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Abstract

Domain adaptation in natural language gener-
ation (NLG) remains challenging because of
the high complexity of input semantics across
domains and limited data of a target domain.
This is particularly the case for dialogue sys-
tems, where we want to be able to seamlessly
include new domains into the conversation.
Therefore, it is crucial for generation models
to share knowledge across domains for the ef-
fective adaptation from one domain to another.
In this study, we exploit a tree-structured se-
mantic encoder to capture the internal struc-
ture of complex semantic representations re-
quired for multi-domain dialogues in order to
facilitate knowledge sharing across domains.
In addition, a layer-wise attention mechanism
between the tree encoder and the decoder is
adopted to further improve the model’s capa-
bility. The automatic evaluation results show
that our model outperforms previous methods
in terms of the BLEU score and the slot er-
ror rate, in particular when the adaptation data
is limited. In subjective evaluation, human
judges tend to prefer the sentences generated
by our model, rating them more highly on in-
formativeness and naturalness than other sys-
tems.

1 Introduction

Building open-domain Spoken Dialogue Systems
(SDS) remains challenging. This is partially be-
cause of the difficulty of collecting sufficient data
for all domains and the high complexity of nat-
ural language. Typical SDSs are designed based
on a pre-defined ontology (Figure 1) which might
cover knowledge spanning over multiple domains
and topics (Young et al., 2013).

A crucial component of a Spoken Dialogue Sys-
tem is the Natural Language Generation (NLG)
module, which generates the text that is finally
presented to the user. NLG is especially challeng-

Figure 1: The ontology for multi-domain spoken dia-
logue systems.

ing when building a multi-domain dialogue sys-
tems. Given a semantic representation (SR), the
task for NLG is to generate natural language con-
veying the information encoded in the SR. Typ-
ically, an SR is composed of a set of slot-value
pairs and a dialogue act consistent with an ontol-
ogy. A dialogue act represents the intention of
the system output and the slots provide domain-
dependent information. Figure 2 presents exam-
ples of SRs with their corresponding natural lan-
guage representations in various datasets.

The input semantics has its own hierarchical
structure in which there are different sets of slot-
value pairs under different dialogue acts across
various domains. Modelling the semantic struc-
ture might be helpful for sharing information
across domains and achieve better performance for
domain adaptation. However, prior work encodes
semantic representation in a flat way such as us-
ing a binary vector (Wen et al., 2015a,b) or using
a sequential model such as an LSTM (Dušek and
Jurcıcek, 2016; Tran and Nguyen, 2017). In that
case, the structure of semantics is not fully cap-
tured by these encoding methods. This might limit
models’ performance especially when adapting to
a new domain.

This paper investigates the possibility of lever-
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Figure 2: Examples of semantic representations in
(a) SFX dataset (Wen et al., 2015b), (b) E2E dataset
(Novikova et al., 2017) and (c) MultiWOZ dataset
(Budzianowski et al., 2018).

aging the semantic structure for NLG domain
adaptation in dialogue systems. We present a gen-
eration model with a tree-structured semantic en-
coder that models the internal structure of the se-
mantic representation to facilitate knowledge shar-
ing across domains. Moreover, we propose a
layer-wise attention mechanism to improve the
generation performance. We perform experiments
on the multi-domain Wizard-of-Oz corpus (Mul-
tiWOZ) (Budzianowski et al., 2018) and with hu-
man subjects. The results show that the proposed
model outperforms previous methods on both au-
tomatic metrics and with human evaluation, sug-
gesting that modelling the semantic structure can
facilitate domain adaptation. To the best of our
knowledge, this work is the first study exploiting
the tree LSTM (Tai et al., 2015) to model the input
semantics of NLG in spoken dialogue systems.

