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Abstract

Neural dialog models have exhibited strong
performance, however their end-to-end nature
lacks a representation of the explicit structure
of dialog. This results in a loss of generaliz-
ability, controllability and a data-hungry na-
ture. Conversely, more traditional dialog sys-
tems do have strong models of explicit struc-
ture. This paper introduces several approaches
for explicitly incorporating structure into neu-
ral models of dialog. Structured Fusion Net-
works first learn neural dialog modules cor-
responding to the structured components of
traditional dialog systems and then incorpo-
rate these modules in a higher-level genera-
tive model. Structured Fusion Networks ob-
tain strong results on the MultiWOZ dataset,
both with and without reinforcement learn-
ing. Structured Fusion Networks are shown
to have several valuable properties, including
better domain generalizability, improved per-
formance in reduced data scenarios and ro-
bustness to divergence during reinforcement
learning.

1 Introduction

End-to-end neural dialog systems have shown
strong performance (Vinyals and Le, 2015; Dinan
et al., 2019). However such models suffer from a
variety of shortcomings, including: a data-hungry
nature (Zhao and Eskenazi, 2018), a tendency to
produce generic responses (Li et al., 2016b), an in-
ability to generalize (Mo et al., 2018; Zhao and Es-
kenazi, 2018), a lack of controllability (Hu et al.,
2017), and divergent behavior when tuned with re-
inforcement learning (Lewis et al., 2017). Tradi-
tional dialog systems, which are generally free of
these problems, consist of three distinct compo-
nents: the natural language understanding (NLU),
which produces a structured representation of an

∗* Equal contribution.

Figure 1: A traditional dialog system consisting of a
natural language understanding (NLU), dialog man-
ager (DM) and natural language generation (NLG).

input (e.g., a belief state); the natural language
generation (NLG), which produces output in natu-
ral language conditioned on an internal state (e.g.
dialog acts); and the dialog manager (DM) (Bo-
hus and Rudnicky, 2009), which describes a pol-
icy that combines an input representation (e.g., a
belief state) and information from some database
to determine the desired continuation of the dia-
log (e.g., dialog acts). A traditional dialog system,
consisting of an NLU, DM and NLG, is pictured
in Figure 1.

The structured components of traditional dialog
systems facilitate effective generalizability, inter-
pretability, and controllability. The structured out-
put of each component allows for straightforward
modification, understanding and tuning of the sys-
tem. On the other hand, end-to-end neural models
of dialog lack an explicit structure and are treated
as a black box. To this end, we explore several
methods of incorporating the structure of tradi-
tional dialog systems into neural dialog models.

First, several neural dialog modules are con-
structed to serve the role of the NLU, the DM
and the NLG. Next, a number of methods are pro-
posed for incorporating these dialog modules into
end-to-end dialog systems, including Naı̈ve Fu-
sion, Multitask Fusion and Structured Fusion Net-
works (SFNs). This paper will show that SFNs
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obtain strong results on the MultiWOZ dataset
(Budzianowski et al., 2018) both with and with-
out the use of reinforcement learning. Due to the
explicit structure of the model, SFNs are shown
to exhibit several valuable properties including
improved performance in reduced data scenarios,
better domain generalizability and robustness to
divergence during reinforcement learning (Lewis
et al., 2017).

2 Related Work

2.1 Generation Methods

Vinyals and Le (2015) used a sequence-to-
sequence network (Sutskever et al., 2014) for di-
alog by encoding the conversational context and
subsequently generating the reply. They trained
and evaluated their model on the OpenSubtitles
dataset (Tiedemann, 2009), which contains con-
versations from movies, with a total of 62M train-
ing sentences.

Most research on generative models of dialog
has built on the baseline introduced by Vinyals
and Le (2015) by incorporating various forms of
inductive bias (Mitchell, 1980) into their models,
whether it be through the training procedure, the
data or through the model architecture. Li et al.
(2015) use Maximum Mutual Information (MMI)
as the objective function, as a way of encourag-
ing informative agent responses. Serban et al.
(2016) proposes to better capture the semantics of
dialog with the use of a hierarchical encoder de-
coder (HRED), comprised of an utterance encoder,
a conversational context encoder, and a decoder.
Li et al. (2016b) incorporate a number of heuris-
tics into the reward function, to encourage use-
ful conversational properties such as informativity,
coherence and forward-looking. Li et al. (2016a)
encodes a speaker’s persona as a distributed em-
bedding and uses it to improve dialog genera-
tion. Liu and Lane (2016) simultaneously learn
intent modelling, slot filling and language mod-
elling. Zhao et al. (2017) enables task-oriented
systems to make slot-value-independent decisions
and improves out-of-domain recovery through the
use of entity indexing and delexicalization. Wu
et al. (2017) present Recurrent Entity Networks
which use action templates and reasons about ab-
stract entities in an end-to-end manner. Zhao and
Eskenazi (2018) present the Action Matching al-
gorithm, which maps utterances to a cross-domain
embedding space to improve zero-shot generaliz-

