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well, but this will provide the expressivity we 

need. The language L  is  a first-order multi-modal 

logical language with basic predicates, arguments, 

constants, functions, objects, quantifiers, 

variables, roles, values (atomic or variables), 

actions, lists, temporal operators (Eventually (, 

LATER), DOES and DONE), and two mental states, 

BEL and GOAL.   The logic does not consider 

agents’ preferences, assuming the agent has 

chosen those it finds superior (according to some 

metric such as expected utility).   These are called  

GOALs in the logic.  Unlike preferences, at any 

given time, goals are consistent, but they can 

change in the next instant.  As is common, we 

refer to this as a BDI logic.  See the Appendix for 

examples of well-formed formulas.  

3.3 Possible worlds semantics 

Again from  (Cohen and Levesque, 1990), the 

propositional attitudes  BEL and GOAL are given a 

relatively standard possible worlds semantics, 

with two accessibility relations B and G.    

However, for modelling slot-filling, we are 

critically interested in the semantics of 

“quantifying-in” (Barcan, 1946; Kaplan, 1968; 

Kripke, 1967; Quine, 1956).  Briefly, a  variable 

valuation function v in the semantics assigns 

some value chosen from the domain of the world 

and time at which the formula is being satisfied.    

When  “quantifying-into”  a BEL or GOAL 
formula, that value is chosen and then the BEL or 

GOAL formula is satisfied. As is standard in 

modal logic after (Kripke, 1967), the semantics 

of these modal operators is given in terms of a 

universal quantifier ranging over B- and G-

related possible worlds. Thus, the semantics of  

satisfying  y(BEL x p(y)) in world W is that there 

is a single value that is assigned by the variable 

assignment function v to y, such that for all 

worlds W’ that are B-related to W, p(y) is true in 

W’.   In other words, the value assigned to y is 

the same for all the related worlds W’.   If the 

quantifier is within the scope of the modal 

operator as in (BEL x y p(y)), then a different 

value could be assigned to the variable in each B-

related world.   Likewise, one can quantify into 

GOAL,  and even iterated modalities or modalities 

of different agents.    This gives rise to the 

theorems below, and analogous ones for GOAL.   

 

|=y (BEL x p(y))   (BEL x y p(y)),  and 

 

|=BEL x p(c)   y (BEL x p(y)) for constant c.  

 

This paper shows why quantifying into BEL and 

GOAL is key for slot-filling systems.  

3.4 Persistent goals and intentions 

Cohen and Levesque (1990) defined a concept 

of an internal commitment, namely an agent’s 

adopting a relativized persistent goal (PGOAL x P 
Q), to be an achievement goal P that x believes to 

false but desires to be true in the future,  and 

agent x will not give up P as an achievement goal 

at least until it believes P to be satisfied, 

impossible, or irrelevant (i.e., x believes ~Q). If 

the agent believes ~Q, it can drop the PGOAL. 

More formally, they have: 
 

(PGOAL x P Q) =def(GOAL x (LATER P))(BEL x ~P)  

    (BEFORE ( (BEL x P)  (BEL x ~P)  (BEL x ~Q))  
   ~(GOAL x (LATER P)) 
 

They also defined an intention to be a persistent 

goal to perform an action. More formally: 
 
(INTEND x A Q) =def  (PGOAL x  (DONE x  A)    Q). 
 

 In other words,    an agent x intending to do an 

action A is internally committed (i.e., has a 

PGOAL) to having performed the action A in the 

future. So, an intention is a future-directed 

commitment towards an action. 

3.5 What is a slot? 

Given this language,  how would one represent a 

DSTC slot, which incorporates the user’s desire?  

