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Abstract

In spoken dialog systems (SDSs), dia-
log act (DA) segmentation and recogni-
tion provide essential information for re-
sponse generation. A majority of previ-
ous works assumed ground-truth segmen-
tation of DA units, which is not available
from automatic speech recognition (ASR)
in SDS. We propose a unified architec-
ture based on neural networks, which con-
sists of a sequence tagger for segmenta-
tion and a classifier for recognition. The
DA recognition model is based on hierar-
chical neural networks to incorporate the
context of preceding sentences. We in-
vestigate sharing some layers of the two
components so that they can be trained
jointly and learn generalized features from
both tasks. An evaluation on the Switch-
board Dialog Act (SwDA) corpus shows
that the jointly-trained models outperform
independently-trained models, single-step
models, and other reported results in DA
segmentation, recognition, and joint tasks.

1 Introduction

A growing interest in interactive conversational
agents and robots has motivated research focus on
spoken language understanding (SLU). As an es-
sential part of spoken dialog system (SDS), SLU
analyzes user input, and provides the dialog sys-
tem with information to make a response. In con-
versations, dialog act (DA) represents the commu-
nicative function of an utterance (Stolcke et al.,
2000). For instance, we can use DA tag Statement
to describe utterance “Me, I’m in the legal depart-
ment.” and use Yes-No-Question to describe “Do
you have to have any special training?”. Recog-
nition of DA benefits the understanding of dialog

structure, thus allows SDS to conduct meaning-
ful and smooth conversation, e.g. a Yes-Answer
or No-Answer to a Yes-No-Question, and end the
conversation after a Conventional-closing.1

Most of previous works focused on DA recog-
nition given transcriptions that are manually seg-
mented (Stolcke et al., 2000; Ivanovic, 2005;
Webb et al., 2005; Sridhar et al., 2009; Li and
Wu, 2016; Khanpour et al., 2016; Lee and Dernon-
court, 2016; Shen and Lee, 2016; Joty and Hoque,
2016). Early works applied decision trees, Hid-
den Markov Model (Stolcke et al., 2000), and n-
gram models (Stolcke et al., 2000; Ivanovic, 2005)
to classify DA tags. Recently, hierarchical neural
networks have been introduced to the task. Such
models encode a DA segment into a sentence en-
coding by one network and apply the other net-
work for DA recognition given a sequence of sen-
tence encoding. Different combinations of net-
works such as CNN-ANN, RNN-ANN (Lee and
Dernoncourt, 2016), and RNN-RNN (Li and Wu,
2016; Khanpour et al., 2016) are shown to greatly
improve the accuracy of DA recognition. Ji et al.
(2016) introduced an extra latent variable to a hi-
erarchical RNN model to represent discourse re-
lation. Jointly training the latent variable model
on DA recognition and language modeling tasks
yields competitive results. Recent works (Kumar
et al., 2017; Chen et al., 2017) on DA recogni-
tion use a hierarchical encoder to generate a vector
representation for each DA segment, then a Con-
ditional Random Field (CRF) tagger is applied to
sequence labeling given the sequence of segment
representations. Kumar et al. (2017) reported an
accuracy of 79.2% on SwDA, while Chen et al.
(2017) achieved the current state-of-the-art accu-
racy of 81.3% by incorporating attentional mecha-
nism and extra inputs (character embeddings, Part-

1Examples of DA tags and utterances are selected from
the Switchboard Dialog Act (SwDA) corpus.
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Words okay so I guess it starts recording now
Segmentation E I I I I I I E
DA Backchannel Statement

Table 1: DA segmentation and recognition: “I” tag refers to inside of a segment, and “E” is the end of a
segment.

of-Speech tags, and named entitiy tags). However,
these models with CRF layer assume that com-
plete dialog is given before prediction. Thus the
reported performances will not apply to real-time
SDS, where DA tags are often predicted incremen-
tally.

As shown in Table 1, an utterance in a con-
versational turn can consist of several DA units.
In the example, we use “E” tag to denote the
end of a segment and “I” for inside. The utter-
ance “okay so I guess it starts recording now” are
split into two segments, which are a Backchannel
and a Statement respectively. However, automatic
speech recognition (ASR) in SDS usually provides
no punctuation that gives hints for DA segmenta-
tion, thus it is necessary to build a sequence labeler
for automatic DA segmentation.