2 Related Work

Recently, recurrent neural network-based NLG
models have shown their powerful capability and
flexibility compared to traditional approaches that
depend on hand-crafted rules in dialogue systems.
A key development was the heuristic gate which
turns off the slots that are already generated in the
output sentence (Wen et al., 2015a). Subsequently,
the semantically conditioned LSTM (SCLSTM)

(Wen et al., 2015b) was proposed with an extra
reading gate in the LSTM cell to let the model au-
tomatically learn to control the binary represen-
tation of the semantics during generation. The
sequence-to-sequence (seq2seq) model (Cho et al.,
2014; Sutskever et al., 2014) with attention mech-
anism (Bahdanau et al., 2014) that has achieved
huge success in machine translation has also been
applied to the NLG task. In (Dušek and Jurcıcek,
2016) the slot-value pairs in the semantics were
treated as a sequence and encoded by LSTM.
Based on the seq2seq model, in (Tran et al., 2017;
Tran and Nguyen, 2017) the refinement gate was
introduced to modify the input words and hidden
states in the decoder by considering the attention
result. Different training strategies were studied
in prior work. The hierarchical decoding method
was proposed by considering the linguistic pattern
of the generated sentence (Su et al., 2018). The
variational-based model was proposed to learn the
latent variable from both natural language and se-
mantics (Tseng et al., 2018). Lampouras and Vla-
chos (2016) proposed to use imitation learning
to train NLG models, where the Locally Opti-
mal Learning to Search framework was adopted
to train against non-decomposable loss functions.

Domain adaptation has been widely studied in
different areas such as machine translation (Koehn
and Schroeder, 2007; Foster et al., 2010), part of
speech tagging (Blitzer et al., 2006) and dialogue
state tracking (Mrkšić et al., 2015) in spoken dia-
logue systems. In NLG for spoken dialogue sys-
tems, the trainable sentence planner proposed in
(Walker et al., 2002; Stent et al., 2004) provides
the flexibility of adapting to different domains.
Subsequently, generators that can tailor user pref-
erences (Walker et al., 2007) or learn their per-
sonality traits (Mairesse and Walker, 2008, 2011;
Oraby et al., 2018) were proposed. To achieve
multi-domain NLG, exploiting the shared knowl-
edge between domains is important to handle un-
seen semantics. A multi-step procedure to train a
multi-domain NLG model was proposed in (Wen
et al., 2016). Adversarial learning is used in (Tran
and Nguyen, 2018) in which two critics were in-
troduced during model adaptation.

3 Model

Our generation model is composed of two parts:
(a) a tree-structured semantic encoder and (b) an
LSTM decoder with additional gates. The tree-
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Figure 3: The overview of our generation model. The tree-structured semantic encoder (a) encodes semantic
representation to obtain semantic embedding fSR. Each node in the tree denotes a vector representation for that
token. Grey node means it is activated during encoding with the corresponding token specified in the semantics.
The LSTM-based decoder without layer-wise attention ((b), above) and with layer-wise attention ((b), below) takes
fSR as an initial state to generate natural language. The example utterance here is ”there are @attraction-inform-
options @attraction-inform-type in the @attraction-inform-area, do you have a price range in mind?”

structured semantic encoder extracts a semantic
embedding from the semantics in a bottom-up
fashion. The obtained embedding is then fed into
the decoder as a condition to generate natural lan-
guage with corresponding delexicalised tokens1.
In addition, we further propose a layer-wise at-
tention mechanism between the tree-structured se-
mantic encoder and the decoder. The proposed at-
tention mechanism further improves the model’s
ability to generate the correct information when
adapting to a new domain with limited data.

3.1 Tree-Structured Semantic Encoder

There exists a hierarchical relationship between
dialogue acts and slot-value pairs within various
domains. Inspired by the tree-structured LSTM
(Tai et al., 2015) that encodes natural language
by capturing its syntactic properties, we propose
a tree-structured semantic encoder to encode the
semantic representation (SR) by exploiting its in-
ternal hierarchy.

