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Abstract
We explore state-of-the-art deep reinforcement
learning methods such as prioritized experi-
ence replay, double deep Q-Networks, duel-
ing network architectures, distributional learn-
ing methods for dialog policy. Our main find-
ings show that each individual method im-
proves the rewards and the task success rate
but combining these methods in a Rainbow
agent, which performs best across tasks and
environments, is a non-trivial task. We, there-
fore, provide insights about the influence of
each method on the combination and how to
combine them to form the Rainbow agent.

1 Introduction

Dialog system can be designed for generic pur-
poses, e.g. smalltalk (Weizenbaum, 1966) or a
specific task such as finding restaurants or book-
ing flights (Bobrow et al., 1977; Wen et al., 2017).
This paper focuses on task-oriented dialog sys-
tems, which interact with a user to aid achieving
their goals. The systems have several modules
which solve different subtasks (Williams et al.,
2016) starting with natural language understand-
ing (NLU) module (De Mori et al., 2008). Its
output is then passed to a belief tracking module
(Mrkšić et al., 2017) that holds the state of the dia-
log, i.e. all relevant information provided by the
user. This belief state is then passed to the di-
alog policy module (Williams and Young, 2007)
which has to decide how the system should reply.
Depending on the ontology of the task, e.g. the
restaurant search, the size of the input space for
the policy can quickly become very large. Fur-
thermore, the belief state might be wrong due to
noisy inputs, e.g. the user could be misunderstood
because of NLU errors or in general, language
ambiguity. Therefore, building such policies by
hand is rather time consuming. Reinforcement
learning (RL) can alleviate this task by allowing

to learn such policies automatically (Williams and
Young, 2007) with a user simulator such as pro-
posed in Schatzmann et al. (2007) within a task
(Dhingra et al., 2017; Peng et al., 2018), between
task and non-task (Yu et al., 2017) and also in mul-
timodal dialog systems (Manuvinakurike et al.,
2017; Zhang et al., 2018).

Deep RL has been proven to be successful with
Deep Q-Learning (DQN) (Mnih et al., 2013) in-
troducing the idea of using neural networks as a
Q-function approximator. It has been widely used
in the context of dialog policy learning (Fatemi
et al., 2016; Dhingra et al., 2017; Casanueva et al.,
2017). However according to a recent comparison
(Casanueva et al., 2017) in the context of dialog
policy learning, it performed worse than other RL
methods such as Gaussian Process in many test-
ing conditions. Recently, several advances in deep
RL such as distributional RL (Bellemare et al.,
2017) , dueling network architectures (Wang et al.,
2016) and their combination (Hessel et al., 2018) -
a Rainbow agent - have been shown to be promis-
ing for further improvements of deep RL agents in
benchmark environments, e.g. Atari 2600. How-
ever, it is still unclear whether these methods could
advance dialog policies.

This paper attempts to provide insights moti-
vated from dialog policy modeling perspectives
how to use state-of-the-art deep RL methods such
as prioritized experience replay (Schaul et al.,
2015), double DQN (Van Hasselt et al., 2016),
dueling network architecture, distributional learn-
ing method and how to combine them to train the
Rainbow agent for dialog policy learning 1. More-
over, we explore the influence of each method w.r.t
the resulting rewards and the number of successful
dialogs, highlighting methods with the biggest and
the smallest impact.

1Agent code: https://github.com/DigitalPhonetics/adviser
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Env. 1 Env. 2 Env. 3 Env. 4 Env. 5 Env. 6
Task T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 T3.1 T3.2 T3.3 T4.1 T4.2 T4.3 T5.1 T5.2 T5.3 T6.1 T6.2 T6.3
Domain CR SFR LAP CR SFR LAP CR SFR LAP CR SFR LAP CR SFR LAP CR SFR LAP
SER 0% 0% 15% 15% 15% 30%
Masks On Off On Off On On
User Standard Standard Standard Standard Unfriendly Standard

Table 1: Benchmarking environments with several domains, semantic error rates (SERs), action masks and user
models (Casanueva et al., 2017).

