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Abstract

This paper proposes a fully neural network
based dialogue-context online end-of-turn
detection method that can utilize long-
range interactive information extracted
from both target speaker’s and interlocu-
tor’s utterances. In the proposed method,
we combine multiple time-asynchronous
long short-term memory recurrent neu-
ral networks, which can capture target
speaker’s and interlocutor’s multiple se-
quential features, and their interactions.
On the assumption of applying the pro-
posed method to spoken dialogue systems,
we introduce target speaker’s acoustic se-
quential features and interlocutor’s lin-
guistic sequential features, each of which
can be extracted in an online manner. Our
evaluation confirms the effectiveness of
taking dialogue context formed by the tar-
get speaker’s utterances and interlocutor’s
utterances into consideration.

1 Introduction

In human-like spoken dialogue systems, end-of-
turn detection that determines whether a target
speaker’s utterance is ended or not is an essen-
tial technology (Sacks et al., 1974; Meena et al.,
2014; Ward and Vault, 2015). It is widely known
that heuristic end-of-turn detection based on non-
speech duration determined by speech activity
detection (SAD) is insufficient for smooth turn-
taking (Hariharan et al., 2001).

Various methods have been examined for mod-
eling the end-of-turn detection (Koiso et al., 1998;
Shriberg et al., 2000; Schlangen, 2006; Gravano
and Hirschberg, 2011; Sato et al., 2002; Gun-
takandla and Nielsen, 2015; Ferrer et al., 2002,
2003; Atterer et al., 2008; Arsikere et al., 2014,

2015). A general approach is discriminative mod-
eling using acoustic or linguistic features extracted
from target speaker’s current utterance. In addi-
tion, recent studies use recurrent neural networks
(RNNs) as they are suitable for directly captur-
ing long-range sequential features without manual
specification of fixed length features such as max-
imum, minimum, average values of acoustic fea-
tures or bag-of-words features (Masumura et al.,
2017; Skantze, 2017)

We note, however, that interlocutor’s utterances
are rarely used for end-of-turn detection. In di-
alogues, target speaker’s utterances are definitely
impacted by the interlocutor’s utterances (Heeman
and Lunsford, 2017). It is expected that we can
improve end-of-utterance detection performance
by capturing the “interaction” between the target
speaker and the interlocutor.

In this paper, we propose a neural dialogue-
context online end-of-turn detection method that
can flexibly utilize both target speaker’s and inter-
locutor’s utterances. To the best of our knowledge,
this paper is the first study to utilize dialogue-
context information for neural end-of-turn detec-
tion. Although some natural language processing
tasks recently examine dialogue-context modeling
(Liu and Lane, 2017; Tran et al., 2017), they can-
not handle multiple acoustic and lexical features
individually extracted from both target speaker’s
and interlocutor’s utterances. In the proposed
method, target speaker’s and interlocutor’s multi-
ple sequential features, and their interactions are
captured by stacking multiple time-asynchronous
long short-term memory RNNs (LSTM-RNNs).
In order to achieve low-delayed end-of-turn detec-
tion in spoken dialogue systems, acoustic sequen-
tial features extracted from target speaker’s speech
and linguistic sequential features extracted from
the interlocutor’s (system’s) responses are used for
capturing interactive information.
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In our experiments, human-human contact cen-
ter dialogue data sets are used with the goal of con-
structing a human-like interactive voice response
system. We show that the proposed method out-
performs a variant that uses only target speaker’s
utterances.

2 Proposed Method

End-of-turn detection is the problem of detect-
ing whether each end-of-utterance point is a turn-
taking point or not. The utterance is defined as
an internal pause unit (IPU) if it is surrounded
by non-speech units (Koiso et al., 1998). The
speech/non-speech units are estimated by SAD.