3.1.1 Tree Hierarchy
Figure 3 (a) illustrates our tree-structured seman-
tic encoder. The hierarchy of the tree represents

1Each value in a natural language utterance is replaced by
a delexicalised token in the format @domain-act-slot.
For instance, the informed restaurant Golden House will
be replaced by the token @restaurant-inform-name.
The mapping from values to delexicalised tokens is called
delexicalisation. The inverse process is called lexicalisation.

the ontology with each layer symbolizing a dif-
ferent level of information. At each layer, a node
denotes a possible type defined by the ontology.
Given an SR, each slot-value pair is associated
with a dialogue act (DA) within a domain. This
relationship is modelled by the links between dif-
ferent layers in a tree as parents and children.
For instance, the node denoting slot name is the
child of the node denoting DA suggest and DA
suggest is the child of the node representing do-
main restaurant. In addition, a slot can be re-
questable, informable or binary. Each of them be-
haves differently in natural language2. Each leaf
node denotes a property that describes a slot. As a
result, given an SR there is a one-to-one mapping
between SR and its corresponding tree and a path
from the root to a leaf node describes a slot-value
pair along with its domain, DA, slot and property
of slot information.

3.1.2 Semantic Representation Encoding
Given a tree representing an SR, each node j of
the LSTM contains input, forget and output gates
ij , fj and oj respectively to obtain its hidden state
and memory cell hj and cj . With a set of children
C(j), the non-leaf node j has two sources of input:

2For instance, the utterance with a requestable slot area
might be: Which part of the city you are looking for?. The
utterance with the informable slot area might be: There are
several restaurants in the @restaurant-inform-area.
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(a) the token embedding ej3 and (b) children states
hk, ck. The transition equations are as following:

h̃j =
∑

k∈C(j)

hk,

c̃j =
∑

k∈C(j)

ck,

ij = σ(W
(i)
E ej + U

(i)
E h̃j + b

(i)
E ),

fj = σ(W
(f)
E ej + U

(f)
E h̃j + b

(f)
E ),

oj = σ(W
(o)
E ej + U

(o)
E h̃j + b

(o)
E ),

gj = tanh(W
(g)
E ej + U

(g)
E h̃j + b

(g)
E ),

cj = ij ◦ gj + fj ◦ c̃j ,
hj = oj ◦ tanh(cj),

where k is the children index, h̃j and c̃j are the
sum of children’s hidden states and memory cells
respectively.

The semantic embedding is obtained in a
bottom-up fashion. Starting from the leaf nodes
with their corresponding embeddings, the infor-
mation is propagated from the property layer
through the slot layer, act layer and domain layer
to the root. The hidden state at the root is the final
semantic embedding fSR for the SR and it will be
used to condition the decoder during generation.

During domain adaptation, the model might
have seen some semantics in source domain (de-
noted by dash lines in the tree encoder in Figure
3) that shares a partial tree structure with the se-
mantics in the target domain. For instance, the SR
informing about options, type and area in restau-
rant domain shares partial tree structure with the
SR informing about the same information in at-
traction domain. Modelling semantic structure by
the tree encoder benefits knowledge sharing across
domains.

3.2 Decoder
Figure 3 (b) presents the LSTM-based decoder
with two introduced gates. The representation of
the semantics, st, is initialised by the semantic em-
bedding fSR and then updated at each time step
duration generation. Updating the semantics at
each step is crucial to avoiding generating redun-
dant or missing information in the SR. As in stan-
dard LSTMs, the transition equations of memory

3All the domains, dialogue acts and slots appearing in
an SR are viewed as tokens and encoded in the 1-hot vec-
tors. The 1-hot vectors are then passed through an embedding
layer to attain the token embeddings as inputs to the nodes.

cell ct are as following:

it = σ(W
(i)
D xt + U

(i)
D ht−1 + b

(i)
D ),

ft = σ(W
(f)
D xt + U

(f)
D ht−1 + b

(f)
D ),

ot = σ(W
(o)
D xt + U

(o)
D ht−1 + b

(o)
D ),

gt = tanh(W
(g)
D xt + U

(g)
D ht−1 + b

(g)
D ),

ct = it ◦ gt + ft ◦ ct−1.

The two introduced gates, reading gate rt and writ-
ing gate wt, are responsible for updating the se-
mantic state st. The reading gate determines what
information should be kept from the semantics at
previous time step, while the writing gate decides
what new information should be added into the
current semantic state:

rt = σ(W
(r)
D xt + U

(r)
D ht−1 + V

(r)
D st−1 + b

(r)
D ),

wt = σ(W
(w)
D xt + U

(w)
D ht−1 + V

(w)
D st−1 + b

(w)
D ),

dt = tanh(W
(d)
D xt + U

(d)
D ht−1 + V

(d)
D st−1 + b

(d)
D ),

st = wt ◦ dt + rt ◦ st−1.