ability. Mehri et al. (2019) explore several dia-
log specific pre-training objectives that improve
performance on dowstrean dialog tasks, including
generation. Chen et al. (2019) present a hierarchi-
cal self-attention network, conditioned on graph
structured dialog acts and pre-trained with BERT
(Devlin et al., 2018).

2.2 Generation Problems

Despite their relative success, end-to-end neural
dialog systems have been shown to suffer from
a number of shortcomings. (Li et al., 2016b) in-
troduced the dull response problem, which de-
scribes how neural dialog systems tend to pro-
duce generic and uninformative responses (e.g.,
”I don’t know”). Zhao and Eskenazi (2018) de-
scribe generative dialog models as being data-
hungry, and difficult to train in low-resource en-
vironments. Mo et al. (2018); Zhao and Eske-
nazi (2018) both demonstrate that dialog systems
have difficulty generalizing to new domains. Hu
et al. (2017) work on the problem of controllable
text generation, which is difficult in sequence-to-
sequence architectures, including generative mod-
els of dialog.

Wang et al. (2016) describe the problem of the
overwhelming implicit language model in image
captioning model decoders. They state that the
decoder learns a language generation model along
with a policy, however, during the process of cap-
tioning certain inputs, the decoder’s implicit lan-
guage model overwhelms the policy and, as such,
generates a specific output regardless of the in-
put (e.g., if it generates ’giraffe’, it may always
output ’a giraffe standing in a field’, regardless
of the image). In dialog modelling, this problem
is observed in the output of dialog models fine-
tuned with reinforcement learning (Lewis et al.,
2017; Zhao et al., 2019). Using reinforcement
learning to fine-tune a decoder, will likely place a
strong emphasis on improving the decoder’s pol-
icy and un-learn the implicit language model of
the decoder. To this end, Zhao et al. (2019)
proposes Latent Action Reinforcement Learning
which does not update the decoder during rein-
forcement learning.

The methods proposed in this paper aim to miti-
gate these issues by explicitly modelling structure.
Particularly interesting is that the structured mod-
els will reduce the effect of the overwhelming im-
plicit language model by explicitly modelling the



167

NLG (i.e., a conditioned language model). This
should lessen the divergent effect of reinforcement
learning (Lewis et al., 2017; Zhao et al., 2019).

2.3 Fusion Methods

This paper aims to incorporate several pre-trained
dialog modules into a neural dialog model. A
closely related branch of research is the work
done on fusion methods, which attempts to inte-
grate pre-trained language models into sequence-
to-sequence networks. Integrating language mod-
els in this manner is a form of incorporating struc-
ture into neural architectures. The simplest such
method, commonly referred to as Shallow Fusion,
is to add a language modeling term, pLM (y), to
the cost function during inference (Chorowski and
Jaitly, 2016).

To improve on this, Gulcehre et al. (2015) pro-
posed Deep Fusion, which combines the states of
a pre-trained machine translation models decoder
and a pre-trained language model by concatenat-
ing them using a gating mechanism with trained
parameters. The gating mechanism allows us to
decide how important the language model and de-
coder states are at each time step in the inference
process. However, one major drawback of Deep
Fusion is that the sequence-to-sequence model is
trained independently from the language model,
and has to learn an implicit language model from
the training data.

Cold Fusion (Sriram et al., 2017) deals with
this problem by training the sequence-to-sequence
model along with the gating mechanism, thus
making the model aware of the pre-trained lan-
guage model throughout the training process. The
decoder does not need to learn a language model
from scratch, and can thus learn more task-specific
language characteristics which are not captured by
the pre-trained language model (which has been
trained on a much larger, domain-agnostic cor-
pus).

3 Methods

This section describes the methods employed in
the task of dialog response generation. In addition
to the baseline model proposed by Budzianowski
et al. (2018), several methods of incorporating
structure into end-to-end neural dialog models are
explored.

