus develop
new scripts to automatically evaluate the types
common types of neural generation errors: dele-
tions (failing to realize a value), repeats (repeating
a value), and substitutions (mentioning an attribute
with an incorrect value).

Table 5 shows ratios for the number of dele-
tions, repeats, and substitutions for each model for
the test set of 1,390 total realizations (278 unique
MRs, each realized once for each of the 5 person-
alities). The error counts are split by personal-
ity, and normalized by the number of unique MRs

8https://github.com/tuetschek/
e2e-metrics

https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics
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(278). Smaller ratios are preferable, indicating
fewer errors. Note that because MODEL NOSUP

does not encode a personality parameter, the error
values are the same across each personality (aver-
ages across the full test set).

The table shows that MODEL NOSUP makes
very few semantic errors (we show later that this
is at the cost of limited stylistic variation). Across
all error types, MODEL CONTEXT makes signif-
icantly fewer errors than MODEL TOKEN, sug-
gesting that its additional explicit parameters help
avoid semantic errors. The last row quantifies
whether some personalities are harder to model: it
shows that across all models, DISAGREEABLE and
EXTRAVERT have the most errors, while CONSCI-
ENTIOUS has the fewest.

Model AGREE CONSC DISAG EXTRA UNCON

DELETIONS
NOSUP 0.01 0.01 0.01 0.01 0.01
TOKEN 0.27 0.22 0.87 0.74 0.31
CONTEXT 0.08 0.01 0.14 0.08 0.01

REPETITIONS
NOSUP 0.00 0.00 0.00 0.00 0.00
TOKEN 0.29 0.12 0.81 0.46 0.28
CONTEXT 0.02 0.00 0.14 0.00 0.00

SUBSTITUTIONS
NOSUP 0.10 0.10 0.10 0.10 0.10
TOKEN 0.34 0.41 0.22 0.35 0.29
CONTEXT 0.03 0.03 0.00 0.00 0.03
All 0.68 0.35 1.96 1.29 0.61

Table 5: Ratio of Model Errors by Personality

4.2 Evaluating Stylistic Variation

Here we characterize the fidelity of stylistic varia-
tion across different model outputs.
Entropy. Shannon text entropy quantifies the
amount of variation in the output produced by each
model. We calculate entropy as −

∑
x∈S

freq
total ∗

log2(
freq
total ), where S is the set of unique words in

all outputs generated by the model, freq is the
frequency of a term, and total counts the num-
ber of terms in all references. Table 6 shows
that the training data has the highest entropy, but
MODEL CONTEXT performs the best at preserv-
ing the variation seen in the training data. Row
NOSUP shows that MODEL NOSUP makes the
fewest semantic errors, but produces the least var-
ied output. MODEL CONTEXT, informed by the
explicit stylistic context encoding, makes compa-
rably few semantic errors, while producing stylis-
tically varied output with high entropy.

Pragmatic Marker Usage. To measure whether

Model 1-grams 1-2grams 1-3grams
PERSONAGETRAIN 5.97 7.95 9.34
NOSUP 5.38 6.90 7.87
TOKEN 5.67 7.35 8.47
CONTEXT 5.70 7.42 8.58

Table 6: Shannon Text Entropy

the trained models faithfully reproduce the prag-
matic markers for each personality, we count each
pragmatic marker in Table 3 in the output, aver-
age the counts and compute the Pearson correla-
tion between the PERSONAGE references and the
outputs for each model and personality. See Table
7 (all correlations significant with p ≤ 0.001).

Model AGREE CONSC DISAG EXTRA UNCON
NOSUP 0.05 0.59 -0.07 -0.06 -0.11
TOKEN 0.35 0.66 0.31 0.57 0.53
CONTEXT 0.28 0.67 0.40 0.76 0.63

Table 7: Correlations between PERSONAGE and
models for pragmatic markers in Table 3

Table 7 shows that MODEL CONTEXT has the
highest correlation with the training data, for all
personalities (except AGREEABLE, with signifi-
cant margins, and CONSCIENTIOUS, which is the
easiest personality to model, with a margin of
0.01). While MODEL NOSUP shows positive cor-
relation with AGREEABLE and CONSCIENTIOUS,
it shows negative correlation with the PERSON-
AGE inputs for DISAGREEABLE, EXTRAVERT,
and UNCONSCIENTIOUS. The pragmatic marker
distributions for PERSONAGE train in Figure
2 indicates that the CONSCIENTIOUS personal-
ity most frequently uses acknowledgement-justify
(i.e., “well”, “i see”), and request confirmation
(i.e., “did you say X?”), which are less complex
to introduce into a realization since they often lie
at the beginning or end of a sentence, allowing the
simple MODEL NOSUP to learn them.9

Aggregation. To measure the ability of each
model to aggregate, we average the counts of each
aggregation operation for each model and person-
ality and compute the Pearson correlation between
the output and the PERSONAGE training data.