The hidden state ht is then defined as the
weighted sum of the memory cell and the semantic
state with the output gate as weight:

ht = ot ◦ tanh(ct) + (1− ot) ◦ tanh(st).

The probability of the word label yt at each time
step t is formed by a applying a softmax classifier
that takes the hidden state ht as input:

p(yt|x<t, fSR) = softmax(W (s)ht).

The objective function is the standard negative
log-likelihood:

J(θ) = −
∑
t

log p(yt|x<t, fSR). (1)

3.3 Layer-wise Attention Mechanism
The semantic embedding obtained from the tree
encoder contains high-level information regarding
the semantic representation. However, the infor-
mation in the tree is not fully leveraged during
generation. Thanks to the hierarchical structure of
a tree encoder with defined meaning for each layer,
we can apply an attention mechanism to each layer
to let the decoder concentrate on the different lev-
els of information. We expect the decoder to lever-
age information regarding domain, dialogue act
and slot from the hidden states in a tree to influ-
ence the generation process.
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Whenever the decoder generates the token @4,
the semantics st is used to drive an attention mech-
anism with hidden states in the different layers of
the tree to obtain distributions over domains p(dt),
dialogue acts p(at) and slots p(st) respectively:

p(dt|x<t, st) =
exp(score(st, hd))∑

d′∈D exp(score(st, hd′))
,

p(at|x<t, st) =
exp(score(st, ha))∑

a′∈A exp(score(st, ha′))
,

p(st|x<t, st) =
exp(score(st, hs))∑

s′∈S exp(score(st, hs′))
,

where hd, ha and hs are the hidden states of do-
main, dialogue act and slots in the tree encoder.
D, A and S are the sets of domains, dialogue acts
and slots defined in the ontology respectively. The
score function used to calculate the similarity be-
tween two vectors is defined as following:

score(f, h) = fTh.

The distributions p(dt), p(at) and p(st) are then
used to predict domain, dialogue act and slot at
time step t by taking the argmax operation to form
the delexicalised tokens @domain-act-slot
back into the generated sentence.

In order to avoid generating redundant or miss-
ing information in a given SR, the three predicted
distributions are fed into next time step to augment
the original input word 5 to condition the model on
what information has already been generated.

During training, the error signals between pre-
dicted distributions and the true labels for domain,
dialogue act and slot are added to the objective
function. The objective function for the genera-
tion model with layer-wise attention mechanism
is defined as following:

Jatt(θ) = J(θ)−
∑
t′

(log p(dt′ |x<t′ , st′)

+ log p(at′ |x<t′ , st′) + log p(st′ |x<t′ , st′)) ,

where J(θ) is the original objective function in
equation 1 and t′ is the index for the time step
where each token @ is generated.

4With the layer-wise attention mechanism, all values
in the natural language are replaced by the same delex-
icalised token @ instead of the tokens in the format
@domain-act-slot, and the corresponding information
regarding domain, dialogue act and slot will be used as sig-
nals to guide the decoder to predict the correct information.

5Only at the next time step of generating delexicalised to-
ken @ the input is the concatenation of the word vector xt

and three predicted distributions. In any other time steps, the
input is the word vector padded with zeros.

Table 1: The data statistics for each domain.

Domain Restaurant Hotel Attraction Train Taxi
Examples 8.5k 6.6k 6.4k 11k 3.4k
Distinct SR 346 378 314 338 47
Dialogue acts 8 8 8 5 2
Slots 11 14 13 11 6

4 Experimental Results

4.1 Dataset
We perform our experiments with the Multi-
Domain Wizard-of-Oz (MultiWOZ) dataset
(Budzianowski et al., 2018) that is a rich dialogue
dataset spanning over 7 domains. There are
10438 dialogues and over 115k turns in total.
The dataset contains a high level of complexity
and naturalness which is suitable for developing
multi-domain NLG models. There are multiple
utterances in a single turn with an average of 18
words, 1.6 dialogue acts and 2.9 slots per turn.
Some turns provide information for more than 1
domain. Comparing with previous NLG datasets
which contain only 1 utterance in a turn with 1
dialogue act within 1 domain, the MultiWOZ
dataset provides significantly more complexity
and makes NLG more challenging. The number
of examples, distinct semantic representation
(SR) and numbers of dialogue acts and slots are
reported in Table 1. The data split for train, dev
and test is 3:1:1. The details of the ontology is
presented in Figure 1.