2 Proposed Method

For value-based reinforcement learning methods
like Q-learning, potentially large state spaces as
in the dialog setting require the use of function ap-
proximators. The DQN-Algorithm (Mnih et al.,
2013) is an example of such a method where
the action-value function is approximated by a
neural network which takes a state vector as in-
put and outputs a value for each possible ac-
tion. Loss is calculated with the squared tem-
poral difference (TD) error. Efficient off-policy
batch-training is enabled by a replay buffer which
records the agent’s turn-level experiences and al-
lows the drawing of uncorrelated training samples.

Prioritized experience replay Drawing sam-
ples from this buffer uniformly is straightforward
but problematic: important state transitions might
never be drawn from the buffer or at least too few
times to have an impact on the network weights.
Motivated by the insight that a high absolute TD-
error of an experience means that the current
action-value is not an accurate estimate yet, pri-
oritized experience replay (Schaul et al., 2015)
samples experiences having higher TD-errors with
greater probability than those with lower TD-error.
This method is relevant because it is expected to
increase learning efficiency. In the context of di-
alog policy, there are some system actions which
are crucial to the outcome of the dialog and should
have a higher probability for being used as training
data if they are not well approximated. For exam-
ple, if systems end the dialog before the user’s goal
is completed by telling the user goodbye, this will
immediately terminate a dialog with a negative re-
ward and without any chance of recovery.

Double DQN Another improvement mitigates
the overestimation bias inherent to Q-learning
by introducing a second action-value network
(Van Hasselt et al., 2016) which copies the param-
eters from the online action-value network period-
ically and is held fix otherwise. This additional
network is then used to evaluate the action-value
of the action selected greedily w.r.t. the online

Q-function, thereby decoupling action choice and
evaluation which could increase stability of the
learning process.

Dueling network architecture In comparison
to the action-value function, the state-value func-
tion is a simpler estimate - it is the expectation
over a state’s action-values and therefore only a
single value. But in states where the action choice
does not matter, or to avoid visiting states with a
low state value in general, an estimate of the value
function should be sufficient. Dueling network ar-
chitecture (Wang et al., 2016) therefore splits the
calculation of the action-value function into sepa-
rate layers of a neural network, one group comput-
ing the value function and another an advantage
function chosen so that their combination results
in the action-value function again. This approach
also has the benefit that the state value estimation
is updated every time when a state is observed by
the network, regardless of the chosen action. As
a result, it should encourage generalization across
actions. In dialog settings, there are many states
where generalization across actions could prove
beneficial, e.g. exact action choice is not impor-
tant, just the choice between action classes. For
example at the beginning of a dialog, when users
greet the system without providing any informa-
tion, the only appropriate action for the system is
to ask for more information. The exact type of in-
formation should not matter and all other actions
except for the dialog ending action should be about
equally unsuitable.

Distributional learning method One of the lat-
est additions to reinforcement learning is the quan-
tile regression distributional reinforcement learn-
ing algorithm (Dabney et al., 2018). Instead of
learning only the expected value for each state-
action pair, as in regular Q-learning, the distribu-
tion of rewards is approximated instead, thereby
modeling the randomness of the reward over mul-
tiple turns induced by action selection and random
state transitions. A noisy environment like dialog
could benefit from better knowledge about the dis-
tribution of rewards.
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The Rainbow agent Following the methodol-
ogy from (Hessel et al., 2018), we extend the
DQN algorithm (Mnih et al., 2013) with priori-
tized experience replay, double DQN, and duel-
ing network architecture. Furthermore in contrast
to (Hessel et al., 2018), we apply the following
changes to successfully train the Rainbow agent:
1) we drop the multi-step method (Sutton, 1988)
because it seems to diminish the obtained rewards.
As the step size gets larger, the rewards are de-
creased more. A possible explanation could be
that the noise generated by the user simulator leads
to accumulation of noise in rewards over multiple
steps, which could lead to higher variance in value
estimates. 2) we discard the noisy linear layers
(Fortunato et al., 2018), relying on ε-greedy ex-
ploration instead. The first reason could be the ad-
ditional parameters, which usually would require
more training samples. Since the agent was al-
ready required to learn environmental noises from
the user simulator, a complementary explanation
could be that the inclusion of a second noise dis-
tribution might have been too difficult to learn,
especially when considering the relatively small
amount of training episodes. 3) we swap the cat-
egorical DQN approach (Bellemare et al., 2017)
with the quantile regression Q-learning algorithm
(Dabney et al., 2018), now consistent with the the-
oretic results from (Bellemare et al., 2017), no
longer restricting the values of the value distribu-
tion to a uniform resolution and also no longer re-
quiring knowledge about their bounds.