3.1 Sequence-to-Sequence
The baseline model for dialog generation, de-
picted in Figure 2, consists of a standard encoder-
decoder framework (Sutskever et al., 2014), aug-
mented with a belief tracker (obtained from the an-
notations of the dialog state) and a database vector.
The dialog system is tasked with producing the ap-
propriate system response, given a dialog context,
an oracle belief state representation and a vector
corresponding to the database output.

The dialog context is encoded using an LSTM
(Hochreiter and Schmidhuber, 1997) sequence-to-
sequence network (Sutskever et al., 2014). Exper-
iments are conducted with and without an atten-
tion mechanism (Bahdanau et al., 2015). Given
the final encoder hidden state, het , the belief state
vector, vbs, and the database vector, vdb, Equation
1 describes how the initial decoder hidden state is
obtained.

hd0 = tanh (Weh
e
t +Wbsvbs +Wdbvdb + b) (1)

Figure 2: A diagram of the baseline sequence-to-
sequence architecture. The attention mechanism is not
visualized, however experiments are conducted both
with and without attention.

3.2 Neural Dialog Modules
As seen in Figure 1, a traditional dialog system
consists of the NLU, the DM and the NLG. The
NLU maps a natural language input to a belief
state representation (BS). The DM uses the belief
state and some database output, to produce dialog
acts (DA) for the system response. The NLG uses
the dialog acts to produce a natural language re-
sponse.

A neural dialog module is constructed for each
of these three components. A visualization of
these architectures is shown in Figure 3. The NLU
architecture uses an LSTM encoder to map the
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Figure 3: A visualization of the neural architectures for
each of the three modules of traditional dialog systems.

natural language input to a latent representation,
ht, which is then passed through a linear layer
and a sigmoid function to obtain a multi-label pre-
diction of the belief state. The DM architecture
projects the belief state and database vector into a
latent space, through the use of a linear layer with
a ReLU activation, which is then passed through
another linear layer and a sigmoid function to pre-
dict the dialog act vector. The neural architecture
corresponding to the NLG is a conditioned lan-
guage model with its initial hidden state given by a
linear encoding of the dialog acts, belief state and
database vectors.

The following equations define the structure of
the modules, where the gt subscript on an interme-
diate variable denotes the use of the ground-truth
value:

bs = NLU(context) (2)

da = DM(bsgt, db) (3)

response = NLG(bsgt, db, dagt) (4)

3.3 Naı̈ve Fusion
Naı̈ve Fusion (NF) is a straightforward mechanism
for using the neural dialog modules for end-to-end
dialog response generation.

3.3.1 Zero-Shot Naı̈ve Fusion
During training, each dialog module is trained in-
dependently, meaning that it is given the ground
truth input and supervision signal. However, dur-
ing inference, the intermediate values (e.g., the di-
alog act vector) do not necessarily exist and the
outputs of other neural modules must be used in-
stead. For example, the DM module is trained
given the ground-truth belief state as input, how-
ever during inference it must rely on the belief
state predicted by the NLU module. This results

in a propagation of errors, as the DM and NLG
may receive imperfect input.

Zero-Shot Naı̈ve Fusion combines the pre-
trained neural modules at inference time. The con-
struction of the response conditioned on the con-
text, is described as follows:

bs = NLU(context) (5)

response = NLG(bs, db,DM(bs, db)) (6)

3.3.2 Naı̈ve Fusion with Fine-Tuning
Since the forward propagation described in Equa-
tions 5 and 6 is continuous and there is no sam-
pling procedure until the response is generated,
Naı̈ve Fusion can be fine-tuned for the end-to-end
task of dialog generation. The pre-trained neu-
ral modules are combined as described above, and
fine-tuned on the task of dialog generation using
the same data and learning objective as the base-
line.

3.4 Multitask Fusion

Structure can be incorporated into neural archi-
tectures through the use of multi-tasking. Multi-
task Fusion (MF) is a method where the end-to-
end generation task is learned simultaneously with
the aforementioned dialog modules. The multi-
tasking setup is seen in Figure 4.

Figure 4: A depiction of Multitask Fusion, where the
individual neural modules are learned simultaneously
with the end-to-end task of dialog generation. The
dashed boxes contain the individual components, while
the red arrows depict forward propagation for the end-
to-end task. The red arrows are the process used during
response generation.