In dialogue-context-based online end-of-turn
detection, all past information of both target
speaker’s and interlocutor’s utterances behind the
speaker’s current end-of-utterance can be utilized
for extracting context information. The estimated
label is either end-of-turn or not. The label of the
t-th target speaker’s end-of-utterance in a conver-
sation can be decided by:

l̂(t) = argmax
l(t)∈{0,1}

P (l(t)|S(1:t),C(1:t),Θ), (1)

where Θ denotes a model parameter. l̂(t) is
the estimated label of the t-th speaker’s end-of-
utterance. S(1:t) represents speaker’s utterances
{S(1), · · · ,S(t)} where S(t) is the t-th utter-
ance. C(1:t) represents interlocutor’s utterances
{C(1), · · · ,C(t)} where C(t) is the t-th utterance
that occurred just before S(t). Undoubtedly, there
are some exceptional cases wherein the t-th inter-
locutor’s utterance is none.

The t-th speaker’s utterance involves N kinds
of sequential features:

S(t) = {s(t)1 , · · · , s(t)N }, (2)

s(t)n = {a(t)n,1, · · · ,a
(t)
n,Itn
}, (3)

where s(t)n represents the n-th sequential feature in
S(t), and atn,i is the i-th frame’s feature in s(t)n . Itn
is the length of s(t)n . In the same way, the t-th inter-
locutor’s utterance involves M kinds of sequential
features:

C(t) = {c(t)1 , · · · , c(t)M }, (4)

c(t)m = {b(t)m,1, · · · , b
(t)
m,Jt

m
}, (5)

where ctm represents the m-th sequential feature in
C(t), and b(t)m,j is the j-th frame’s feature in c(t)m .

J t
m is a length of c(t)m .

Figure 1: Model structure of neural dialogue-
context online end-of-turn detection.

2.1 Fully Neural Network based Modeling
This paper proposes a neural dialogue context on-
line end-of-turn detection method that is mod-
eled using fully neural networks. In order to
model (l(t)|S(1:t),C(1:t),Θ), we extend stacked
time asynchronous sequential networks that in-
clude multiple time-asynchronous LSTM-RNNs
for embedding complete sequential information
into a continuous representation (Masumura et al.,
2017). In order to capture long-range dialogue
context information, the proposed method em-
ploys two stacked time asynchronous sequential
networks for both target speaker’s and interlocu-
tor’s utterances. In addition, the proposed method
introduces another sequential network to capture
interactions of both side’s utterances.

Figure 1 details the structure of the proposed
method. In the proposed method, each feature
within an utterance is individually embedded into
a continuous representation in an asynchronous
manner. To this end, LSTM-RNNs are prepared
for individual sequential features in both target
speaker’s and interlocutor’s utterances. Each se-
quential information is embedded as:

A(t)
n = LSTM(a

(t)
n,1, · · · ,a

(t)
n,Itn

;θAn), (6)

B(t)
m = LSTM(b

(t)
m,1, · · · , b

(t)
m,Jt

m
;θBm), (7)

where A(t)
n denotes a continuous representation

that embeds the n-th sequential feature within the
t-th target speaker’s utterance. B(t)

m denotes a con-
tinuous representation that embeds the n-th se-
quential feature within the t-th interlocutor’s ut-
terance. LSTM() represents a function of the uni-
directional LSTM-RNN layer. θAn and θBm are
model parameters for the n-th sequence in the tar-
get speaker’s utterance and the m-th sequence in
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the interlocutor’s utterance, respectively.
The continuous representations individually

formed from each sequential feature are merged to
yield an utterance-level continuous representation
as follows:

x(t) = [A
(t)
1

>
, · · · ,A(t)

N

>
]>, (8)

y(t) = [B
(t)
1

>
, · · · ,B(t)

M

>
]>, (9)

where x(t) and y(t) represent utterance-level con-
tinuous representations for the t-th target speaker’s
utterance and the t-th interlocutor’s utterance, re-
spectively.