A majority of previous works of DA segmenta-
tion formulated DA segmentation and recognition
in a single step (Zimmermann et al., 2006; Zim-
mermann, 2009; Quarteroni et al., 2011; Granell
et al., 2009). Segmentation labels are combined
with DA labels (e.g. “E Statement” denotes the
end of a Statement segment), and a sequence la-
beling model is applied to predict tags for both
tasks. This approach has a merit of integration so
that recognition helps segmentation and segmen-
tation errors are not propagated to the recognition
step. On the other hand, it has a drawback that it
can hardly incorporate a history of preceding sen-
tences to predict the DA tag of the current sen-
tence. Another approach is to process the data in
a pipeline manner. Manuvinakurike et al. (2016)
used a CRF for DA segmentation and a Supported
Vector Machine (SVM) for DA recognition given
predicted segments. For pipeline methods, down-
stream task (e.g. DA recognition) is vulnerable
to errors from upstream task (e.g. DA segmen-
tation). In this paper we propose a unified archi-
tecture based on neural networks for DA segmen-
tation and recognition to solve the aforementioned
problems. Our method uses separate models for
DA segmentation and recognition but introduces
joint learning so that the models can learn from

both tasks.
Joint learning (also multi-task learning) allows

a model to learn from different tasks in parallel,
which benefits the generalization of the model.
Collobert and Weston (2008) introduced a uni-
fied architecture based on Convolutional Neural
Networks (CNNs) to natural language processing
tasks such as Part-of-Speech (POS) tagging and
chunking, and showed that joint learning of related
tasks improves model performance. Inspired by
this work, we investigate joint learning of DA seg-
mentation and recognition for better generalized
model. We compare the jointly-trained models
under the unified architecture with models trained
separately and previous works on the Switchboard
Dialog Act (SwDA) corpus.

2 Models and Training

The proposed method applies a word sequence
tagger for segmentation and a sentence classifier
for recognition. Under a unified neural architec-
ture, the sequence tagger and the classifier share
parameters to learn features from each other and
improve generalization. As shown in Figure 1, the
left part corresponds to a word sequence tagger
for segmentation using Bidirectional Long Short
Term Memory (BiLSTM) (Schuster and Paliwal,
1997) and on the right-hand side is a sentence
classifier for DA recognition based on hierarchi-
cal LSTMs (Hochreiter and Schmidhuber, 1997).

Components for segmentation and recognition
will be explained in Section 2.1 and 2.2. In Sec-
tion 2.3, three proposed models are introduced.
In order to compare the proposed models with
conventional approach, we describe a single-step
model that uses combined labels in Section 2.4.

2.1 Word Sequence Tagger for DA
Segmentation

Regarding DA segmentation as a sequence label-
ing problem, BiLSTM naturally fits the task since
it can exploit information of surrounding words
in the prediction of the current word. The se-
quence tagger predicts a segmentation label yt
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Figure 1: A unified neural architecture consisting
of a word sequence tagger for DA segmentation
and a sentence classifier for DA recognition.

for each word wt in the input utterance w1:L.
A word embedding layer firstly maps the input
words w1:L into distributed vector representation
of words x1:L. Then we use a BiLSTM to process
the sequence and output hidden states h1:L. The
last decoding layer computes a probability distri-
bution yseg,1:L over segmentation labels:

x1:L = word-embedding(w1:L), (1)

h1:L = BiLSTM(x1:L), (2)

yseg,t = softmax(Wseght + bseg), (3)

where Wseg and bseg are trainable parameters in
the decoding layer.

2.2 Sentence Classifier for DA Recognition

Accurate recognition of DA requires understand-
ing of discourse relations (Ji et al., 2016). There-
fore, preceding sentences are needed as context in
the recognition of the current sentence. Hierar-
chical neural networks are able to encode intra-
sentence information and capture inter-sentence

relations through a two-level hierarchy. The lower
level of the network generates a sentence encod-
ing st for input sentence wt

1:M via BiLSTM, and
the higher-level LSTM network predicts a DA tag
of the input sentence given sentence encoding st
as well as sentence encodings of preceding k sen-
tences st−k, st−k+1, · · · , st−1.