By sharing the weights of the end-to-end archi-
tecture and each respective module, the learned
representations should become stronger and more
structured in nature. For example, the encoder is
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shared between the NLU module and the end-to-
end task. As such, it will learn to both represent
the information necessary for predicting the belief
state vector and any additional information useful
for generating the next utterance.

3.5 Structured Fusion Networks

The Structured Fusion Networks (SFNs) we pro-
pose, depicted in Figure 5, use the independently
pre-trained neural dialog modules for the task of
end-to-end dialog generation. Rather than fine-
tuning or multi-tasking the independent modules,
SFNs aim to learn a higher-level model on top of
the neural modules to perform the task of end-to-
end response generation.

The output of the NLU is concatenated at each
time-step of the encoder input. The output of the
DM is similarly concatenated to the input of the
linear layer between the encoder and the decoder
of the higher-level model. The output of the NLG,
in the form of logits at a decoding time-step, is
combined with the hidden state of the decoder via
cold-fusion (Sriram et al., 2017). Given the NLG
output as lNLG

t and the higher-level decoder hid-
den state as st, the cold-fusion method is described
as follows:

hNLG
t = DNN(lNLG

t ) (7)

gt = σ(W [st;h
NLG
t ] + b) (8)

sCF
t = [st; gt ◦ hNLG

t ] (9)

yt = softmax(DNN(sCF
t )) (10)

By pre-training the modules and using their
structured outputs, the higher-level model does not
have to re-learn and re-model the dialog structure
(i.e., representing the belief state and dialog acts).
Instead, it can focus on the more abstract mod-
elling that is necessary for the task, including rec-
ognizing and encoding complex natural language
input, modelling a policy, and effectively convert-
ing a latent representation into a natural language
output according to the policy.

The SFN architecture may seem complicated
due to the redundancy of the inputs. For example,
the context is passed to the model in two places
and the database vector in three places. This re-
dundancy is necessary for two reasons. First,
each of the neural modules must function indepen-
dently and thus needs sufficient inputs. Second,
the higher-level model should be able to function

well independently. If any of the neural modules
was to be removed, the SFN should be able to
perform reasonably. This means that the higher-
level module should not rely on any of the neu-
ral modules to capture information about the in-
put and therefore allow the neural modules to fo-
cus only on representing the structure. For exam-
ple, if the context was not passed into the higher-
level encoder and instead only to the NLU mod-
ule, then the NLU may no longer be able to suf-
ficiently model the belief state and may instead
have to more explicitly model the context (e.g., as
a bag-of-words representation).

Several variations of training SFNs are consid-
ered during experimentation, enumerated as fol-
lows. (1) The pre-trained neural modules are kept
frozen, as a way of ensuring that the structure is
not deteriorated. (2) The pre-trained neural mod-
ules are fine-tuned for the end-to-end task of re-
sponse generation. This ensures that the model is
able to abandon or modify certain elements of the
structure if it helps with the end-to-end task. (3)
The pre-trained modules are multi-tasked with the
end-to-end task of response generation. This en-
sures that the structure is maintained and poten-
tially strengthened while also allowing the mod-
ules to update and improve for the end-to-end task.

4 Experiments

4.1 Dataset

The dialog systems are evaluated on the Multi-
WOZ dataset (Budzianowski et al., 2018), which
consists of ten thousand human-human conversa-
tions covering several domains. The MultiWOZ
dataset contains conversations between a tourist
and a clerk at an information center which fall
into one of seven domains - attraction, hospital,
police, hotel, restaurant, taxi, train. Individual
conversations span one to five of the domains.
Dialogs were collected using the Wizard-of-Oz
framework, where one participant plays the role
of an automated system.

Each dialog consists of a goal and multiple user
and system utterances. Each turn is annotated with
two binary vectors: a belief state vector and a di-
alog act vector. A single turn may have multiple
positive values in both the belief state and dialog
act vectors. The belief state and dialog act vectors
are of dimensions 94 and 593, respectively.

Several metrics are used to evaluate the mod-
els. BLEU (Papineni et al., 2002) is used to com-
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Figure 5: The Structured Fusion Network. The grey dashed boxes correspond to the pre-trained neural dialog
modules. A higher-level is learned on top of the pre-trained modules, as a mechanism of enforcing structure in the
end-to-end model.

pute the word overlap between the generated out-
put and the reference response. Two task-specific
metrics, defined by Budzianowski et al. (2018), In-
form rate and Success rate, are also used. Inform
rate measures how often the system has provided
the appropriate entities to the user. Success rate
measures how often the system answers all the
requested attributes. Similarly to Budzianowski
et al. (2018), the best model is selected during val-
idation using the combined score which is defined
as BLEU + 0.5 × (Inform + Success). This
combined score is also reported as an evaluation
metric.