4.2 Experimental Setup
The generators are implemented using the Pytorch
library (Paszke et al., 2017). Our code is pub-
lic6. The number of hidden units in the LSTMs
is 100 with 1 hidden layer. The dropout rate
is 0.25 and the Adam optimizer is used. The
learning rate is 0.0025 for the models trained
from scratch, and 0.001 for the models adapted
from one domain to another in adaptation exper-
iments. Beam search is used during decoding
with a beam size 10. For automatic metrics, the
BLEU scores and the slot error rate (SER) used
in (Wen et al., 2015b) are reported. The SER is
used to evaluate how accurate a generated sen-
tence is in terms of conveying the desired infor-
mation in the given semantic representation (SR).
The SER is defined as: (p + q)/N , where p, q
are the numbers of missing and redundant slots

6https://github.com/andy194673/
TreeEncoder-NLG-Dialogue

https://github.com/andy194673/TreeEncoder-NLG-Dialogue
https://github.com/andy194673/TreeEncoder-NLG-Dialogue
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Figure 4: Domain adaptation experiments in three different settings. (a) adapting to hotel from restaurant domain.
(b) adapting to attraction from restaurant domain. (c) adapting to taxi from train domain.

in a generated sentence, and N is the number of
total slots that a generated sentence should con-
tain. The results are averaged over 10 samples
and 5 random initialised seeds. As explained
above each delexicalised slot token in an utter-
ance is in the format of @domain-act-slot.
When calculating the SER, the predicted slot to-
ken is correct only if its domain, dialogue act
and slot information are all correct. For exam-
ple, if there is a desired slot area under dia-
logue act inform within restaurant domain
in SR, the model needs to generate the token
@restaurant-inform-area.

The tree-structured semantic encoder (Tree) and
the variant with attention (Tree+Att) are com-
pared against three baselines: (1) the semantically-
conditioned LSTM (SCLSTM) that has an extra
gate to update the binary vector of the seman-
tic representation (Wen et al., 2015b); (2) TGen
that is a seq2seq model with attention mecha-
nism mapping SR into a word sequence (Dušek
and Jurcıcek, 2016); (3) a refinement adjustment
LSTM (RALSTM) that is an improved seq2seq
model with a refinement gate and an adjustment
gate in the decoder (Tran and Nguyen, 2017).

As the decoding method is slightly different be-
tween our model Tree+Att and baseline models7,
in order to guarantee the optimised baseline sys-
tems, we also trained baseline models in the same

7Tree+Att only generates token @ and reply on attention
results to form the complete slot token while baseline models
directly generate slot tokens.

decoding way as Tree+Att to only predict @ with
three additional classifiers for domain, act and slot
prediction. However, baseline models obtains bet-
ter performance by the original decoding method
so we keep that in the following experiments. All
the models are optimized by selecting the best one
based on the validation set result.

4.3 Automatic Evaluation

In order to examine the models’ ability to share
knowledge between domains, we performed ex-
periments in three domain adaptation scenarios:
(a) adapting to hotel from restaurant domain; (b)
adapting to attraction from restaurant domain and
(c) adapting to taxi from train domain. The adap-
tation models were fine-tuned with adaptation data
based on the models trained on source domain8.
The SER results are presented in the first row of
Figure 4. Generally, our model without atten-
tion (Tree) performs similarly with RALSTM but
better than TGen and SCLSTM. With the layer-
wise attention mechanism, our model (Tree+Att)
improves significantly and performs better than
baselines at all different levels of adaptation data
amount. Especially when the adaptation data used
is only 1.25%, the SER is reduced from above
75% to around 25%. We found that this is because
baseline models tend to predict the slots with the
wrong dialogue act or in the wrong domain as the

8All the multi-domain turns are removed in case the
model have seen any examples related to target domain be-
fore adaptation.
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Table 2: Human evaluation for utterance quality in
three adaptation settings: Restaurant (Rest.) to Hotel
domain; Restaurant to Attraction (Attr.) domain and
Train to Taxi domain. Informativeness (Info.) and Nat-
uralness (Nat.) are reported (rating out of 5).