We use a word embedding layer and a BiLSTM
layer to obtain hidden states ht

1:M as same as in the
sequence tagger. The last hidden state ht

M (sum of
the last hidden states on two directions of BiLSTM
as shown in Equation 4) is used as sentence encod-
ing st. In the same way, st−k:t−1 are calculated
and used as a context in the sentence sequence en-
coding network. We use a vanila LSTM to process
sequence st−k:t, and input the last hidden state d
to a DA tag decoding layer to compute the proba-
bility distribution over DA tags.

ht
M =

−→
h t

M +
←−
h t

M , (4)

st = ht
M , (5)

d = LSTM(st−k:t), (6)

yDA,t = softmax(WDAd+ bDA), (7)

where WDA and bDA are trainable parameters in
the DA tag decoding layer.

2.3 Proposed Models

Based on the aforementioned word sequence tag-
ger and sentence classifier, we introduce three
models. Different from the single-step method in
past works, the proposed models work in a cascad-
ing manner, i.e. to split the input text w1:L into
segments using the word sequence tagger, then
feed each segment wt

1:M to the sentence classi-
fier to predict its DA tag. As shown in Figure 1,
the segmentation component and the DA recogni-
tion component have the same structure in their
lower-level parts (a word embedding layer and a
BiLSTM-based encoder layer). The difference be-
tween the three models is the number of shared
layers.

• Model 1 A straightforward method is to sep-
arately build a word sequence tagger and a
sentence classifier. The model that has no
shared layers is called Model 1.

• Model 2 Word embedding layers are shared
between the sequence tagger and the DA clas-
sifier in Model 2. When training the sequence
tagger on the segmentation task, gradients
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from top end are back-propagated into the
shared word embeddings that are also used by
the DA classifier, vice versa. Parameters in
the shared word embedding layer are updated
by losses from both tasks, thus the model
learns generalized features on the word level.

• Model 3 We combine both the word embed-
ding layers and the BiLSTM encoding lay-
ers which produce h1:L and ht

1:M in Model
3. Since the higher-level layers are shared,
this model is expected to learn generalization
in high-level features.

2.4 Single-step Model for DA Segmentation
and Recognition

Previous single-step approaches to DA segmen-
tation and recognition are based on non-network
models such as Conditional Random Field (CRF).
For a fair comparison between the proposed neural
models and single-step method, we implement an
LSTM-based sequence tagger to predict combined
labels in a single-step manner. The single-step
model resembles the segmentation component in
Section 2.1 and the only difference is that a set
of combined labels are used in the output layer as
shown in Figure 2. Therefore, instead of predict-
ing segment boundaries (label “E”) only, it gener-
ates DA labels at the end of each segment as well
(e.g. “E Backchannel”, “E Statement”, etc.).

2.5 Training

The sequence tagger receives a whole turn (i.e.
a sequence of consecutive words uttered by one
speaker) and predicts segmentation tags (com-
bined tags in the case of single-step model) for all
words in the turn. Cross-entropy loss is computed
for each word and back-propagated. As for the
DA classifier, we use ground-truth segments that
are manually transcribed as inputs to the classifier.
The model is trained to minimize cross-entropy
loss between the predicted DA tag and the oracle
DA tag.

When training the joint models (Model 2 and 3),
we can apply different strategies to optimize the
segmentation and recognition components. One
alternative, for example, is to train the segmen-
tation component for one epoch and the recogni-
tion component for the next epoch. However, it
results in that segmentation loss is likely to dom-
inate the optimizing direction for an entire epoch
and vice versa for another epoch. This may pre-
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Figure 2: An LSTM-based single-step model that
uses combined labels

vent the model from learning from different sig-
nals simultaneously. Thus, instead of switching
between segmentation loss and recognition loss
every epoch, we compute and minimize both seg-
mentation loss and recognition loss for every mini-
batch of data.

