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Abstract
Reinforcement learning (RL) is a promis-
ing dialogue policy optimisation approach,
but traditional RL algorithms fail to scale
to large domains. Recently, Feudal Dia-
logue Management (FDM), has shown to
increase the scalability to large domains
by decomposing the dialogue management
decision into two steps, making use of
the domain ontology to abstract the dia-
logue state in each step. In order to ab-
stract the state space, however, previous
work on FDM relies on handcrafted fea-
ture functions. In this work, we show
that these feature functions can be learned
jointly with the policy model while obtain-
ing similar performance, even outperform-
ing the handcrafted features in several en-
vironments and domains.

1 Introduction
In task-oriented Spoken Dialogue Systems (SDS),
the Dialogue Manager (DM) (or policy) is the
module in charge of deciding the next action in
each dialogue turn. One of the most popular
approaches to model the DM is Reinforcement
Learning (RL) (Sutton and Barto, 1999), having
been studied for several years (Levin et al., 1998;
Williams and Young, 2007; Henderson et al.,
2008; Pietquin et al., 2011; Gašić et al., 2013;
Young et al., 2013). However, as the dialogue
state space increases, the number of possible tra-
jectories needed to be explored grows exponen-
tially, making traditional RL methods not scalable
to large domains.

Recently, Feudal Dialogue Management (FDM)
(Casanueva et al., 2018) has shown to increase
the scalability to large domains. This approach is
based on Feudal RL (Dayan and Hinton, 1993),
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a hierarchical RL method that divides a task spa-
tially rather than temporally, decomposing the de-
cisions into several steps and using different lev-
els of abstraction for each sub-decision. When
applied to domains with large state and action
spaces, FDM showed an impressive performance
increase compared to traditional RL policies.

However, the method presented in Casanueva
et al. (2018), named FDQN1, relied on handcrafted
feature functions in order to abstract the state
space. These functions, named Domain Indepen-
dent Parametrisation (DIP) (Wang et al., 2015), are
used to transform the belief of each slot into a fixed
size representation using a large set of rules.

In this paper, we demonstrate that the feature
functions needed to abstract the belief state in each
sub-decision can be jointly learned with the pol-
icy. We introduce two methods to do it, based on
feed forward neural networks and recurrent neural
networks respectively. A modification of the orig-
inal FDQN architecture is also introduced which
stabilizes learning, avoiding overfitting of the pol-
icy to a single action. Policies with jointly learned
feature functions achieve similar performance to
those using handcrafted ones, with superior per-
formance in several environments and domains.

2 Background
Dialogue management can be cast as a continu-
ous MDP (Young et al., 2013) composed of a fi-
nite set of actionsA, a continuous multivariate be-
lief state space B and a reward function R(bt, at).
At a given time t, the agent observes the belief
state bt ∈ B, executes an action at ∈ A and re-
ceives a reward rt ∈ R drawn fromR(bt, at). The
action taken, a, is decided by the policy, defined
as the function π(b) = a. The objective of RL
is to find the optimal policy π∗ that maximizes

1In the rest of the paper we will refer to the FDM model
presented in Casanueva et al. (2018) as FDQN.
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the expected return R in each belief state, where
R =

∑T−1
τ=t γ

(τ−t)rτ , γ is a discount factor, t is
the current timestep and T is the terminal timestep.

There are 2 major approaches to model the pol-
icy, Policy-based and Value-based algorithms. In
the former, the policy is directly parametrised by
a function π(b; θ) = a, where θ are the parame-
ters learned in order to maximise R. In the later,
the optimal policy can be found by greedily taking
the action which maximises the Q-value,Qπ(b, a),
defined as the expected R, starting from state b,
taking action a, and then following policy π until
the end of the dialogue at time step T :

Qπ(b, a) = E{R|bt = b, at = a} (1)

2.1 Feudal Dialogue Management
In FDM (Casanueva et al., 2018) (Fig. 1), the
(summary) actions are divided in two subsets; slot
independent actions Ai (e.g. hello(), inform());
and slot dependent actions Ad (e.g. request(),
confirm()). In addition, a set of master actions
Am = (ami , a

m
d ) is defined, where ami corresponds

to taking an action from Ai and amd to taking
an action from Ad. The feudal dialogue policy,
π(b) = a, decomposes the decision in each turn
into two steps. In the first step, the policy decides
to take either a slot independent or a slot depen-
dent action. In the second step, the state of each
sub-policy is abstracted to account for features re-
lated to that slot, and a primitive action is chosen
from the previously selected subset. In order to
abstract the dialogue state for each sub-policy, a
feature function φs(b) = bs is defined for each
slot s ∈ S, as well as a slot independent feature
function φi(b) = bi and a master feature function
φm(b) = bm.

