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Abstract

Pitch has long been held as an important sig-

nalling channel when planning and deploy-

ing speech in conversation, and myriad stud-

ies have been undertaken to determine the ex-

tent to which it actually plays this role. Unfor-

tunately, these studies have required consid-

erable human investment in data preparation

and analysis, and have therefore often been

limited to a handful of specific conversational

contexts. The current article proposes a frame-

work which addresses these limitations, by en-

abling a scalable, quantitative characterization

of the role of pitch throughout an entire con-

versation, requiring only the raw signal and

speech activity references. The framework is

evaluated on the Switchboard dialogue corpus.

Experiments indicate that pitch trajectories of

both parties are predictive of their incipient

speech activity; that pitch should be expressed

on a logarithmic scale and Z-normalized, as

well as accompanied by a binary voicing vari-

able; and that only the most recent 400 ms

of the pitch trajectory are useful in incipient

speech activity prediction.

1 Introduction

Intonation is generally held to play an integral role

in the phonetic realization of turns and in the pre-

diction of more talk (see e.g. (Bögels and Torreira,

2015) for a review). There is broad consensus

that flat pitch segments are associated with turn-

holding and that rising or falling pitch segments

are associated with turn-yielding (Bögels and Tor-

reira, 2015; Caspers, 2003; Duncan, 1972; Edlund

and Heldner, 2005; Ford and Thompson, 1996;

Heldner et al., 2009; Heldner and Włodarczak,

2015; Hjalmarsson, 2011; Jefferson, 1984; Kane

et al., 2014; Koiso et al., 1998; Laskowski et al.,

2009; Local et al., 1986; Selting, 1996; Yanu-

shevskaya et al., 2014; Zellers, 2013, 2017). Stud-

ies considering finer-grained categories of the

pitch contour (Gravano and Hirschberg, 2011;

Wennerstrom and Siegel, 2003), additionally in-

cluding slowly rising and slowly falling pitch,

have tended to corroborate those findings. Fur-

thermore, they indicate that the endpoint of a pitch

segment is relevant, associating segments reaching

the top or bottom of a speaker’s range with turn-

yielding and those ending near the middle of the

range with turn-holding.

The converging results of so many studies are

astonishing given the methodological differences

between them, with regard to the speech material

(spontaneous vs. task-oriented) and to the pitch-

contour categorization method (perceptual judge-

ments, acoustic measurements, or phonologically

motivated categories). Perhaps more importantly,

the studies in question differ in how the pitch

contour is parametrized (e.g. perceptual styliza-

tion, functional data analysis, linear or polynomial

curve fitting, linear or logarithmic scale), how far

back in the speech interval relevant pitch cues are

to be found, as well as how cues are evaluated (e.g.

perceptually vs. statistically).

It is therefore not very surprising that work

which has tried to verify the above claims with

acoustic measurements of fundamental frequency

(F0) has also produced some mixed results (see

e.g. (Zellers, 2017; Walker, 2017) for reviews). A

variety of explanations for these mixed results are

believed to exist. First, it has been hypothesized

that non-pitch cues may play a more important

role than do pitch cues (e.g. (Local and Walker,

2012; Walker, 2017; Zellers, 2017). Second, it is

possible that the role of intonation varies with the

communicative situation, and that it is strongly de-

pendent on the number of participants, whether the

participants have eye contact, whether the partic-

ipants know one another, etc. Finally, there may

be considerable language-, dialect-, and domain-

specific differences in the role of pitch in turn-
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taking. At the present time, these explanations

continue to be mere hypotheses which — owing to

the many methodological differences in published

work — cannot be easily evaluated.

The main focus of the current article is to render

the evaluation and comparison of such hypotheses

tractable, if not outright easy. A key requirement

is that the proposed method be scalable, i.e. ca-

pable of ingesting sufficiently large quantities of

conversational material to generate representative

results. This in turn requires that it not rely on

time-consuming, often-contentious annotation of

either turn or pitch phenomena — authors of exist-

ing research do not always agree on what consti-

tutes a turn, for example. Furthermore, the method

needs to be quantitative if it is to permit strict com-

parison. The method proposed in the current arti-

cle is both scalable and quantitative; it relies only

on the availability of the raw signal and accurate

speech activity references, per conversation and

per conversation-side. It is presented in Section 3.

To evaluate the method itself, the current arti-

cle asks three key questions of a large, oft-studied

corpus of telephone conversations in English (de-

scribed in Section 2). These questions are:

Q1. Can attention to pitch reduce the average sur-

prise of incipient speech activity?

Q2. What is the optimal representation of pitch for

a speech prediction system?

Q3. How far back into the past should a pitch-

sensitive method look?