We propose to separate the attitude, action, and 

role-value list, then reassemble them.   First,  we 

consider the role:value argument in an action 

expression, using upper case variables (as in 

Prolog), such  as reserve(patron:P, restaurant:R, 
day:D, time:T, num_eaters:N).  Here, restaurant:R 

is the role:value expression.  Next, we need to add 

the desire attitude (as a PGOAL) in order to express 

such phrases “the day Joe wants me to reserve 

Vittorio’s Ristorante for him.” Here is how we 

would express it as part of the system’s belief:  

(1)  Day  

         (PGOAL joe [T ,N]  
            (DONE sys reserve([patron:joe,  

                  restaurant:vittorios,  
                  day:Day, time:T,  

                                num_eaters:N])) Q)   
In other words, there is a Day on which  Joe is 

committed to there being a Time, and number of 

eaters N such that the system  reserves Vittorio’s 
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on that Day at that Time and with N eaters. The 

system has represented  Joe as being  picky about 

what day he wants the system to reserve Vittorio’s 

(e.g., as a creature of habit, he always wants to eat 

there on Monday),  but the system does not know 

what day that is.   Here, we have quantified Day 

into the PGOAL, but the rest of the variables are 

existentially quantified within the PGOAL. That 

means that Joe has made no choice about the Time 

or Number of people. But because the system has 

this representation, it can reasonably ask Joe 

“What day do you want me to reserve 

Vittorio’s?”.  We can now also represent the day 

Joe does not want the system to reserve, can 

distinguish between the day Joe wants the system 

to reserve and the day Sue wants, and we can even 

equate the two, saying that Joe wants the system 

to reserve on whatever day Sue wants (See section 

2.7). So the  DSTC “slot” day turns out to have a 

variable in an action expression all right, but one 

that is now quantified into an intention or PGOAL 

operator.    This explicit representation enables the 

system to discuss the action with or without 

anyone’s wanting to perform it, and to 

differentiate between agents’ attitudes, which is 

essential for multiparty dialogues.   

3.6 Where do the slot-filling goals and 

intentions come from? 

In order to know what action to perform, an agent 

needs to know the values of the required 

arguments of an action. (Allen and Perrault, 1980; 

Appelt, 1985; Cohen and Perrault, 1979; Moore, 

1977)9.   In the case of the task-oriented dialogue 

setting, in which the agents are intended to be 

cooperative, we will have all agents obey the 

following rule. (We suppress roles below and 

hereafter.) 

   

For any agents X and Y (who could be the same): 
 
If:  (BEL Y (PGOAL X (DONE Y A) Q)),  
 
Then for the set of required but unfilled 

obligatory arguments Args, assert 
 

(2) (PGOAL Y  
        (KNOWREF Y Args  (PGOAL X  (DONE Y A)), 
          (PGOAL X  (DONE Y  A)  Q)   ),   

                                                 
9 Required arguments will be stipulated as part of a meta-

data template in the system’s knowledge base.  Knowing the 

values for arguments of actions  is not the only case in 

which having to know an argument is required.  For 

In other words, assuming Y is the system and X is 

the user,   this rule says that if the system believes 

the user is committed to the system’s doing an 

action A (as would be the result of a request), then 

the system is committed to knowing the referents 

of all required arguments of the action A that the 

user wants the system to perform.10  That is,  the 

system is committed to knowing the user’s 

desired “slot” values in the action that the user 

wants the system to perform.   For example, if the 

system believes the user wants the system to do 

the action of reserving Vittorio’s Ristorante for 

the user, then the system adopts a persistent goal 

to know the Time, Day, and Num,  for  which the 

user wants the system to reserve Vittorio’s.11   
Notice that this holds no matter how the system 

comes to infer that the user wants it to do an 

action.  For example, the system could make an 

indirect offer and the user could accept (Smith and 

Cohen, 1996), as in System: “Would you like me 

to reserve vittorio’s for you?”  User: “Sure”. 

Here, the offer is stated as a question about what 

the user wants the system to do,  and the positive 

reply provides the system with the rule antecedent 

above. 

3.7 Application of the logic to I+S:  

Expressing problematic user responses 

Let us now apply the logic to handle some of the 

expressions we claimed were problematic for an 

I+S approach.  Assume the system has asked the 

user:  “What time do you want me to reserve 

Vittorio’s Ristorante?”  We start with the base 

case, i.e. with the user’s supplying an atomic 

value, and assume the representation of the 

question has only the Time variable quantified-in. 