Model Rest. to Hotel Rest. to Attr. Train to Taxi
Info. Nat. Info. Nat. Info. Nat.

SCLSTM 2.96 3.85 2.81 3.69 3.05 4.26
TGen 2.87 3.33 3.00 3.23 3.42 3.90
RALSTM 2.79 3.48 2.91 3.40 3.48 3.15
Tree 3.08 3.54 3.38 3.41 3.81 3.81
Tree+Att 4.04 4.10 4.30 3.92 4.29 3.78

limited adaptation data makes it difficult to learn
the sentence pattern in the target domain. How-
ever, with the layer-wise attention mechanism, our
model is able to pay attention on the information
at different levels in the tree to make the correct
predictions. (See more details in section 5 with
error analysis and visualisation of attention distri-
butions.) A similar trend can be observed in the
BLEU results in the second row of Figure 4.

4.4 Human Evaluation
Because automatic evaluation such as BLEU may
not consistently agree with human perception
(Stent et al., 2005), we performed human testing
via the Amazon Mechanical Turk service. We
showed MTurk workers the generated sentences in
adaptation experiments with adaptation data from
1.25% to 10% as we focus on the models’ per-
formance with limited adaptation data. Five mod-
els were compared together by showing, for each
model, the 2 sentences with the highest probabil-
ities out of the 10 generated sentences by beam
search. The workers were asked to score each sen-
tence from 1 (bad) to 5 (good) in terms of its infor-
mativeness and naturalness. The informativeness
is defined as the degree to which the generated
sentence contains all the information specified in
the given semantic representation (SR) without
conveying extra information and the naturalness is
defined as whether the sentence is natural like hu-
man language. Ipeirotis et al. (2010) pointed out
that malicious workers might take advantage of
the difficulty of verifying the results and therefore
submit answers with low quality. In order to filter
out submissions with bad quality, we also asked
them to score the ground truth sentence and an ar-
tificial sentence containing irrelevant information
to the SR. If the worker gave ground truth sentence
a low score (< 3) or gave the artificial sentence a
high score (> 3) in terms of informativeness, the

submission was discarded.
The results pertaining to informativeness and

naturalness are reported in Table 2 in three adapta-
tion settings: Restaurant (Rest.) to Hotel domain;
Restaurant to Attraction (Attr.) domain and Train
to Taxi domain. For informativeness, our mod-
els (both Tree+Att & Tree) outperform all base-
line models in the different settings. This result
is consistent with the slot error rate of the auto-
matic evaluation reported in Figure 4 and indicates
that the tree-structured semantic encoder does help
the model to produce utterances with the correct
information. For naturalness, Tree+Att performs
the best in two settings, while SCLSTM performs
better when adapting to taxi domain. This might
be because SCLSTM is good at generating utter-
ances with simple patterns and the taxi domain is
relatively easy due to its low number of combi-
nations of SR9. When adapting to more complex
domains such as hotel or attraction, our models
provide both informative and natural utterances.
Table 3 presents example semantic representations
with corresponding ground truth sentence and the
top-1 utterance generated by each model.

5 Error Analysis and Observation

In order to investigate what type of testing data
our model performs better on, we divide all test
set into two subsets - seen and unseen. If the se-
mantics of a testing example appear in the training
set, the example is defined as seen. Otherwise, the
example is marked as unseen. Table 4 reports the
number of seen and unseen examples and the num-
ber of wrong utterances (at least 1 missing or re-
dundant slot) generated by each model with differ-
ent amount of adaptation data when adapting from
restaurant to hotel domain. With more adaptation
data, more SRs of testing examples appear in the
training set. We observe that our model obtains
better generalisation ability for unseen SRs. For
instance, with 1.25% adaptation data, Tree+Att
generates 134 wrong utterances out of 902 unseen
semantics (14.8%). However, the baseline models
such as SCLSTM produces 729 wrong sentences
out of 902 semantics (80.5%). We hypothesize
that our model is more capable of learning sen-
tence patterns from source domain and generate
correct content for domain adaptation. For exam-
ple, when adapting from restaurant to hotel do-
main (see Table 3 - Hotel column), Tree+Att cor-