Finally, a master policy πm(bm) = am, a slot
independent policy πi(bi) = ai and a slot depen-
dent policy πd(bs|∀s ∈ S) = ad are defined,
where am ∈ Am, ai ∈ Ai and ad ∈ Ad. In
FDQN, πm and πi are modelled as value-based
policies. However, Policy-based models can be
used to model πm and πi, as introduced in section
3.1. In order to generalise between slots, πd is de-
fined as a set of slot specific policies πs(bs) = ad,
one for each s ∈ S. The slot specific policies
have shared parameters, and the differences be-
tween slots are accounted by the abstracted dia-
logue state bs. πd runs each slot specific policy,
πs, for all s ∈ S , choosing the action-slot pair
that maximises the Q-value over all the slot sub-

policies2.
πd(bs|∀s ∈ S) = argmax

ad∈Ad,s∈S
Qs(bs, a

d) (2)

Then, the summary action a is constructed by join-
ing ad and s (e.g. if ad=request() and s=food,
then the summary action will be request(food)). A
pseudo-code of the Feudal Dialogue Policy algo-
rithm is given in Appendix B.
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Figure 1: Feudal dialogue architecture used in this
work. The sub-policies surrounded by the dashed
line have shared parameters. The blue rectangles
represent Value-based sub-policies while the or-
ange ones Policy-based sub-policies.

In order to abstract the state space, FDQN uses
handcrafted feature functions φi, φm and φs based
on the Domain Independent Parametrisation (DIP)
features introduced in Wang et al. (2015). These
features include the slot independent parts of the
belief state, a summarised representation of the
joint belief state, and a summarised representation
of the belief state of the slot s.

3 FDM with jointly learned feature
extractors

In order to avoid the need to handcraft the fea-
ture functions φi, φm and φs , two methods which
jointly train the feature extractors and the policy
model are proposed. FDQN, however, showed to
be prone to get stuck in local optima3. When the
feature functions are jointly learned, this problem
will be exacerbated due to the need to learn extra
parameters. In section 3.1, two methods to avoid
getting stuck in local optima are presented.
3.1 Improved training stability
FDQN showed to be prone to get stuck in local
optima, overfitting to an incorrect action and con-
tinuously repeating it until the user runs out of

2Note that, in order to compare values from different sub-
policies, πs needs to be modelled as a Value-based policy.

3Depending on the initially observed dialogues, the model
might get stuck in a sub-optimal policy. This is a know prob-
lem in RL (Henderson et al., 2017).
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Figure 2: FFN (a) and RNN (b) jointly learned
feature extractors.

patience. Appendix A shows an example of this
problem. We propose two methods that combined
help to reduce the overfitting, allowing the feature
extractors to be learned jointly.

The belief state used in FDQN only contains in-
formation about the last system action. Therefore,
if the system gets into a loop repeating the same
action for every turn, the belief state cannot depict
it. We propose to append the input to each sub-
policy with a vector containing the frequencies of
the actions taken in the current dialogue. This ad-
ditional information can be used by the policy to
detect these ”overfitting loops” and select a differ-
ent action.

Furthermore, Policy-based Actor Critic meth-
ods such as ACER (Wang et al., 2016; Weisz et al.,
2018) have shown to be more stable during learn-
ing than Value-based methods. Since πd has to
compare Q-values, the slot specific policies πs
need to be Value-based. The master and slot in-
dependent policies, however, can be replaced by
an Actor Critic policy, as shown in Figure 1. Sec-
tion 5 shows that by doing this replacement the
dialogue manager is able to learn better policies.

3.2 Jointly learned feature extractors
In order to abstract the state space into a slot-
dependent fixed length representation, FDQN uses
DIP feature functions (Wang et al., 2015). These
features, however, need to be hand engineered by
the system designer. To reduce the amount of
hand-design, we propose two feature extraction
models that can be learned jointly with the policy.
Figure 2 shows the two proposed models. The first
one (a), named FFN in section 5, pads the belief
state of the slot to the length of the largest slot and
encodes it into a vector es through a feed forward
neural network. The second one (b), uses a recur-
rent neural network to encode the values of each
slot into a fixed length representation es. Each
bs∀s ∈ S is then constructed by concatenating the
slot independent parts of the belief to the slot en-
coding es. For the feature functions φi and φm,

Domain Code # constraint slots # requests # values
Cambridge Restaurants CR 3 9 268
San Francisco Restaurants SFR 6 11 636
Laptops LAP 11 21 257

Env. 1 Env. 2 Env. 3 Env. 4 Env. 5 Env. 6
SER 0% 0% 15% 15% 15% 30%
Masks on off on off on on
User Std. Std. Std. Std. Unf. Std.

