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Abstract
Humans use a variety of approaches to ref-
erence objects in the external world, includ-
ing verbal descriptions, hand and head ges-
tures, eye gaze or any combination of them.
The amount of useful information from each
modality, however, may vary depending on the
specific person and on several other factors.
For this reason, it is important to learn the
correct combination of inputs for inferring the
best-fitting reference. In this paper, we inves-
tigate speaker-dependent and independent fu-
sion strategies in a multimodal reference reso-
lution task. We show that without any change
in the modality models, only through an opti-
mized fusion technique, it is possible to reduce
the error rate of the system on a reference res-
olution task by more than 50%.

1 Introduction

Reference resolution is of vital importance when
human-machine interaction is expected to become
natural and be integrated into everyday life. Hu-
mans have at their disposal a broad range of
modalities to refer to objects in their environ-
ment, including verbal and material signals (Clark,
2005). Equipping machines with the capability
to correctly interpret such reference resolutions
raises the question of how to fuse the information
derived from the different modalities.

Popular fusion methods in this domain can be
categorized along two dimensions. The first is
at which level of processing the fusion happens
and the second how the fusion is performed (see
Atrey et al. (2010); Ramachandram and Taylor
(2017) for a comprehensive overview). In so-
called early fusion or feature level fusion the fea-
tures derived from the different modalities are
combined, whereas in late fusion or decision level
fusion classification results, e.g. in the form of
probabilities, are combined. Regarding the second

dimension, the methods are mainly grouped into
classification-based and estimation-based meth-
ods.

As for the classification-based techniques, the
modalities are usually combined at the feature
level, i.e. early fusion, and the decision is ob-
tained using a classifier. Iida et al. (2011) ap-
proached a reference resolution task in which two
humans collaboratively solve a Tangram puzzle.
Their method computed linguistic, gaze and task-
specific features for each object of the board game
and the objects were ranked using an SVM clas-
sifier. In a similar puzzle task, Funakoshi et al.
(2012) proposed a model that could resolve ver-
bal descriptions as well as gestures utilizing a
Bayesian network. The Bayesian network design
was later employed by Whitney et al. (2016) for
interpreting referring expressions with speech and
pointing gestures in a real-world cooking task.

Regarding the rule-based fusion, linear
weighted fusion is one of the simplest and most
widely used rule-based methods. This method
combines the information from the different
modalities linearly and it is assumed that the share
of each modality in decision making does not
change. It has been successfully utilized in mul-
tiple studies on reference resolution (Matuszek
et al., 2014; Prasov and Yue Chai, 2010; Ken-
nington et al., 2015; Kennington and Schlangen,
2017). A constraint-based rule system was used
by (Holzapfel et al., 2004) where the constraints
considered the time correlation of events and their
semantic content for the fusion.

In this paper, we concentrate on one rule-based
method used in Kennington et al. (2015). For this
purpose, first, we explain the task and dataset in
Sec. 2. Then, we discuss different approaches
for the fusion of data in Sec. 3, including lin-
ear weighted fusion (Sec. 3.1) and our proposed
neural-network-based fusion (Sec. 3.2), which
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also provides the possibility of learning speaker-
dependent weights (Sec. 3.3). We summarize the
results in Sec. 4 and give a short conclusion and
outlook on future work in Sec. 5.

2 Previous work

2.1 The TAKE Dataset

Figure 1: Example PENTO board on the TAKE dataset
(Kennington and Schlangen, 2017)

The TAKE dataset was first introduced in Kou-
sidis et al. (2013). It is a Wizard-of-Oz study, in
which the participants were placed in front of a
screen showing 15 pieces of a PENTO board game
in random colors and shapes. The pieces were
grouped into the four corners of the screen. For
every episode, the shown objects and their posi-
tions on the screen was set randomly.

The participants were asked to instruct the sys-
tem to select one specific PENTO piece on the
board per episode. There was no instruction telling
the participants how to refer to the item. Accord-
ing to the setup, it was possible to specify the ob-
ject using spoken words, pointing gestures or eye
gaze. Next, one piece was marked and the partici-
pant confirmed whether this selection was correct.

The example episode below, corresponding to
Fig. 1, shows the English translation of the speech
input and the true referent identifier:

• then we take now the se- so the second t that
is on the top right ... out of this group there I
would like to have the yellow t ... yes

• REFERENT o3

For this work, the confirmation utterance, e.g. the
word “yes” in the above example, was removed,
since it is not available at the time the decision
is made. After this cleanup, the dataset includes
1034 episodes distributed over 7 users as shown
in Table 1. The participants were native speakers,
except for one, who spoke proficient but not native
German.