The correlations in Table 8 (all significant
with p ≤ 0.001) show that MODEL CONTEXT

has a higher correlation with PERSONAGE than
the two simpler models (except for DISAGREE-

9We verified that there is not a high correlation between
every set of pragmatic markers: different personalities do not
correlate, e.g., -0.078 for PERSONAGE DISAGREEABLE and
MODEL TOKEN AGREEABLE.
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Model AGREE CONSC DISAG EXTRA UNCON
NOSUP 0.78 0.80 0.13 0.42 0.69
TOKEN 0.74 0.74 0.57 0.56 0.60
CONTEXT 0.83 0.83 0.55 0.66 0.70

Table 8: Correlations between PERSONAGE and
models for aggregation operations in Table 3

ABLE, where MODEL TOKEN is higher by 0.02).
Here, MODEL NOSUP actually frequently out-
performs the more informed MODEL TOKEN.
Note that all personalities use aggregation, even
thought not all personalities use pragmatic mark-
ers, and so even without a special personality to-
ken, MODEL NOSUP is able to faithfully repro-
duce aggregation operations. In fact, since the
correlations are frequently higher than those for
MODEL TOKEN, we hypothesize that is able to
more accurately focus on aggregation (common to
all personalities) than stylistic differences, which
MODEL TOKEN is able to produce.

5 Qualitative Analysis

Here, we present two evaluations aimed at quali-
tative analysis of our outputs.
Crowdsourcing Personality Judgements.
Based on our quantitative results, we select
MODEL CONTEXT as the best-performing model
and conduct an evaluation to test if humans
can distinguish the personalities exhibited. We
randomly select a set of 10 unique MRs from
the PERSONAGE training data along with their
corresponding reference texts for each person-
ality (50 items in total), and 30 unique MRs
MODEL CONTEXT outputs (150 items in to-
tal).10 We construct a HIT on Mechanical Turk,
presenting a single output (either PERSONAGE

or MODEL CONTEXT), and ask 5 Turkers to
label the output using the Ten Item Personality
Inventory (TIPI) (Gosling et al., 2003). The TIPI
is a ten-item measure of the Big Five personality
dimensions, consisting of two items for each
of the five dimensions, one that matches the
dimension, and one that is the reverse of it, and
a scale that ranges from 1 (disagree strongly) to
7 (agree strongly). To qualify Turkers for the
task, we ask that they first complete a TIPI on
themselves, to help ensure that they understand it.

Table 9 presents results as aggregated counts
for the number of times at least 3 out of the 5

10Note that we use fewer PERSONAGE references simply to
validate that our personalities are distinguishable in training,
but will more rigorously evaluate our model in future work.

PERSONAGE MODEL CONTEXT
Person. Ratio

Correct
Avg.
Rating

Nat.
Rating

Ratio
Correct

Avg.
Rating

Nat.
Rating

AGREE 0.60 4.04 5.22 0.50 4.04 4.69
DISAGR 0.80 4.76 4.24 0.63 4.03 4.39
CONSC 1.00 5.08 5.60 0.97 5.19 5.18
UNCON 0.70 4.34 4.36 0.17 3.31 4.58
EXTRA 0.90 5.34 5.22 0.80 4.76 4.61

Table 9: Percentage of Correct Items and Average
Ratings and Naturalness Scores for Each Person-
ality (PERSONAGE vs. MODEL CONTEXT)

Turkers rated the matching item for that person-
ality higher than the reverse item (Ratio Correct),
the average rating the correct item received (range
between 1-7), and an average “naturalness” score
for the output (also rated 1-7). From the table, we
can see that for PERSONAGE training data, all of
the personalities have a correct ratio that is higher
than 0.5. The MODEL CONTEXT outputs exhibit
the same trend except for UNCONSCIENTIOUS and
AGREEABLE, where the correct ratio is only 0.17
and 0.50, respectively (they also have the lowest
correct ratio for the original PERSONAGE data).

Table 9 also presents results for naturalness for
both the reference and generated utterances, show-
ing that both achieve decent scores for naturalness
(on a scale of 1-7). While human utterances would
probably be judged more natural, it is not at all
clear that similar experiments could be done with
human generated utterances, where it is difficult to
enforce the same amount of experimental control.

Generalizing to Multiple Personalities. A final
experiment explores whether the models learn ad-
ditional stylistic generalizations not seen in train-
ing. We train a version of MODEL TOKEN,
as before on instances with single personalities,
but such that it can be used to generate output
with a combination of two personalities. The
experiment uses the original training data for
MODEL TOKEN, but uses an expanded test set
where the MR includes two personality CONVERT

tags. We pair each personality with all personali-
ties except its exact opposite.

Sample outputs are given in Table 10 for the
DISAGREEABLE personality, which is one of the
most distinct in terms of aggregation and prag-
matic marker insertion, along with occurrence
counts (frequency shown scaled down by 100) of
the operations that it does most frequently: specif-
ically, period aggregation and expletive pragmatic
markers. Rows 1-2 shows the counts and an exam-
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Persona Period
Agg.

Explet
Prag.