Table 1: Sumarised description of the domains and
environments used in the experiments. Refer to
(Casanueva et al., 2017) for a detailed description.

the slot independent parts of the belief are used
directly as inputs to their respective policy mod-
els. During training, the errors of the policies can
be backpropagated through the feature extractors,
training the models by gradient descent.

4 Experimental setup
The PyDial toolkit (Ultes et al., 2017) and the
PyDial benchmarking environments (Casanueva
et al., 2017)4 have been used to implement and
evaluate the models. These environments present a
set of 18 tasks (Table 1) spanning differently sized
domains, different Semantic Error Rates (SER),
different configurations of action masks and dif-
ferent user model parameter sets (Standard (Std.)
or Unfriendly (Unf.)).

4.1 Baselines
The feudal dialogue policy presented in
(Casanueva et al., 2018) is used as a baseline,
named FDQN in section 5. An implementation of
FDQN using the action frequency features intro-
duced in 3.1 is also presented, named FDQN+AF.
In addition, the results of the handcrafted policy
presented in (Casanueva et al., 2017) are also
shown, named HDC.

4.2 Feudal ACER policy
The feudal policy proposed in section 3.1, named
FACER, is implemented. This policy uses an
ACER policy (Wang et al., 2016) for the slot in-
dependent and master policies, and a DQN policy
(Mnih et al., 2013) for the slot specific policies.
The hyperparameters of the ACER sub-policies
are the same than in (Weisz et al., 2018), except
for the 2 hidden layers sizes, which are reduced to
100 and 50 respectively. The hyperparameters of
the DQN sub-policies are the same as FDQN.

4.3 Jointly learned feature extractors
The FDQN+AF and FACER policies are trained
using the FFN and RNN feature extractors pro-
posed in section 3.2, as well as with the DIP fea-

4The implementation of the models will be released
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model FDQN+AF FACER FDQN HDC
features DIP FFN RNN DIP FFN RNN DIP -

E
nv

.1
CR 13.8 12.8 11.3 11.8 12.9 12.5 11,7 14.0
SFR 9.4 6.0 7.3 10.9 4.5 3.8 7,1 12.4
LAP 9.2 8.4 7.4 7.7 5.7 8.4 5,7 11.7

E
nv

.2

CR 13.6 11.9 12.9 13.4 13.3 13.1 13,1 14.0
SFR 12.9 8.7 11.2 12.3 13.0 12.2 12,4 12.4
LAP 11.8 9.6 10.8 12.1 12.6 12.6 12,0 11.7

E
nv

.3

CR 13.1 12.8 12.9 12.9 13.0 13.0 11,7 11.0
SFR 10.3 9.8 9.9 10.3 10.1 10.5 9,7 9.0
LAP 9.8 9.4 9.7 9.6 9.8 9.6 9,4 8.7

E
nv

.4

CR 11.9 10.8 11.3 11.9 12.0 12.3 11,1 11.0
SFR 11.2 7.7 10.0 10.6 10.6 10.9 10,0 9.0
LAP 9.9 -0.6 4.5 11.2 10.9 11.0 10,8 8.7

E
nv

.5

CR 11.1 10.4 11.0 11.0 11.3 11.2 10.4 9.3
SFR 7.5 6.5 6.5 7.8 7.2 6.8 7.1 6.0
LAP 6.8 7.3 6.5 6.6 6.8 6.5 6.0 5.3

E
nv

.6

CR 11.7 11.4 11.6 11.7 11.7 11.8 11.5 9.7
SFR 8.2 7.5 7.4 8.1 8.1 7.4 7,9 6.4
LAP 6.7 6.7 6.5 6.6 6.3 6.4 5.2 5.5

Table 2: Reward after 4000 training dialogues
for FDQN+AF and FACER using DIP, FFN and
RNN features, compared to FDQN and the hand-
crafted policy presented in the PyDial benchmarks
(HDC). The best performing model is highlighted
in bold while the best performing model with
jointly learned features is highlighted in red.

tures used in (Casanueva et al., 2018) . For each
slot s ∈ S , bs is constructed by concatenating the
general and the joint belief state5 to the encoding
of the slot es generated by the feature extractor.
The size of es is 25. As input for the πm and πi
policies, the general and joint belief state is used.

5 Results
Table 2 shows the average reward6 after 4000
training dialogues in the 18 tasks of the PyDial
benchmarks. The reward for each dialogue is de-
fined as (suc ∗ 20) − n, where n is the dialogue
length and suc = 1 if the dialogue was successful
or 0 otherwise. The results are the mean over 10
different random seeds, where every seed is tested
for 500 dialogues.