4.2 Experimental Settings

The hyperparameters match those used by
Budzianowski et al. (2018): embedding dimension
of 50, hidden dimension of 150, and a single-layer
LSTM. All models are trained for 20 epochs us-
ing the Adam optimizer (Kingma and Ba, 2014),
with a learning rate of 0.005 and batch size of 64.
The norm of the gradients are clipped to 5 (Pas-
canu et al., 2012). Greedy decoding is used during
inference.

All previous work uses the ground-truth belief
state vector during training and evaluation. There-
fore the experiments with the SFNs have the NLU
module replaced by an ”oracle NLU” which al-
ways outputs the ground-truth belief state. Table 4
in the Appendix shows experimental results which
demonstrate that using only the ground-truth be-

lief state results in the best performance.

4.3 Reinforcement Learning

A motivation of explicit structure is the hypoth-
esis that it will reduce the effects of the implicit
language model, and therefore mitigate degener-
ate output after reinforcement learning. This hy-
pothesis is evaluated by fine-tuning the SFNs with
reinforcement learning. The setup for this exper-
iment is similar to that of Zhao et al. (2019): (1)
the model produces a response conditioned on a
ground-truth dialog context, (2) the success rate is
evaluated for the generated response, (3) using the
success rate as the reward, the policy gradient is
calculated at each word, and (4) the parameters of
the model are updated. A learning rate of 1e-5
is used with the Adam optimizer (Kingma and Ba,
2015).

Reinforcement learning is used to fine-tune the
best performing model trained in a supervised
learning setting. During this fine-tuning, the neu-
ral dialog modules (i.e., the NLU, DM and NLG)
are frozen. Only the high-level model is updated
during reinforcement learning. Freezing maintains
the structure, while still updating the higher level
components. Since the structure is maintained, it
is unnecessary to alternate between supervised and
reinforcement learning.
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Model BLEU Inform Success Combined Score
Supervised Learning

Seq2Seq (Budzianowski et al., 2018) 18.80 71.29% 60.29% 84.59
Seq2Seq w/ Attn (Budzianowski et al., 2018) 18.90 71.33% 60.96% 85.05
Seq2Seq (Ours) 20.78 61.40% 54.50% 78.73
Seq2Seq w/ Attn (ours) 20.36 66.50% 59.50% 83.36
3-layer HDSA (Chen et al., 2019) 23.60 82.90% 68.90% 99.50
Naı̈ve Fusion (Zero-Shot) 7.55 70.30% 36.10% 60.75
Naı̈ve Fusion (Fine-tuned Modules) 16.39 66.50% 59.50% 83.36
Multitasking 17.51 71.50% 57.30% 81.91
Structured Fusion (Frozen Modules) 17.53 65.80% 51.30% 76.08
Structured Fusion (Fine-tuned Modules) 18.51 77.30% 64.30% 89.31
Structured Fusion (Multitasked Modules) 16.70 80.40% 63.60% 88.71

Reinforcement Learning
Seq2Seq + RL (Zhao et al., 2019) 1.40 80.50% 79.07% 81.19
LiteAttnCat + RL (Zhao et al., 2019) 12.80 82.78% 79.20% 93.79
Structured Fusion (Frozen Modules) + RL 16.34 82.70% 72.10% 93.74

Table 1: Experimental results for the various models. This table compares two classes of methods: those trained
with supervised learning and those trained with reinforcement learning. All bold-face results are statistically
significant (p < 0.01).

4.4 Results

Experimental results in Table 1 show that our
Structured Fusion Networks (SFNs) obtain strong
results when compared to both methods trained
with and without the use of reinforcement learn-
ing. Compared to previous methods trained only
with supervised learning, SFNs obtain a +4.26
point improvement over seq2seq baselines in the
combined score with strong improvement in both
Success and Inform rates. SFNs are outperformed
by the recently published HDSA (Chen et al.,
2019) models which relies on BERT (Devlin et al.,
2018) and conditioning on graph structured dialog
acts. When using reinforcement learning, SFNs
match the performance of LiteAttnCat (Zhao et al.,
2019) on the combined score. Though the Inform
rate is equivalent and the Success rate is lower (al-
beit still better than all supervised methods), the
BLEU score of SFNs is much better with an im-
provement of +3.54 BLEU over LiteAttnCat.