In order to capture long-range contexts, target
speaker’s utterance-level continuous representa-
tions and interlocutor’s utterance-level continuous
representations are individually embedded into a
continuous representation. The t-th continuous
representation that embeds a start-of-dialogue and
the current end-of-utterance is defined as:

X(t) = LSTM(x(1), · · · ,x(t);θX), (10)

Y (t) = LSTM(y(1), · · · ,y(t);θY), (11)

where X(t) denotes a continuous representation
that embeds speaker’s utterances behind the t-
th speaker’s end-of-utterance, and Y (t) denotes a
continuous representation that embeds interlocu-
tor’s utterances behind the t-th interlocutor’s end-
of-utterance. θX and θY are model parameters
for the target speaker’s utterance-level LSTM-
RNN and the interlocutor’s utterance-level LSTM-
RNN, respectively.

In addition, to consider the interaction be-
tween the target speaker and the interlocutor, both
utterance-level continuous representations are ad-
ditionally summarized as:

z(t) = [X(t)>,Y (t)>]>, (12)

Z(t) = LSTM(z(1), · · · , z(t);θZ), (13)

where Z(t) denotes a continuous representation
that embeds all dialogue context sequential in-
formation behind the t-th target speaker’s end-of-
utterance. θZ represents the model parameter.

In an output layer, posterior probability of end-
of-turn detection in the t-th target speaker’s end-
of-utterance is defined as:

O(t) = SOFTMAX(Z(t);θO), (14)

where SOFTMAX() is a softmax function, and θO is
a model parameter for the softmax function. O(t)

corresponds to P (l(t)|S(1:t),C(1:t),Θ). Summa-
rizing the above, Θ is represented as {θA1 , · · · , θAN ,
θB1 , · · · , θBM , θX, θY, θZ, θO}. In training, the pa-
rameter can be optimized by minimizing the cross
entropy between a reference probability and an es-
timated probability:

Θ̂ = argmin
Θ

−
∑
d∈D

Td∑
t=1

∑
l∈{0,1}

Ô
(t)
l,d logO

(t)
l,d ,

(15)
where Ô(t)

l,d and O(t)
l,d are a reference probability

and an estimated probability of label l for the t-th
end-of-utterance in the d-th conversation, respec-
tively. D represents a training data set.

2.2 Features for Spoken Dialogue Systems
In neural dialogue-context-based online end-of-
turn detection, various sequential features can be
leveraged for capturing both target speaker’s and
interlocutor’s utterances. In spoken dialogue sys-
tems, the interlocutor is the system. Therefore,
lexical information generated by the system’s re-
sponse generation module can be utilized. This
paper uses pronunciation sequences and word se-
quences as the interlocutor’s sequential features.
In the proposed modeling, we use both symbol se-
quences by converting them into continuous vec-
tors. On the other hand, the target speaker’s ut-
terances are speech. This paper introduces funda-
mental frequencies (F0s), and senone bottleneck
features inspired by Masumura et al. (2017). The
senone bottleneck features, which extract phonetic
information as continuous vector representations,
offer strong performance without recourse to lexi-
cal features.

3 Experiments

This paper employed Japanese simulated con-
tact center dialogue data sets instead of human-
computer dialogue data sets. The data sets include
330 dialogues and 6 topics. One dialogue means
one telephone call between one operator and one
customer, in which each speaker’s speech was sep-
arately recorded. In order to simulated interactive
voice response applications, we regard the opera-
tor as the interlocutor, and the customer as the tar-
get speaker. We divided each data set into speech
units and non-speech units using an LSTM-RNN
based SAD (Eyben et al., 2013) trained using var-
ious Japanese speech data. An utterance is defined
as a unit surrounded by non-speech units whose
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Speaker’s features Interlocutor’s features Dialogue context Recall Precision F-value Accuracy
(1). F0 - - 80.4 69.9 74.8 73.4
(2). SENONE - - 82.7 78.3 80.4 80.3
(3). F0+SENONE - - 84.5 77.4 80.8 80.6
(4) - PRON - 46.2 64.9 54.0 61.3
(5). - WORD - 66.1 64.6 65.4 65.3
(6). - PRON+WORD - 68.3 64.1 66.2 65.9
(7). SENONE WORD

√
82.0 80.5 81.2 81.4

(8). F0+SENONE PRON+WORD
√

82.7 81.4 82.1 82.0

Table 2: Experimental results: Recall (%), Precision (%), F-value (%), and Accuracy (%).