User Episodes With pointing With gaze

1 90 87 71
2 66 29 64
3 133 35 126
4 230 209 212
5 146 13 130
6 176 78 157
7 193 162 164

Total 1034 613 924

Table 1: Number of episodes, per user and cumula-
tively, in the TAKE dataset.

The speech, an average of 6.8 words per utter-
ance, was transcribed using Google Web Speech
as an automatic speech recognition (ASR), with a
vocabulary size of 1049. Additionally, the speech
was transcribed by hand, which can provide a rea-
sonable upper bound for the results. A Microsoft
Kinect above the screen captured the arm move-
ments and an eye tracker (Seeingmachines Face-
Lab) was used to determine the eye gaze.

Since the scenes in this dataset are virtual, we
can directly annotate the objects with the proper-
ties and then query the scene representation. For
this simplified task, the properties are the color, the
shape and the spatial relations of the pieces. Us-
ing image processing techniques described in Ken-
nington et al. (2015), several features for each ob-
ject are extracted, including the number of edges,
RGB (red, green, blue) values, HSV (hue, satu-
ration, value), its centroid, horizontal and vertical
skewness, and the orientation value denoting the
direction of the principal axis. These features are
used for the natural language grounding described
in the next section.

2.2 Model for Natural Language
Understanding

The idea is to treat each word in the vocabulary as
a classifier which can relate the word to the per-
ceptual information of the objects. For this pur-
pose, a logistic regression classifier is trained to
map the visual features x of each particular can-
didate object to a probability pw of these features,
given the word w.

pw(x) = σ(wᵀx+ b) (1)

Here, w is the learned weight vector and σ is the
logistic function. What is needed for further steps,
however, is one distribution over all candidate ob-
jects per episode. To accomplish that, we can av-
erage the distribution of all time steps n = 1 . . . N
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and normalize the prediction score of each object
(i ∈ I) over all the |I| = 15 object candidates via

pspeech(i) =

∑N
n=1 pwn(xi)∑|I|

k=1

∑N
n=1 pwn(xk)

. (2)

2.3 Model for Pointing Gestures and Gaze
For gaze and pointing gestures, we need a model
that takes the coordinates of gaze and pointing as
its input and returns a probability distribution over
the object candidates, given the location of ob-
jects. This model is the same for gaze and pointing
gestures.

For this purpose, we compute the average of the
gaze or pointing coordinates for each episode, pro-
ducing a reference point (R) for the modality. The
reference point is compared to the centroid of each
object (xi, yi) using a Gaussian distribution,

pd(i) ∝ exp

[
−(xR − xi)2

2 · σ2x
− (yR − yi)2

2 · σ2y

]
.

(3)
The result is then normalized over all objects to
obtain ppoint and pgaze, so that the objects closer to
the reference point will have a higher probability.

3 Fusion Models

3.1 Linear Fusion
For optimum performance, all three modalities
need to be combined. A simple approach is to per-
form a rule-based late fusion by estimating a fixed
weight for each modality and then summing the
weighted prediction distributions, as in Kenning-
ton (2016):

p(i) = pspeech(i) · α1 + ppoint(i) · α2

+pgaze(i) · (1− α1 − α2) . (4)

The system then makes a maximum-likelihood de-
cision according to

î = argmax
i∈I

p(i) . (5)

3.2 Neural-network-based Fusion
In Sec. 3.1, a baseline approach to late fusion is
shown. To decrease the error rate, we now pro-
pose a more flexible method, which can model
non-linear relations between the modalities. For
this purpose we chose a fully connected neural
network with one hidden layer, 512 neurons and
a rectified linear unit as the activation function.

Its inputs o are the three concatenated modality
vectors from (2) and (3),

o = [pspeech,ppoint,pgaze] (6)

with p = [p1, . . . , p|I|].

The output layer uses the softmax function so that
the output can be interpreted as a probability dis-
tribution and used in Eq. (5) to obtain the esti-
mated referent. To optimize the network param-
eters, we carried out preliminary tests with differ-
ently sized hidden layers and with additional re-
liability information, e.g., the variance of gaze or
pointing information. For hand-annotated data, in-
cluding the variance of all deixis coordinates of the
current episode, V, in the observation vector gave
the best results. With this update, the network in-
put becomes

o = [pspeech,ppoint,pgaze,V]. (7)

3.3 Speaker adaptation
Humans have different preferences in the way they
refer to objects. This is also reflected in the
dataset, in which many episodes from one par-
ticipant are quite alike, whereas significant differ-
ences can often be observed across participants.
Hence, depending on the participant, different
modalities are very likely to contribute a variable
amount of useful information. A model that adapts
to a specific user should therefore outperform a
general model.