Example

1 DISAG 5.71 2.26 Browns Cambridge is damn mod-
erately priced, also it’s in city cen-
tre. It is a pub. It is an italian place.
It is near Adriatic. It is damn fam-
ily friendly.

2 CONSC 0.60 0.02 Let’s see what we can find on
Browns Cambridge. I see, well it is
a pub, also it is moderately priced,
an italian restaurant near Adriatic
and family friendly in city centre.

3 DISAG+
CONSC

3.81 0.84 Browns Cambridge is an italian
place and moderately priced. It is
near Adriatic. It is kid friendly. It
is a pub. It is in riverside.

Table 10: Multiple-Personality Generation Out-
put based on DISAGREEABLE

ple of each personality on its own. The combined
personality output is shown in Row 3. We can see
from the table that while CONSCIENTIOUS on its
own realizes the content in two sentences, period
aggregation is much more prevalent in the DIS-
AGREEABLE + CONSCIENTIOUS example, with
the same content being realized in 5 sentences.
Also, we see that some of the expletives origi-
nally in DISAGREEABLE are dropped in the com-
bined output. This suggests that the model learns
a combined representation unlike what it has seen
in train, which we will explore in future work.

6 Related Work and Conclusion

The restaurant domain has long been a testbed for
conversational agents with much earlier work on
NLG (Howcroft et al., 2013; Stent et al., 2004;
Devillers et al., 2004; Gašic et al., 2008; Mairesse
et al., 2010; Higashinaka et al., 2007), so it is
not surprising that recent work using neural gen-
eration methods has also focused on the restau-
rant domain (Wen et al., 2015; Mei et al., 2015;
Dusek and Jurcı́cek, 2016b; Lampouras and Vla-
chos, 2016; Juraska et al., 2018). The restaurant
domain is ideal for testing generation models be-
cause sentences can range from extremely simple
to more complex forms that exhibit discourse rela-
tions such as justification or contrast (Stent et al.,
2004). Most recent work focuses on achieving se-
mantic fidelity for simpler syntactic structures, al-
though there has also been a focus on crowdsourc-
ing or harvesting training data that exhibits more
stylistic variation (Novikova et al., 2017; Nayak
et al., 2017; Oraby et al., 2017).

Most previous work on neural stylistic gener-
ation has been carried out in the framework of
“style transfer”: this work is hampered by the

lack of parallel corpora, the difficulty of evaluat-
ing content preservation (semantic fidelity), and
the challenges with measuring whether the outputs
realize a particular style. Previous experiments
attempt to control the sentiment and verb tense
of generated movie review sentences (Hu et al.,
2017), the content preservation and style transfer
of news headlines and product review sentences
(Fu et al., 2018), multiple automatically extracted
style attributes along with sentiment and sentence
theme for movie reviews (Ficler and Goldberg,
2017), sentiment, fluency and semantic equiva-
lence (Shen et al., 2017), utterance length and
topic (Fan et al., 2017), and the personality of cus-
tomer care utterances in dialogue (Herzig et al.,
2017). However, to our knowledge, no previous
work evaluates simultaneous achievement of mul-
tiple targets as we do. Recent work introduces a
large parallel corpus that varies on the formality
dimension, and introduces several novel evalua-
tion metrics, including a custom trained model for
measuring semantic fidelity (Rao and Tetreault).

Other work has also used context representa-
tions, but not in the way that we do here. In gen-
eral, these have been used to incorporate a repre-
sentation of the prior dialogue into response gen-
eration. Sordoni et al. (2015) propose a basic ap-
proach where they incorporate previous utterances
as a bag of words model and use a feed-forward
neural network to inject a fixed sized context vec-
tor into the LSTM cell of the encoder. Ghosh et al.
(2016) proposed a modified LSTM cell with an ad-
ditional gate that incorporates the previous context
as input during encoding. Our context representa-
tion encodes stylistic parameters.

This paper evaluates the ability of different neu-
ral architectures to faithfully render the semantic
content of an utterance while simultaneously ex-
hibiting stylistic variations characteristic of Big
Five personalities. We created a novel parallel
training corpus of over 88,000 meaning represen-
tations in the restaurant domain, and matched ref-
erence outputs by using an existing statistical nat-
ural language generator, PERSONAGE (Mairesse
and Walker, 2010). We design three neural mod-
els that systematically increase the stylistic en-
codings given to the network, and show that
MODEL CONTEXT benefits from the greatest ex-
plicit stylistic supervision, producing outputs that
both preserve semantic fidelity and exhibit distin-
guishable personality styles.
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Igor A. Melčuk. 1988. Dependency Syntax: Theory
and Practice. SUNY, Albany, New York.

Neha Nayak, Dilek Hakkani-Tur, Marilyn Walker, and
Larry Heck. 2017. To plan or not to plan? dis-
course planning in slot-value informed sequence to
sequence models for language generation. In Proc.
of Interspeech 2017.

Jekaterina Novikova, Ondrej Dušek, and Verena Rieser.
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