Comparing FDQN and FDQN-AF when using
DIP features, the importance of including the ac-
tion frequencies can be seen. The use of these
features improves the reward in most of the tasks
between 0.5 and 2 points. When training the poli-
cies with the joint feature extractors, the action fre-
quencies were found to be a key feature in order to
avoid the policies to get stuck in local optima.

FACER shows the best performance with the
jointly learned feature extractors, outperforming
any other policy (including the ones using DIP

5The joint belief state is sorted and truncated to size 20.
6Because of space issues, the success rate is not included.

However, the success rate is very correlated with the results
presented in (Casanueva et al., 2017) and (Casanueva et al.,
2018).
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Figure 3: Learning curves for FACER in env. 3
in Cambridge Restaurants and Laptops domains,
using DIP, FFN and RNN features. The shaded
area represents the standard deviation.

features) in 8 out of 18 tasks, and obtaining
a very similar performance in the rest. This
shows the improved training stability given by the
Policy-based models. In task 1, however, (where
FDQN already showed overfitting problems) the
FDQN+AF is able to learn better feature extractors
than FACER, but the performance is still worse
than HDC.

Figure 3 shows the learning curves for FACER
in two domains of Env. 3 using the two learned
feature extractors (FFN and RNN) compared to
the DIP features. It can be observed that the
learned features take longer to converge, but the
difference is smaller than it could be expected, es-
pecially in a large domain such as Laptops.

6 Conclusions and future work
This paper has shown that the feature functions
needed to abstract the dialogue state space in feu-
dal dialogue management can be jointly learned
with the policy, thus reducing the need of hand-
crafting them. In order to make it possible to learn
the features jointly, two methods to increase the
robustness of the model against overfitting were
introduced: extending the input features with ac-
tion frequencies and substituting the master and
domain independent policies by ACER policies.
In combination, these modifications showed to im-
prove the results in most of the PyDial benchmark-
ing tasks by an average of 1 point in reward, while
reducing the handcrafting effort.

However, as the original FDQN architecture
needs to model the slot specific policies as Value-
based models, ACER policies could only be used
for the master and slot independent policies. Fu-
ture work will investigate new FDM architectures
which allow the use of Policy-based models as slot
specific policies, while maintaining the parameter
sharing mechanism between slots.
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Nikola Mrkšić, Tsung-Hsien Wen, Stefan Ultes,
Lina Rojas-Barahona, Steve Young, and Milica
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A Dialogues getting stuck in local optima

In this section we present an example of a policy
model getting stuck in a sub-optimal policy. The
two following dialogues represent a dialogue
observed in the initial training steps of the policy
and a dialogue observed once the policy has
overfitted.

Initial dialogue:
Goal: food=british, area=centre

1: usr: Inform(food=british)
2: sys: Confirm(food=british)
3: usr: Affirm()|Inform(area=centre)
4: sys: Inform(name=The Eagle)
5: usr: Thankyou()|Bye()

Overfitted dialogue:
Goal: food=british, area=centre

1: usr: Inform(food=british)
2: sys: Confirm(food=british)
3: usr: Affirm()
4: sys: Confirm(food=british)
5: usr: Affirm()
6: sys: Confirm(food=british)
7: usr: Affirm()
8: sys: Confirm(food=british)
9: usr: Bye()

In the initial dialogue, the policy interacts with
a collaborative user7, which in line 3, provides
more information than the requested by the policy.
The dialogue ends up successfully and, therefore,
the policy learns that by confirming the slot food
in that dialogue state it will get enough informa-
tion to end the dialogue successfully. In the sec-
ond dialogue, however, the system interacts with a
less collaborative user. Therefore, when confirm-
ing the slot food in line 3, it doesn’t get the ex-
tra information obtained in the previous dialogue.
The policy keeps insisting with this action, un-
til the user runs out of patience and ends up the
dialogue. Even with ε-greedy exploration, as a
fraction of the sampled users will be collaborative
enough to make this policy successful, the policy
can get stuck in this local optima and never learn
a better policy - i.e. requesting the value of the
slot area. Other examples of overfitting include

7The user parameters are sampled at the beginning of each
dialogue.

policies informing entities at random from the first
turn (since some users will correct the policy by
informing the correct values) or policies that don’t
learn to inform about the requested slots (since
the sampled user goal sometimes doesn’t include
requesting any extra information, just the entity
name).

B Feudal Dialogue Policy algorithm

Algorithm 1 Feudal Dialogue Policy
1: for each dialogue turn do
2: observe b
3: bm = φm(b)
4: am = πm(bm)
5: if am == ami then . drop to πi
6: bi = φi(b)
7: a = πi(bi)
8: else am == amd then . drop to πd
9: bs = φs(b) ∀s ∈ S

10: slot, act = argmax
s∈S,ad∈Ad

Qs(bs, a
d)

11: a = join(slot, act)
12: end if
13: execute a
14: end for