 

User: “7 pm”.   

Essentially, we unify the variable quantified into 

the PGOAL with the atom 7pm, resulting in:  
 
(PGOAL usr [Day,N]  
  (DONE sys reserve([usr, vittorios,Day,7pm, N])) 
Q) 
This is classic slot-filling.  

 
User: “I don’t know”.  The system would need 

to assert into its database a formula like the 

following  (assume the action variable A 

example, for the system to determine the number of 

available seats at a restaurant, it needs to know the date.    
10 When X and Y are the same agent,  (PGOAL X (DONE X A)) 
is exactly  the definition of an intention.  
11 Formula (1) is a consequence of this.  
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represents the act of reserving Vittorio’s for the 

user,  and that it has a free variable Time): 
~ (KNOWREF usr Time  

(PGOAL usr (DONE usr, A) Q )) 
In doing so, the system should retract its previous 

KNOWREF belief that enabled it to ask the original 

question.  How a system responds to this 

statement of ignorance is a different matter. For 

example, it might then ask someone else if it 

came to believe that person knows the answer.  

Thus, if the user then said “but Mom knows” and 

the system believes the user, the system could 

then ask Mom  the question.  
 

User: “I don’t care”. There are only two 

approaches we have seen to handling this in the 

I+S literature.  One is to put the Dontcare atom 

into the value of a slot  (Henderson, 2015).   

However, it is not clear what this means. It does 

not mean the same thing as “I don‘t know.”  It 

might be the equivalent of a variable, as it 

matches anything as a slot value, but that begs 

the question of variables in slots.  To express  

“I don’t care” in the logic, we can define 

CAREREF, a  similar concept to KNOWREF:  
 
(CAREREF x Var Pred)  =def  Var (GOAL x Pred),  
where Var is free in Pred. Then  for “I don’t care”, 

one could say:   ~(CAREREF x Var Pred)  with the 

formal semantics  that there is no specific value 

v for Var towards which x has a goal that Pred be 

true of it.    

Rather than have a distinguished “don’t care” 

value in a slot,  Bapna et al. (2017) create a 

“don’t_care(slot)” intent, with the informal 

meaning that the user does not  care about what 

value fills that slot.12   Here, it is not clear if this 

applies on a slot-by-slot basis, or on an 

intent+slot basis.  For example, if it is on a slot-

by-slot basis, then if the user says “I don’t care”  

to the question “Do you want me to reserve 

Monday at 7pm or Tuesday at 6pm?”  it would 

lead to four don’t_care(slot) intent expressions.  

Would these be disjunctions? How would the 

relation between Monday and 7pm be expressed?    

By contrast, we  can define a comparable 

concept to KNOWIF,  

       (CAREIF x P)  =def  (GOAL x P)  (GOAL x ~P) 
such that one can say “x doesn’t care whether P”, 

as ~(CAREIF x P), with the obvious logical 

interpretation.    With CAREIF, one could express 

                                                 
12 Notice that “intent” for Bapna et al. does not indicate an 

action being requested, so their notion of intent is different 

the reply “I don’t care” to the above disjunctive 

question as: 
~(CAREIF usr 
       (LATER   
           (DONE sys reserve([usr, mond, 7pm)])   
           (DONE sys  reserve([usr, tues , 6pm])) ) )  
 
User: “before 8 pm.”  Because all that the I+S 

approach can do is to put atomic values in slots 

or leave them unfilled,  the only approach 

possible here is to put some atom like 

before_8_pm into the slot. If one tried to give a 

semantics for this, it might be a function call or 

λ-expression that would somehow be interpreted 

as a comparative relation with whatever value 

eventually fills the slot. But, one would need a 

different comparison relation for every time 

value, not to mention for other more complex 

expressions such as 

not_before_7_pm_or_after_9_pm, or 

between_7_pm_and_9_pm.   How would the 

system infer that these are the same condition? 