Experiments described in Section 4 demonstrate

that Q1 can be answered in the affirmative, that bi-

nary voicing and Z-normalized log-pitch offer the

best results when used together (Q2), and that only

the most recent 400 ms of pitch history are suf-

ficient (Q3). Furthermore, the proposed system

is able to answer Q1 and Q3 in a nearly fully-

automated fashion, for evidently any corpus; the

answer to Q2 may require human-mediated inves-

tigations, for which the proposed system provides

a suitable and convenient framework.

2 Data

Experiments used the Switchboard-1 Corpus, as

re-released in 1997 (Godfrey and Hollimann,

1997). The corpus consists of 2435 dyadic tele-

phone conversations, each approximately 10 min-

utes in duration. It was iteratively divided into

three speaker-disjoint sets as in (Laskowski and

Shriberg, 2012), such that TRAINSET, DEVSET,

and TESTSET consist of 762, 227, and 199 con-

versations, respectively. During the division pro-

cess, it was not possible to allocate 1247 of

the Switchboard-1 conversations, because each of

their two speakers had already been placed in dif-

ferent sets. Forced alignments of the manually

transcribed words (used as discussed in Subsec-

tion 3.2) for both sides of the conversation were

provided in (Deshmukh et al., 1998).

3 Methods

This article proposes a means of quantifying the

extent to which pitch, represented in a variety of

ways, reduces the surprise induced by observing

the temporal distribution of speech in unseen con-

versations. Such a means involves a probabilis-

tic formulation of the problem (Subsection 3.1), a

method for obtaining instantaneous binary speech

activity (Subsection 3.2), a method for measuring

pitch (Subsection 3.3), and a model for approxi-

mating the probabilities given those features, to-

gether with a metric for quantifying model perfor-

mance (Subsection 3.4).

3.1 Stochastic Turn Taking

As in (Laskowski, 2012), the methodology em-

ployed here relies of forming a probability distri-

bution over the side-attributed speech activity in

entire dyadic conversations. This eliminates a de-

pendency on the specific definition of a turn; the

resulting probability models attempt to account for

all speech, effectively marginalizing out alterna-

tive definitions of what turns are and where they

start and end.

The most direct means of modeling conversa-

tions for this purpose is to discretize their tempo-

ral extent; here, a frame- step and size of 100 ms

is used, representing approximately half of a nor-

mative syllable. Such discretization results in a

K ×N chronogram for each conversation, ie.

Q =

[

· · ·
���������

���������
· · ·

]

, (1)

where the kth row, 1 ≤ k ≤ K, represents the

speech activity of one of the K = 2 sides to the

conversation, and each column qn, 1 ≤ n ≤ N ,

represents one 100-ms interval. Each qn [k] ∈
{�,�} ≡ {0, 1}, indicating that the kth party

is either not-speaking or speaking in frame n, re-

spectively.
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The probability P of a given Q is then given by

P (Q) =
N
∏

n=1

P
(

qn|q
n−1

1

)

(2)

≈

N
∏

n=1

P
(

qn|q
n−1

n−τ

)

(3)

≈

N
∏

n=1

K
∏

k=1

P
(

qn [k] |q
n−1

n−τ

)

, (4)

where Equation 3 represents a Markovian trunca-

tion of the history to the most recent τ frames,

and Equation 4 assumes that participants are con-

ditionally independent of one another in any given

frame, but dependent on their joint past qn−1

n−τ . The

term target participant is used to refer to that side

of the conversation for which the interior factor on

the right-hand-side of the equation is being eval-

uated; when evaluating the left-hand-side over all

cells in Q, each of the K = 2 participants be-

comes the target participant half the time.

In this framework, quantifying the impact of

pitch — or any other side information available in

K×N matrix form as X — entails comparing the

probability in Equation 4 to

P (Q|X) ≈

N
∏

n=1

K
∏

k=1

P
(

qn [k] |q
n−1

n−τ ,x
n−1

n−τ

)

.

By excluding the current and future xN
n

from the conditioning context, the factor

P
(

qn [k] |q
n−1

n−τ ,x
n−1

n−τ

)

is observed to be a

causal prediction.

3.2 Speech Activity

The above equation forms a probability density

over speech activity Q that actually happened,

rather than speech activity that can be measured.

The most accurate means currently available for

producing Q is to perform forced time-alignment

of the kth participant’s audio channel to the words

spoken by that participant. The resulting word

boundaries are then aligned to the 100-ms frame

boundaries which define Q, and each qn [k], 1 ≤
n ≤ N and 1 ≤ k ≤ K, is assigned to 1 if the kth

participant was speaking for 50% or more of the

temporal support of the nth frame.