3 Experimental Evaluations

Three sets of experiments are conducted to eval-
uate model performance on the DA segmentation
task, the DA recognition task, and their joint task
respectively. In the segmentation task, we use
the word sequence tagger to predict segmentation
labels given a sequence of words in a turn. In
the recognition task, segments with correct bound-
aries are given as inputs, and we use the sentence
classifier to predict a DA tag for each segment.
Lastly in the joint task, instead of using segments
with correct boundaries, we split each turn into
segments according to the predicted segmentation
labels by the sequence tagger. Then the sentence
classifier outputs DA tags for the predicted seg-
ments.

3.1 Evaluation Metrics

Word-level error rate is used to assess performance
on the segmentation task. It compares the pre-
dicted boundaries with ground-truth boundaries
and counts the number of words that lie in wrongly
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Reference I I E G I I E S I I E Q I E S
Prediction I I E G I I I E S I E Q I E R
Word-level Segmentation Error

√ √ √
× × × × × ×

√ √

Word-level Joint Error
√ √ √

× × × × × × × ×

Table 2: An example of the calculation of metrics for segmentation and joint tasks, where word-level
segmentation error rate is 54.5% (6/11), and word-level joint error rate is 72.7% (8/11).

predicted segments. The joint task is evaluated on
word level as well. However, it additionally takes
DA tags into consideration. An example of the cal-
culation of these metrics is illustrated by Table 2.
The DA recognition task is evaluated by accuracy.

3.2 Corpus and Preprocessing
The Switchboard Dialog Act (SwDA) corpus (Ju-
rafsky et al., 1997) is used for evaluation. It con-
tains 1155 human-human telephone conversations
and is annotated with 42 clustered DA tags. We
follow the train/dev/test set split by Stolcke et al.
(2000). Table 3 gives related statistics of the cor-
pus.

dataset train dev test
# of sessions 1003 112 19
# of turns 91k 10k 2k
# of segments 178k 19k 4k
# of words 1565k 164k 35k

Table 3: Corpus statistics of SwDA.

The SwDA corpus is manually transcribed, seg-
mented and labeled with DA tags. In order to
conduct meaningful experiments, we removed all
the punctuation (i.e. commas, periods, exclama-
tion marks, and question marks) and slash marks
(“/”) in the transcription because they cover most
of segmentation boundaries and we cannot obtain
such punctuation labels from ASR results in prac-
tice. Moreover, all the annotation comments in
brackets are removed. Capitalization of words are
also converted into the lower case. Vocabulary is
limited to the most frequent 10,000 words (orig-
inally 21,177 words after preprocessing) for fast
training and inference.

3.3 Experimental Setup
We use the mini-batch gradient descent with mo-
mentum to optimize the models with a mini-batch
size of 32 for 20 epochs. The learning rate is set as
1 initially and decays in half when the total loss of
development dataset does not decrease. Gradients

are clipped between [-0.5, 0.5] to avoid exploding.
We also experiment with different values of his-
tory length k from 1 to 5, which is the number of
preceding sentence encodings used in the upper-
level LSTM of the DA recognition. For all the
implemented models, we choose 200, 100 as the
dimension of word embedding and the dimension
of LSTM hidden states respectively. Both word
sequence encoding BiLSTM and sentence encod-
ing BiLSTM consist of two hidden layers, while
the sentence sequence encoding LSTM has only
one hidden layer. Dropout (Srivastava et al., 2014)
is applied after the word embedding layer and be-
tween the BiLSTM layers with a drop probability
of 0.5.

3.4 Experimental Results

3.4.1 Segmentation Evaluation
The error rates of the three models are shown in
Figure 3. With punctuation and slash marks re-
moved, segmentation error rates are fairly high
(from 18.7% to 20.8%). However, the jointly-
trained models (Model 2 and 3) always result
in lower error rates than Model 1. It indicates
that joint training benefits the segmentation model
in the unified architecture. Specifically, there is
a statistically significant error rate reduction of
1.3% when comparing the best result of Model 2
(18.7%) with that of Model 1 (20.0%), and also
a statistically significant reduction of 0.9% when
compared with the single-step model’s 19.6%.

Quarteroni et al. (2011) reported a segmentation
error rate of 1.4% using CRF model in their work.
However, they used punctuation and slash marks
which we removed, thus it is inappropriate to di-
rectly compare the results.