Instead, one might think we only need a method 

to append new constraints to the quantified 

persistent goal “slot” expression, as in 

 Time (PGOAL usr  

                [Day,Num] 
     (DONE sys  
        reserve([usr,vittorios,Day,Time,Num])) 

    (BEFORE Time 8:15_pm)) 
However,  as a representation of the reply, the 

above is not quite what we want.  Here, the user 

has implicated (Grice, 1975) that she does not 

have a goal for a particular time such that she 

wants a reservation at that time.  Rather, she 

wants whatever time she eats to be before 8:15 

pm.   So, in fact, we want this constraint  to be 

embedded within the scope of the existential 

quantifier: 

  (PGOAL usr  [Day,Time,Num] 
      ((DONE sys reserve([usr,vittorios,  

              Day,Time, Num]))  

    (BEFORE Time 8:15_pm) ) ) 
The reason we need an inference like a Gricean 

implicature is that the system would need to 

reason that in response to the question,  if the user 

knew the answer, she would have told me,  and 

she didn’t, so she (probably) doesn’t know the 

answer.   Thus, the system needs to assert a 

weaker PGOAL. 
   

from that of (Henderson, 2015) or that used by Amazon 

Alexa.  
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User: “whenever Mary wants.”  To represent the 

content of this utterance, one can equate the 

quantified-in variables T1, T2 (and ignoring Q): 

 

[T1,T2] (equals T1,T2)   

 ((PGOAL usr [Day,Num] 
      (DONE sys reserve([usr,vittorios,Day, T1, Num])))       

   (PGOAL  mary [Day,Num] 
      (DONE sys reserve([mary,vittorios,Day, T2,Num])))) 

If the system learns that Mary wants the 

reservation to be at 7 pm, it can infer that the User 

wants it then too.  

The above examples show that the logic can 

represent users’ utterances in response to slot-

filling questions that supply constraints on slot 

values, but not the values themselves.  

4 Towards Best Practices 

This paper has provided a logical definition of  the 

DSTC 2/3 slot (and I+S slots more generally)  as 

a quantified-in formula stating the value that the 

agent wants an action’s role to have.   In addition, 

the logic presented here captures a more general 

concept than what I+S supports, in that it  can 

express multiple agents’ desires as well as non-

atomic constraints on attribute-value in logical 

forms.  

Still, our  purpose  here is not merely clarity 

and good hygiene, but ultimately to build systems 

that can engage in explainable, collaborative, 

multiparty dialogues.   Below we sketch how to 

build systems that can handle the above  issues,  

some of which we have implemented in a 

prototype system that uses the logic in this paper 

to engage in collaborative knowledge-based 

dialogues, including slot-filling.   A report on this 

system and approach will be provided in a 

subsequent paper.  

4.1 Enabling an operational semantics 

Systems based on a BDI logic will often have 

a belief-desire-intention architecture that serves as 

an  operational semantics for the logic (Rao and 

Georgeff, 1995).   By “operational semantics”, we 

mean that the system’s operation behaves (or at 

least approximates) the requirements of the logic.  

For example,  the adoption of a persistent goal to 

achieve a state of affairs results in finding a plan 

to achieve it, which then results in the agent’s 

intending  to perform the planned action. If the 

system finds a persistent goal/intention to be 

achieved, impossible or irrelevant, it drops that 

mental state, which causes an unraveling of other 

mental states as well.  Our system in fact reasons 

with the formulas shown here, engaging in slot-

filling and related question-answering dialogues. 

However, other systems may be able to make such 

distinctions without explicit logical reasoning.  

4.2 A plan-based approach to dialogue 

We advocate a plan-based model of dialogue 

(Allen, 1979, Allen and Perrault, 1980; Allen et 

al., 1995; Appelt, 1985; Cohen 1978; Cohen and 

Perrault, 1979; Cohen and Levesque, 1990b; 

Galescu et al., 2017; Litman and Allen 1987; 

Perrault and Allen, 1980; Sadek et al., 1997; 

Steedman and Petrick, 2007; Stone, 2004; Traum 

and Hinkelman, 1992) such that the same 

planning and plan recognition algorithms can 

apply to both physical, digital, and 

communicative acts.  When applied to 

communicative acts, the system plans to alter its 

own and the users’ beliefs, goals, and intentions. 