3 Resources

We used PyDial toolkit (Ultes et al., 2017) as a
test-bed for experiments and evaluation. It in-
cludes a configurable user simulator and provides
multiple dialog ontologies like Cambridge Restau-
rants (CR), Laptops (LAP) and San Francisco
Restaurants (SFR). The ontologies used for the
benchmarks in this paper together with their prop-
erties are listed in table 2.

Domain #slots #requests #values
CR 3 9 268
SFR 6 11 636
LAP 11 21 257

Table 2: Benchmark domains with #slots the user can
provide or #request from the system as well as #values
of each requestable slot (Casanueva et al., 2017).

Casanueva et al. (2017) propose six different en-
vironmental models, varying in user friendliness,
simulated input channel noise and the presence or
absence of action masks, which, when enabled,
simplify learning by masking some of the possi-
ble actions. An overview of all these environmen-
tal configurations and their assignment to tasks is
given in Table 1. Evaluation results in Casanueva
et al. (2017) with several dialog policy types, e.g.
a handcrafted policy and the best reported policies
serve as baselines in our experiments.

4 Experimental Results

Training and evaluation with the PyDial user sim-
ulator follows the PyDial benchmarking tasks
(Casanueva et al., 2017), where each task (see Ta-
ble 1) is trained on 10000 dialogs split into ten
training iterations of 1000 dialogs each. We eval-
uate policies after each training iteration on 1000
test dialogs. All of the following results were ob-
tained by averaging over the outcome of ten differ-
ent random seeds using the parameters described
in appendix A.

4.1 The Rainbow Agent

The first row of Table 3 and 4 show the results of
the highest scoring policy from the PyDial bench-
mark (Casanueva et al., 2017) to serve as base-
lines. Evaluations of the handcrafted policies fol-
low in the last line. The results show that Rain-
bow agent outperforms reward of the best PyDial
agents in all 18 conditions and success rate in 16
out of 18 setting. Compared to the basic DQN
agent, Rainbow agent is better in all 18 conditions
w.r.t both reward and success rate. When averaged
across all 18 tasks, Rainbow agent (mean reward
10.1) scores more than 29% higher rewards com-
pared to the best PyDial agent (DQN, mean reward
7.8) and more than 9.7% compared to our DQN
agent. An average success rate of 90.4% is supe-
rior to the best PyDial agent (GP-Sarsa, 80.2%).
Mean deviation across all tasks and random seeds
is 0.4 in reward and 1.6% in successful dialogs.