In the reinforcement learning setting, the im-
proved BLEU can be attributed to the explicit
structure of the model. This structure enables
the model to optimize for the reward (Success
rate) without resulting in degenerate output (Lewis
et al., 2017).

SFNs obtain the highest combined score when
the modules are fine-tuned. This is likely because,
while the structured modules serve as a strong ini-

tialization for the task of dialog generation, forc-
ing the model to maintain the exact structure (i.e.,
frozen modules) limits its ability to learn. In fact,
the end-to-end model may choose to ignore some
elements of intermediate structure (e.g., a particu-
lar dialog act) which prove useless for the task of
response generation.

Despite strong overall performance, SFNs do
show a -2.27 BLEU drop when compared to the
strongest seq2seq baseline and a -5.09 BLEU drop
compared to HDSA. Though it is difficult to as-
certain the root cause of this drop, one potential
reason could be that the dataset contains many so-
cial niceties and generic statements (e.g., ”happy
anniversary”) which are difficult for a structured
model to effectively generate (since it is not an ele-
ment of the structure) while a free-form sequence-
to-sequence network would not have this issue.

To a lesser degree, multi-tasking (i.e., multi-
tasked modules) would also prevent the model
from being able to ignore some elements of the
structure. However, the SFN with multitasked
modules performs best on the Inform metric with
a +9.07% improvement over the seq2seq base-
lines and a +3.10% over other SFN-based meth-
ods. This may be because the Inform metric mea-
sures how many of the requested attributes were
answered, which benefits from a structured repre-
sentation of the input.
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Zero-Shot Naı̈ve Fusion performs very poorly,
suggesting that the individual components have
difficulty producing good results when given im-
perfect input. Though the NLG module performs
extremely well when given the oracle dialog acts
(28.97 BLEU; 106.02 combined), its performance
deteriorates significantly when given the predicted
dialog acts. This observation is also applicable to
Structured Fusion with frozen modules.

HDSA (Chen et al., 2019) outperforms SFN
possibly due to the use of a more sophisticated
Transformer model (Vaswani et al., 2017) and
BERT pre-training (Devlin et al., 2018). A unique
advantage of SFNs is that the architecture of the
neural dialog modules is flexible. The perfor-
mance of HDSA could potentially be integrated
with SFNs by using the HDSA model as the NLG
module of an SFN. This is left for future work,
as the HDSA model was released while this paper
was already in review.

These strong performance gains reaffirm the hy-
pothesis that adding explicit structure to neural di-
alog systems results in improved modelling ability
particularly with respect to dialog policy as we see
in the increase in Inform and in Success. The re-
sults with reinforcement learning suggest that the
explicit structure allows controlled fine-tuning of
the models, which prevents divergent behavior and
degenerate output.

4.5 Human Evaluation

To supplement the results in Table 1, human
evaluation was used to compare seq2seq, SFN,
SFN fine-tuned with reinforcement learning, and
the ground-truth human response. Workers on
Amazon Mechanical Turk (AMT) were asked to
read the context, and score the appropriateness
of each response on a Likert scale (1-5). One
hundred context-response pairs were labeled by
three workers each. The results shown in Table
2 demonstrate that SFNs with RL outperform the
other methods in terms of human judgment. These
results indicate that in addition to improving on
automated metrics, SFNs result in user-favored re-
sponses.

5 Analysis

5.1 Limited Data

Structured Fusion Networks (SFNs) should out-
perform sequence-to-sequence (seq2seq) net-
works in reduced data scenarios due to the explicit

Model Avg Rating ≥ 4 ≥ 5
Seq2Seq 3.00 40.21% 9.61%

SFN 3.02 44.84% 11.03%
SFN + RL 3.12 44.84% 16.01%

Human 3.76 59.79% 34.88%

Table 2: Results of human evaluation experiments. The
≥ 4 and≥ 5 columns indicate the percentage of system
outputs which obtained a greater than 4 and 5 rating,
respectively.

structure. While a baseline method would require
large amounts of data to learn to infer structure,
SFNs do this explicitly.

The performance of seq2seq and SFNs are de-
termined, when training on 1%, 5%, 10% and 25%
of the training data (total size of ∼ 55,000 utter-
ances). The supervised-learning variant of SFNs
with fine-tuned modules is used. The pre-training
of the modules and fine-tuning of the full model is
done on the same data split. The full data is used
during validation and testing.