For example, goal (2) as applied to the slot 

expression in (1) will cause it to plan the wh-

question “what day would you like me to reserve 

Vittorio’s?”  to  alter the speaker’s KNOWREF  in 

goal (2) (see Appendix for definition of whq).   

Conversely, as a collaborator, on identifying a 

user’s speech act, the system asserts the user’s 

goal was to achieve the effect of the speech act. 

Based on that effect, the system attempts to 

recognize the user’s larger plan, to debug that 

plan, and to plan to overcome obstacles to it so 

that the user may achieve his/her higher level 

goals (Allen, 1979; Cohen, 1978; Cohen  et al., 

1982).  In this way, a system can engage in 

collaborative non-I+S dialogues such as  User: 

“Where is Dunkirk playing?” System: “It’s 

playing at the Roxy theater at 7:30pm, however it 

is sold out.  But you can watch it on Netflix.” 

Finally, the system is in principle explainable 

because everything it says has a plan behind it.   

4.3 A hybrid approach to handling task-

oriented dialogue variability. 

In order to incorporate such an approach into a 

useful dialogue system, we advocate building a 

semantic parser using the crowd-sourced 

“overnight”  approach (Duong et al., 2018;  Wang 

et al., 2015), which maps crowd-paraphrased 

utterances onto LFs derived from  a backend API 

or data/knowledge base. This methodology 

involves:  1) Creating a grammar of LFs whose 

predicates are chosen from the backend 

application/data base, 2) using that grammar to 

generate a large number of LFs,  3) generating a 

“clunky” paraphrase of an  LF,  and 4) collecting 
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enough crowd-sourced natural paraphrases of 

those clunky paraphrases/LFs13.  A neural 

network semantic parser trained over such a 

corpus can handle considerable utterance 

variability, including the creation of logical forms 

both for I+S utterances, and for complex 

utterances not supportable by I+S approaches. In 

the past, we have used this method to generate a 

corpus of utterances and logical forms that 

supported  the semantic parsing/understanding of 

the complex utterances in Section 2.2 (Duong et 

al., 2017; Duong et al., 2018).    

Whereas much utterance variability and 

uncertainty can be captured via the above 

approach, we believe there is less variability at the 

level of the goal/intention lifecycle, which 

includes goal adoption, commitment, planning, 

achievement, failure, abandonment, 

reformulation, etc. (Galescu et al., 2018; Johnson 

et al., 2018). This goal lifecycle would be directly 

supported by the BDI architecture and therefore 

would be available for every domain.  Rather than 

train a dialogue system end-to-end where we 

would need many examples of each of these goal 

relationships, we believe a domain independent 

dialogue manager can be written once, 

parameterized by the contents of the knowledge 

representation (Allen et al., 2019; Galescu et al., 

2018).    Beyond learning to map utterances to 

logical forms, the system needs to learn how to 

map utterances in context to goal relationships.   

For example, what does “too early” in Utterance 

(5) of Section 2.4  mean? Is that a rejection of a 

contextually-specified proposal?   The system  

also needs to learn how actions in the domain may 

lead to goals for which the user may want the 

system’s assistance. In order to be helpful to the 

user, the system must recognize the user’s goals 

and plan that led to his/her utterance(s) (Allen and 

Perrault, 1980; Sukthankar et al., 2014; Vered et 

al., 2016). One approach is to collect the action 

data needed to support plan recognition via 

crowdsourcing and text mining (Branavan et al., 

2012;  Fast et al., 2016; Jiang and Riloff, 2018). 

The upshot will be a collaborative dialogue 

manager that can be used directly in a dialogue 

system,  or can become a next generation user 

simulator   with which to train a dialogue manager 

(Schatzman et al., 2007; Shah et al., 2018). 

                                                 
13 This might take longer than overnight (vs. Wang et 

al. 2015).  
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