4.2 Model Ablation Analysis

Figure 1 shows the averaged success rates for each
of our Rainbow agents leaving out one particular
method after training with 10000 dialogs. Each of
the plotted values has been evaluated on 1000 di-
alogs per random seed and averaged over all tasks.
Regarding learning speed w.r.t. success rate, the
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Agent
Task

T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 T3.1 T3.2 T3.3 T4.1 T4.2 T4.3 T5.1 T5.2 T5.3 T6.1 T6.2 T6.3
best PyDial 13.51 12.32 11.02 12.73 10.11 9.13 12.23 8.62 6.52 11.13 8.23 5.81 10.53 6.52 3.82 9.93 3.63 3.22

DQN 13.0 10.8 9.5 13.1 11.0 9.5 12.7 9.7 7.5 11.9 7.9 5.1 11.4 7.3 4.3 10.7 5.7 4.7
Rainbow 14.0 12.4 11.2 13.6 11.8 10.1 12.8 9.8 8.1 12.2 10.0 8.9 11.8 7.8 4.9 10.9 6.5 4.8
handcrafted 14.0 12.4 11.7 14.0 12.4 11.7 11.0 9.0 8.7 11.0 9.0 8.7 9.7 6.4 5.5 9.3 6.0 5.3

Table 3: Rewards per task and agent (1GP-SARSA, 2eNAC, 3DQN).

Agent
Task

T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 T3.1 T3.2 T3.3 T4.1 T4.2 T4.3 T5.1 T5.2 T5.3 T6.1 T6.2 T6.3
best PyDial 99.41 97.31 92.12 97.91 95.41 87.51 95.81 84.12 73.32 92.61 81.13 74.01 92.63 82.32 72.82 89.61 64.83 61.22

DQN 95.1 89.4 83.7 96.9 91.4 87.6 97.1 89.6 79.6 94.3 79.8 68.0 95.6 84.9 74.4 91.7 75.8 71.1
Rainbow 99.7 97.3 93.4 98.8 94.4 90.3 97.2 90.5 83.6 96.5 88.8 87.3 97.0 87.9 78.0 92.4 80.4 73.0
handcrafted 100.0 98.2 97.0 100.0 98.2 97.0 96.7 90.9 89.6 96.7 90.9 89.6 95.9 87.7 85.1 89.6 79.0 76.1

Table 4: Success rates per task and agent (1GP-SARSA, 2eNAC, 3DQN).

results show that Rainbow agent without distribu-
tional learning method learns the fastest, surpass-
ing the final success rate of the DQN and non-
dueling agents after only 2000 dialogs. The re-
ward plot displays similar characteristics.

Figure 1: Avg. success rate for policies after training
with 10000 dialogs (1000 dialogs per iteration).

Results in Table 5 show that there is almost no
difference between the distributional and the non-
distributional approach. Their final rewards are the
same and their success rates differ by 0.1% when
averaged across all tasks. A possible reason could
be that the diversity of the training dialogs was
too little and rewards too sparse to show a benefit
by using the distributional reinforcement learning
method. This coincides with the findings in Hes-
sel et al. (2018) which found their combined agent
without distributional learning performing similar
to the combined agent with distributional learning
for the first 40 million frames on the Atari bench-
mark.

The strongest benefits to final performance
come with the dueling architecture. For some sce-
narios like the previously described dialog start
without any user-provided information, we exam-
ined the action-state values by clustering them and

observed fewer clusters and smaller within-cluster
variance for the dueling agents, indicating better
generalization and simpler action-value functions.
Prioritized experience replay helped with learning
efficiency but had no significant effect on final per-
formance, as expected. Only a small improvement
can be attributed to double DQN, but overall per-
formance seems to be slightly more stable.

Overall, Table 5 shows that the final best Rain-
bow agent performs considerably better than the
best reported PyDial agent and the DQN agent
across all the tasks and testing environments and
is on par with handcrafted policy performance.

Agent CR SFR LAP
Suc. Rew. Suc. Rew. Suc. Rew.

best PyDial 94.5%1 10.71 79.7%1 6.82 66.8%2 5.0 2

DQN 95.1% 12.2 85.1% 8.7 77.4 % 6.8
Rainbow 96.9% 12.6 89.9% 9.7 84.3% 8.0
- distributional 96.6% 12.4 89.6% 9.6 85.4% 8.2
- double 96.0% 12.3 88.5% 9.4 85.2% 8.3
- dueling 95.5% 12.1 84.7% 8.4 77.0% 6.4
- prioritization 97.4% 12.7 89.0% 9.7 82.1% 8.0
handcrafted 90.8% 9.2 90.8% 9.2 89.1% 8.6

Table 5: Success rates and rewards per domain (1GP-
SARSA, 2DQN).