(a)

(b)

Figure 6: Variation of Inform (a) and Success (b) rate
at different amounts of training data.

The results in Figure 6 show the Inform and
Success rates for different amounts of training
data. SFNs significantly outperform the seq2seq
model in low-data scenarios. Notably, improve-
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ment is considerably higher in the most extreme
low-data scenario, when only 1% of the training
data (∼ 550 dialogs) is used. As the amount of
training data increases, the gap between the two
models stabilizes. The effectiveness at extreme
low-data scenarios reaffirms the hypothesis that
explicit structure makes SFNs less data-hungry
than sequence-to-sequence networks.

5.2 Domain Generalizability
The explicit structure of SFNs should facilitate ef-
fective domain generalizability. A domain transfer
experiment was constructed to evaluate the com-
parative ability of seq2seq and SFNs. The models
were both trained on a reduced dataset that largely
consists of out-of-domain examples and evaluated
on in-domain examples. Specifically, 2000 out-of-
domain training examples and only 50 in-domain
training examples were used. The restaurant do-
main of MultiWOZ was selected as in-domain.

Model BLEU Inform Success
Seq2Seq 10.22 35.65% 1.30%

SFN 7.44 47.17% 2.17%

Table 3: Results of the domain transfer experiment
comparing sequence-to-sequence and Structured Fu-
sion Networks. All bold-face results are statistically
significant (p < 0.01).

The results, seen on Table 3, show that SFNs
perform significantly better on both the Inform
(+11.52%) and Success rate. Although SFNs have
a slightly higher Success rate, both models per-
form poorly. This is expected since the models
would be unable to answer all the requested at-
tributes when they have seen little domain data
– their language model would not be tuned to
the in-domain task. The -2.78 BLEU reduction
roughly matches the BLEU difference observed on
the main task, therefore it is not an issue specific
to domain transfer.

6 Conclusions and Future Work

This paper presents several methods of incorporat-
ing explicit structure into end-to-end neural mod-
els of dialog. We created Structured Fusion Net-
works, comprised of pre-trained dialog modules
and a higher-level end-to-end network, which ob-
tain strong results on the MultiWOZ dataset both
with and without the use of reinforcement learn-
ing. SFNs are further shown to be robust to di-
vergence during reinforcement learning, effective

in low data scenarios and better than sequence-to-
sequence on the task of domain transfer.

For future research, the explicit structure of
SFNs has been shown to have multi-faceted bene-
fits; another potential benefit may be interpretabil-
ity. It would be interesting to investigate the use
of SFNs as more interpretable models of dialog.
While domain generalizability has been demon-
strated, it would be useful to further explore the
nature of generalizability (e.g., task transfer, lan-
guage style transfer). Another potential avenue of
research is whether the explicit structure of SFNs
could potentially allow swapping the dialog mod-
ules without any fine-tuning. Structured Fusion
Networks highlight the effectiveness of using ex-
plicit structure in end-to-end neural networks, sug-
gesting that exploring alternate means of incorpo-
rating structure would be a promising direction for
future work.
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A Belief State Ablation Study

All previous research working on dialog genera-
tion for the MultiWOZ dataset uses the ground-
truth belief state vector during training and eval-
uation. Therefore for fair comparability, the SFN
experiments in our paper had the NLU module re-
placed by an ”oracle NLU” which always outputs
the ground-truth belief state.

An ablation experiment was performed to ascer-
tain whether providing only the ground-truth be-
lief state was the optimal solution. Several meth-
ods of combining the ground-truth belief state with
the pre-trained NLU module were explored. These
methods are enumerated as follows:

(1) Ground-Truth Only: The setting used in
the primary experiments, shown in Table 1 of
the main paper. Only the ground-truth belief
state vector is used.

(2) Predicted Only: Only the belief state pre-
dicted by the pre-trained NLU module is
used.

(3) Sum: The predicted and ground-truth belief
states are summed, before being used by all
upper layers.

(4) Linear: The predicted and ground-truth
belief states area concatenated and passed
through a linear layer.

These experiments are performed using the best
model, Structured Fusion Networks with fine-
tuned modules. The results are shown in Table 4.

Model BLEU Inform Success Comb.
GT 18.51 77.30% 64.30% 89.31

Pred 16.88 73.80% 58.60% 83.04
Sum 15.93 72.90% 60.80% 82.78

Linear 15.42 66.80% 54.80% 76.22

Table 4: Results of the domain transfer experiment
comparing sequence-to-sequence and Structured Fu-
sion Networks. All bold-face results are statistically
significant (p < 0.01).