Topics #calls #utterances #turns
Finance 50 3,991 2,166
Internet provider 64 3,860 1,799
Local government unit 58 3,741 1,598
Mail-order 52 3,752 1,828
PC repair 45 2,838 1,934
Mobile phone 61 4,453 2.016
Total 330 22,635 11,341

Table 1: Experimental data sets.

duration is more than 100 ms. Turn-taking points
and backchannel points were manually annotated
for all dialogues. The evaluation used 6-fold cross
validation in which training and validation data
were 5 topics and test data were 1 topic. Detailed
setups are shown in Table 1 where #calls, #utter-
ances, and #turns represent number of calls, utter-
ances and end-of-turn points, respectively.

To realize a comprehensive evaluation, we ex-
amined various conditions. In the proposed mod-
eling, unit size of LSTM-RNNs was unified to
256. For training, the mini-batch size was set to
2 calls. The optimizer was Adam with the default
setting. Note that a part of the training sets were
used as the data sets employed for early stopping.
We constructed five models by varying an initial
parameter for individual conditions and evaluated
the average performance. When using either target
speaker’s utterances or interlocutor’s utterances,
required components were only used for building
the proposed modeling. We used following se-
quential features. F0 represents 2 dimensional se-
quential features of F0 and ∆F0; frame shift was
set to 5 ms. SENONE represents 256-dimensional
senone bottleneck features extracted from 3-layer
senone LSTM-RNN with 256 units trained from a
corpus of spontaneous Japanese speech (Maekawa
et al., 2000). Its frame shift was set to 10 ms, and
the bottleneck layer was set to the third LSTM-
RNN layer. PRON represents pronunciation se-
quences, and WORD represents word sequences of
interlocutor’s utterances. The lexical features were
introduced by converting them into 128 dimen-
sional vectors through linear transformation that
was also optimized in training.

3.1 Results

Table 2 shows the experimental results. We
used the evaluation metrics of recall, precision,
macro F-value, and accuracy. The results gained
when using only target speaker’s utterances are
shown in (1)-(3). In terms of F-value and ac-
curacy, (3) outperformed (1) and (2). This con-
firms that stacked time-asynchronous sequential
network based modeling is effective for com-
bining multiple sequential features. The results
gained when using only interlocutor’s utterances
are shown in (4)-(6). Among them, (6) attained the
best performance although its performance was
inferior to (1)-(3). In fact, (4)-(6) outperformed
random end-of-turn decision making. This indi-
cates interlocutor’s utterances are effective in im-
proving online end-of-turn detection performance.
The proposed method, which takes both target
speaker’s and interlocutor’s utterances into consid-
eration, is shown in (7) and (8). In terms of F-
value and accuracy, (7) outperformed (2) and (5).
These results indicate that interaction information
is effective for detecting end-of-turn points. The
best results were attained by (8), which utilized
both multiple target speaker’s features and mul-
tiple interlocutor’s features. The sign test results
verified that (8) achieved statistically significant
performance improvement (p < 0.05) over (3).

4 Conclusions

In this paper, we proposed a neural dialogue
context online end-of-turn detection method.
Main advance of the proposed method is taking
long-range interaction information between target
speaker’s and interlocutor’s utterances into con-
sideration. In experiments using contact center
dialogue data sets, the proposed method, which
leveraged both target speaker’s multiple acous-
tic features and interlocutor’s multiple lexical fea-
tures, achieved significant performance improve-
ment compared to a method that only utilized tar-
get speaker’s utterances.
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