5 Conclusions

We explored state-of-the-art deep RL methods for
dialog policy on different domains with various
noise levels and user behaviours. Our findings are
that not all extensions to DQN prove beneficial
in dialog policy settings, especially when learn-
ing speed is concerned: distributional reinforce-
ment learning method requires more training time
to reach the success rates and final rewards of the
non-distributional agent. The Rainbow agent that
makes use of prioritized experience replay, double
DQN and dueling network architecture is stable
across domains and evaluation settings and learns
fastest (when excluding distributional method).
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A Hyperparameters

All neural network layers are fully connected lin-
ear layers with ReLUs as activation functions.
In case of the dueling network architecture, the
shared layer consists of 256 neurons, followed by
two value layers, each with 300 neurons, and two
advantage layers with 400 neurons per layer. Dis-
tributional agents use an atom count of 50. Where
the dueling architecture is replaced by a standard
architecture in the evaluation process, three layers
of sizes 256, 700 and 700 are used to guarantee a
fair comparison to the dueling case by providing
the same model capacity. For prioritized replay,
the prioritization exponent α is set to 0.525 and
importance sampling exponent β to 0.4 (Schaul
et al., 2015). To train the networks we use the
Adam optimizer with a learning rate of 10−4. Ex-
ploration is performed ε-greedy with linear ε de-
cay, starting at 0.3. Whenever an agent makes use
of double Q-learning, it updates its target network
after 6 dialogs. All agents use an experience re-
play buffer capacity of 16384 transitions, a dis-
count factor γ = 0.99, minibatch size 256 and the
Huber Loss κ is set to 1. Following the PyDial
benchmarking process, we leave all hyperparam-
eters constant across all environments and dialog
domains (Casanueva et al., 2017), thus also evalu-
ating the generalization capabilities of the agents.

B Example Dialogs

Tables 6 and 7 show example dialogs between the
Rainbow agent as well as the handcrafted policy
and a user recorded in the LAP domain as qualita-
tive evaluation. The Rainbow agent was trained in
a noisy environment with 15% semantic error rate.
The user’s task was to find a cheap, light note-
book with medium-sized hard drive and arbitrary
battery rating. User responses were kept identical
for all tested policies whenever possible. Both the
combined and the handcrafted agents succeeded in
fulfilling the user’s goal with the same amount of
dialog turns.

Turn Actor Utterance
1 System Hello, welcome to the laptop in-

formation system, what kind of
laptop are you after?

1 User Hi, I’m looking for a cheap and
light laptop

2 System Would you like the hard drive to
be small, medium, or large?

2 User Medium should suffice
3 System Sorry would you like a product

for business computing or not?
3 User Yes, please
4 System The satellite-pro-nb10-a-10p is

in the budget price range, is in
the light weight range and is in
the medium drive range.

4 User Thank you, bye
5 System Thank you, goodbye.

Table 6: Recorded dialog between a human and the
Rainbow agent for task T4.3.

Turn Actor Utterance
1 System Hello, welcome to the laptop in-

formation system, what kind of
laptop are you after?

1 User Hi, I’m looking for a cheap and
light laptop

2 System Would you like your battery rat-
ing to be standard, good, or ex-
ceptional?

2 User I don’t care
3 System Would you like the hard drive to

be small, medium, or large?
3 User Medium should suffice
4 System The satellite-pro-nb10-a-10p is

in the light weight range, has a
standard battery rating , is in the
budget price range and is in the
medium drive range .

4 User Thank you, bye
5 System Thank you, goodbye.

Table 7: Recorded dialog between a human and PyDi-
als handcrafted policy for task T4.3.