It is observed that adding the pre-trained NLU
does not provide any additional performance ben-
efit, when the ground-truth belief state is already
provided. As such, combinations of the ground-
truth and predicted belief state actually perform
worse than either of the methods independently
because of (1) additional parameters to be learned,

especially in the case of the Linear method, and
(2) a conflicting trade-off between fine-tuning a
learned NLU module and using the ground-truth
belief state.

B Qualitative Examples

Table 5 shows several examples of dialogs from
the test set of MultiWOZ, along with the produced
response from three different models: sequence-
to-sequence networks, Structured Fusion Net-
works, and Structured Fusion Networks fine-
tuned with reinforcement learning. These exam-
ples serve to provide insight into the respective
strengths and weaknesses of the different models.
A few noteworthy observations from the four ex-
amples are enumerated below:

(1) SFN fine-tuned with RL consistently pro-
vides more attribute information. It pro-
vides at least one attribute in every exam-
ple response, for a total of 14 total attributes
across the four examples. This, along with
the high Success score of this model, is a con-
sequence of the reinforcement learning fine-
tuning which directly optimizes the Success
score and rewards the model for providing the
correct attributes.

(2) Seq2Seq produces more generic responses.
In the second and fourth examples, the out-
puts produced by Seq2Seq are generic and
are unrelated to the context. This suggests
that the Seq2Seq model has an overwhelm-
ing implicit language model, which produces
generic and dull responses. On the other
hand, the explicit structure in SFN mitigates
the effect of the implicit language model by
relying on an explicit language model (in the
form of the NLG).

(3) Seq2Seq requests attributes which the user
has already provided. In the first and third
example, the Seq2Seq output is requesting
parameters that the user explicitly provided.
This highlights the lack of structured repre-
sentations in the Seq2Seq model. SFN which
explicitly models the structure of the input ef-
fectively understands and captures the infor-
mation provided in the context.
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Example 1
Dialog Context:
USER: hello . i am looking for a [value pricerange] place to eat in the [value area] .
can you help me ?
Sequence-to-Sequence Response:
i have [value count] options for you . do you have a preference on price range ?
Structured Fusion Network Response:
[̇restaurant name] is a [value pricerange] -ly priced [value food] restaurant in the [value area] .
would you like to make a reservation ?
Structured Fusion Network w/ Reinforcement Learning Response:
[̇restaurant name] is a [value pricerange] [value food] restaurant in the [value area] . it is
located at [restaurant address] . the postcode is [restaurant postcode] . the phone number
is [restaurant phone]

Example 2
Dialog Context:
...
USER: i want to book this hotel for the same group of people and [value count] nights starting
from [value day] . i’ll need a reference number please .
SYSTEM: your reservation is confirmed and the reference number is ##
USER: i am sorry ? were you able to book the express by holiday inn for [value count] people ?
Sequence-to-Sequence Response:
you are welcome . have a great day !
Structured Fusion Network Response:
you are all set . your reference number is [hotel reference] . can i help you with anything else ?
Structured Fusion Network w/ Reinforcement Learning Response:
your booking was successful . the reference number is [hotel reference] .

Example 3
Dialog Context:
USER: can you see if there are any entertainment attractions in the [value area] of town ?
Sequence-to-Sequence Response:
there are [value count] museums in the [value area] . do you have a preference for area ?
Structured Fusion Network Response:
there are [value count] museums in the [value area] . [attraction name] is a museum and
the [attraction name] is a [value count] .
Structured Fusion Network w/ Reinforcement Learning Response:
[̇attraction name] is a museum in the [value area] and the [attraction name] is located
at [attraction address] . the postcode is [attraction postcode] .

Example 4
Dialog Context:
USER: i need a taxi . i’ll be departing from [restaurant name] .
SYSTEM: i can help you with that . when do you need to leave ?
USER: i would like to leave after [value time] please .
SYSTEM: where will you be going ?
USER: i’ll be going to [restaurant name] .
Sequence-to-Sequence Response:
you are welcome . have a good time !
Structured Fusion Network Response:
you are welcome . have a great day !
Structured Fusion Network w/ Reinforcement Learning Response:
i have booked for you a [taxi type] , the contact number is [taxi phone] . is there anything else i can
help you with ?

Table 5: Four examples of dialog contexts from the dataset, and the responses generated by three different models:
Seq2Seq, SFN, and SFN with RL.