9There are only 2 dialogue acts and 6 slots in taxi domain.
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Table 3: Example semantic representations (SR) with ground truth sentences in two adaptation settings with 1.25%
adaptation data and the top-1 sentences generated by each model. Both are adapted from restaurant domain. The
slot-value pairs are in bold. Each generated sentence is followed by a brief description to explain if the sentence
correctly conveys the information in the SR.

Domain Attraction Hotel

Semantic
Representation

Dialogue Act: Inform
Slot-Value pairs: [Area: west]

[Options: five] [Type: colleges]
Dialogue Act: Request

Slot-Value pairs: [Price=?]

Dialogue Act: Inform
Slot-Value pairs: [Options=two]

Dialogue Act: Select
Slot-Value pairs:

[type1=guesthouse] [type2=hotel]

Ground Truth
there are five colleges in the west.

do you mind paying an entrance fee ?
i have two, would you

prefer a guesthouse or hotel ?

SCLSTM
what type of place are you looking for ?

(miss 3 slots & request wrong)
what area would you

like to stay in ? (miss 3 slots)

TGen
there are located in the . do you have a price

range in mind ? (miss 3 slots)
i have found options. would you

prefer or ? (miss 3 slots)

RALSTM
we have five colleges in the west area . do you

have an attraction type in mind ? (request wrong)
i have two options.

do you have a preference ? (miss 2 slots)

Tree
there are five colleges in the west . do you have an
area of town you would prefer ? (request wrong)

i have found two options for you.
do you have a preference ? (miss 2 slots)

Tree+Att
there are five colleges in the west .

do you have a price range in mind ? (correct)
i have two options for you. would

you prefer guesthouse or hotel ? (correct)

Table 4: Error analysis - number of examples in the
testing set and the number of wrong generated utter-
ances (at least 1 missing or redundant slot) by each
model in different adaptation data scenarios. The test-
ing example is defined as seen if its semantics appears
in the training set.

Percentage 1.25% 5% 10% 50%
Testing
examples

seen unseen seen unseen seen unseen seen unseen
439 902 858 483 1069 272 1330 11

SCLSTM 248 729 307 412 302 190 111 5
TGen 309 741 176 353 178 168 102 6
Tree+Att 10 134 31 103 60 55 76 3

rectly learns to generalize from the training sen-
tence: ”i have two options for you, would you pre-
fer American or Chinese” in restaurant domain.
However, SCLSTM fails to produce a similar sen-
tence pattern.

Figure 5 shows the example of visualisation
of layer-wise attention distributions over domains,
acts and slots generated by the Tree+Att model.
The model is confident of generating the correct
slot tokens with the distinct peaks indicated by the
dark red color in the attention distributions even
though the adaptation data used is simply 1.25%.

6 Conclusion and Future Work

This paper investigates the possibility of leverag-
ing internal structure of input semantics for NLG
domain adaptation in dialogue systems. The pro-
posed tree-structured semantic encoder is able to

Figure 5: The visualisation of the layer-wise attention
distributions over domains, acts and slots at each time
step k when slot token is generated and the generated
utterance with lexicalised values in the parentheses.
The color shades signify the attention weight.

capture the structure of semantic representations
and facilitate knowledge sharing across domains.
In addition, we have proposed a layer-wise atten-
tion mechanism between the tree-structured se-
mantic encoder and the decoder to enhance the
performance. Our proposed model was evaluated
on the complex multi-domain MultiWOZ dataset.
The automatic evaluation results show that our
model is more efficient in terms of adaptation data
usage and outperforms previous methods by re-
ducing the slot error rate up to 50% when the adap-
tation data is limited. What is more, human judges
rate our model more highly than previous meth-
ods. Future work will explore a tree encoder ex-
ploiting both semantic representation and context
information in end-to-end dialogue systems.
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