However, judging from the small number of
samples per user in Tab. 1, it is evidently not
promising to train a neural network using only the
data of one participant. Inspired by Saon et al.
(2013), we addressed this problem by training on
the full training set and reducing to a smaller train-
ing set, containing just one user, for the last 5 % of
the epochs.

4 Evaluation

We evaluate all fusion methods on the same data
as Kennington et al. (2015) under the same four
conditions: speech only, speech with gaze, speech
with deixis, and speech with gaze and deixis. For
this purpose, we compare the error rate E =
100 · M−C

M under all conditions, with C as the
number of correctly estimated referents, amongM
estimates made for the test set.

However, for the linear fusion with fixed
weights (fw) presented in Sec. 3.1, we did not use
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the weights suggested in Kennington et al. (2015).
Instead, a grid search was run on the training data
to determine optimal weights for the dataset (ow).
This yielded an average improvement of 5.9% ab-
solute for hand-annotated data and also improved
all individual cases for ASR-annotated data except
for the fusion of all modalities. Here, the results
slightly deteriorated from 60.3% to 60.0%.

We used 10-fold cross validation to obtain an
estimate of the error rate together with its standard
deviation. These results are depicted in Fig. 2.
As can be seen, there is a large difference in
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Figure 2: Error rate (%) and standard deviation for op-
timized (ow) or fixed weights (fw, adapted from (Ken-
nington et al., 2015)) in (4).

performance between the results using the hand-
annotated speech data vs. the ASR system, indi-
cating a likely high number of transcription errors
for the informative keywords. It can also be seen
that adding more modalities consistently improves
the performance.
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Figure 3: Error rate (%) of the proposed neural-
network-based fusion

The neural network-based fusion (Sec. 3.2) in-
creased performance compared to the linear fusion
(fw) notably and for all conditions. These results
are shown in Fig. 3. We obtain the best results with
an error rate of 8.9% for the fusion of all modali-
ties using the hand-annotated data. In comparison
to the fixed-weight baseline, with an error rate of
30% (see Fig. 2), the error rate is hence decreased

by 70%.

User NN ASR NN hand

User 1 17.5 (±8.5) 3.4 (±5.8)
35.8 (±10.9) 8.5 (±5.6)

User 2 11.7 (±13.9) 11.0 (±11.9)
16.2 (±8.9) 12.1 (±11.6)

User 3 10.8 (±12.8) 3.5 (±6.5)
11.9 (±11.8) 4.5 (±8.7)

User 4 12.3 (±10.2) 5.7 (±6.2)
10.5 (±9.1) 5.2 (±6.9)

User 5 22.6 (±7.9) 6.5 (±7.7)
28.3 (±11.8) 11.3 (±8.9)

User 6 19.1 (±8.8) 12.5 (±8.9)
23.4 (±10.6) 14.8 (±12.5)

User 7 31.0 (±13.5) 6.4 (±9.0)
24.0 (±10.7) 4.7 (±7.0)

average 18.6 (±10.7) 7.0 (±7.8)
22.2 (±10.3) 8.9 (±8.2)

Table 2: Results of the user-dependent (black) and the
user-independent (gray) model in terms of error rate
(%) and standard deviation σ.

Table 2 compares the results of the speaker-
dependent and -independent models for each user.
Here, we only report the results for the fusion
of all modalities. When using the hand annota-
tion, the speaker-adapted fusion reduces the er-
ror rate further, from 8.9% to 7.0%. But it can
also be seen that the results vary largely from
user to user. In particular, for user 1 (ASR data),
the speaker-adapted version outperforms the other
version easily, but for user 7, the original, speaker-
independent version is more accurate. For hand-
annotated data, the difference between the two
versions is smaller, but the users for which the
speaker-adapted version outperforms the other re-
main the same. Interestingly the speaker-adapted
version performs least well for the two users with
the most episodes that mostly contain gaze and
pointing information, as can be seen in Table 1.

5 Conclusions

We have compared different fusion strategies for
multi-modal information integration in a reference
resolution task. Our results show that a fully con-
nected neural network can reduce the error rate
significantly, compared to a weighted averaging of
single-modality posterior probabilities. Adapting
the fusion to each specific user is also helpful to
some extent, although the improvements are less
clear and consistent.
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In this work, we applied fairly simple mod-
els for speech, gaze and pointing, which simply
use the average values of all features for the cur-
rent episode. Since some words carry more se-
mantic content than others for finding the refer-
ent, and since the coordinate sequences of gaze
and pointing contain some redundancy, as well as
segments of more and of less information content,
future work will focus on the creation of a time-
dependent model for improving multi-modal fu-
sion.
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