3.4.2 Recognition Evaluation
As shown in Figure 4, Model 1 achieves 77.1% at
a history length of 5 and gives a strong baseline.
Through joint training, Model 2 and 3 further im-
proved the accuracy to 77.7% and 77.8% at history
length of 1 and 2. Since the single model simulta-
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Model
Segmentation Recognition Joint

Error Rate Accuracy Error Rate
Model 1 20.0 77.1 31.8
Model 2 18.7 77.7 30.6
Model 3 18.9 77.8 31.0
single-step model 19.6 33.5
CRF (Quarteroni et al., 2011) 1.4∗ 29.1∗

CNN-ANN (Lee and Dernoncourt, 2016) 73.1
DRLM (Ji et al., 2016) 77.0
Hierarchical GRU (Li and Wu, 2016) 79.4∗∗

∗ The CRF used punctuation and slash marks for segmentation. For reference, when punctuation and
slash marks are reserved in our experiments, Model 2 gets a word-level segmentation error rate of 0.3%

and a joint error rate of 20.5%.
∗∗ Non-textual features were used in this work.

Table 4: Best results (in %) of models.
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Figure 3: Word-level segmentation error rates

neously predicts segmentation and DA labels, it is
unable to predict a DA tag given a sentence with
ground-truth boundaries and is excluded from the
recognition evaluation.

Lee and Dernoncourt (2016) reported a recogni-
tion accuracy of 71.4% using a CNN-ANN model
and Ji et al. (2016) reported 77.0% using a jointly-
trained latent variable RNN. Li and Wu (2016)
reached 79.4% by using extra non-textual features
including sentence length, utterance index, sub-
utterance index, and turn-taking information.

3.4.3 Joint Evaluation

Figure 5 shows word-level joint error rates of the
proposed models. Model 1, 2, and 3 have low-
est error rates of 31.8%, 30.6%, and 31.0% re-
spectively. We can see that Model 2 and 3 have
better results than Model 1 for all history lengths,
which suggests jointly-trained models consistently
perform better. It is confirmed from the results
that joint learning gives a statistically significant
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Figure 4: Recognition accuracies

error rate reduction (1.2% reduction from 31.8%
of Model 1 to 30.6% of Model 2). The single-
step neural network results in 33.5% joint error
rate, much higher than the proposed models. A
major reason is that the single-step model cannot
capture context of preceding sentences, thus de-
grading recognition accuracy and leading to poor
performance in the joint task.

A single-step CRF model by Quarteroni et
al. (2011), which uses word and Part-of-Speech
(POS) n-grams features, reached a word-level
joint error rate of 29.1% while its segmentation er-
ror rate reached 1.4% using punctuation and slash
marks in transcription. If we also reserve punctu-
ation and slash marks in our experiments, Model
2 is able to get a lowest joint error rate of 20.5%
with a segmentation error rate of only 0.3%.

Model 3 shares the higher-level layers than
Model 2 but does not develop consistent and sig-
nificant advantage. We noticed that the segmenta-
tion performance and recognition performance of
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Model 3 have a reverse trend, i.e. the recognition
accuracy decreases when the segmentation error
rate reduces. We suspect that since most param-
eters in the segmentation components are shared
(all layers except for the segmentation decoding
layer) in Model 3, signals from the DA recogni-
tion side can affect the entire segmentation model
and lead to problems in optimization.

The best results of the mentioned models in seg-
mentation, recognition, and joint tasks are summa-
rized in Table 4.

4 Conclusion

In this work, we presented a unified neural archi-
tecture for joint DA segmentation and recognition
for SDS, which consists of a word sequence tagger
and a sentence classifier. Since the two compo-
nents have similar structure, we partially merged
them in their word embedding layers (Model 2)
and BiLSTM encoding layers (Model 3). Exper-
imental results of segmentation, recognition and
the joint tasks on the Switchboard Dialog Act
(SwDA) corpus showed that the proposed models
gained significant error rate reduction over single-
step approaches. Among the three models, Model
2 and 3 improved generalization through joint
training and outperformed Model 1, whose seg-
mentation and recognition components are trained
independently.
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