3.3 Pitch

Pitch was extracted using the get f0 imple-

mentation available in the Snack Sound Toolkit

(Sjölander, 2001). In order to avoid conta-

gion from the future (pitch tracking uses context

to smooth candidate per-frame fundamental fre-

quency estimates), a separate pitch track was ex-

tracted for the τ -duration conditioning context of

every frame n in every channel k of every conver-

sation1. Snack’s default frame step is 10 ms; the

resulting sequence of 10-ms pitch estimates was

then aligned to the 100-ms frames in Q, yielding

side-information P. Each cell pn [k] of P was as-

signed to the mean of those voiced 10-ms pitch

estimates of the kth participant’s speech which fell

entirely within the temporal support of frame n; it

therefore sufficed for only one 10-ms-frame to be

deemed as voiced by Snack in order for the 100-

ms frame in P to be considered voiced2; unvoiced

frames in P were assigned to NaN.

Note that pitch computed as described above

may exhibit doubling and halving errors; the ex-

ploration of the impact of (manually) corrected

pitch is beyond the scope of the current article.

Similarly, phenomena such as diplophonia and

creakiness are not explicitly treated.

3.4 Models and Metrics

The prediction probabilities described in Subsec-

tion 3.1 were approximated using a feed-forward

neural network

P
(

qn [k] |q
n−1

n−τ ,x
n−1

n−τ

)

≈ f
(

qn−1

n−τ ,x
n−1

n−τ

)

with one hidden layer of H tanh units3, and one

sigmoid output unit — representing the probabil-

ity that the kth participant is speaking at frame

n. For most experiments in the current article,

H = 8. Note that the network has no recurrence

since determining the exact extent of the usefully

conditioning history is of primary interest. Net-

work weights were trained on TRAINSET, using

1This brute-force and seemingly inefficient approach
proved to have considerable impact on the numerical results
presented in Section 4, indicating that basing incremental pre-
dictions on non-incremental pitch extraction would have been
a form of cheating.

2Other policies were explored, notably that in which at
least half of the 10-ms frames need to be voiced; the results
exhibited the same trends as those reported here, although
numerically the cross entropy rates were slightly larger. It
appears that better predictions are possible when more of the
100-ms frames in P are deemed voiced, even when some of
those cells are more sensitive to outliers in the underlying 10-
ms pitch trajectory.

3Note that tanh activation units in the network implic-
itly map NaN features to zero. This approach is likely
sub-optimal, but provides a well-understood and simple-
to-train baseline for improvements like those described in
(Laskowski, 2015).
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1000 iterations of scaled conjugate gradient (SCG;

(Møller, 1993)) descent — a second-order, deter-

ministic rather than stochastic procedure.4

The appropriate objective function given a sin-

gle sigmoid output unit is the cross entropy error

(Bishop, 1995); it was used during SCG training

as well as in the subsequent evaluation of trained

models. Since, for any given conversation and par-

ticipant, the evaluation of the model for a sequence

of frames can be thought of as a causal prediction,

during testing the error is henceforth referred to as

the cross-entropy rate, and is expressed in bits per

100-ms frame.

4 Results

4.1 Representation

The first suite of experiments attempts to identify

an optimal representation of pitch for the analy-

sis task at hand. To put the ensuing results into

perspective, the baseline is a system which ex-

cludes all pitch information; Figure 1 depicts as

“Qτ” the achieved cross entropy rate as a func-

tion of the number τ of past speech activity frames

which comprise the conditioning context. As can

be seen, the cross entropy rate exhibits a nearly

linear decline over the range τ ∈ [1, 10] for all

three of TRAINSET, DEVSET, and TESTSET. Q10

achieves 0.274371 bits/frame on DEVSET, which

is 0.014200 bits/frame lower than the 0.288571

bits/frame achievable when only that target partic-

ipant’s speech activity is considered (not shown in

the figure, but henceforth lowercase q10).

In all subsequent experiments in this subsection,

the conditioning context consists of Q10
1

— all 10

most recent frames of speech activity from both

participants to the conversation — plus the τ most

recent frames of one of several representations of

pitch for the target participant. The first of these

is just P, as computed in Subsection 3.3. As can

be seen in Figure 1 (where for notational conve-

nience the lowercase “p” indicates target partic-

ipant only), the most recent frame of pitch P1
1

by itself already provides an improvement over

Q10
1

for TRAINSET. It appears that reductions in

TRAINSET cross entropy rates begin to asymp-

tote at τ = 3 frames5. This indicates that the

4For each experimental setting, a single randomly seeded
model was trained.

5It should be noted that each model at τ , visually con-
nected by a line to the point at τ − 1, contains all of the fea-
tures of that point. As a result, the curves can reasonably be
expected to be monotonically decreasing or asymptotically

proposed model learns to exploit pitch for speech

activity prediction, and that therefore recent pitch

must be correlated with incipient speech activity

in TRAINSET. The fact that the same trends are

observed for DEVSET indicates that the correla-

tions which the model learns on TRAINSET gen-

eralize to data unseen during model training. The

model achieves a cross entropy rate minimum on

DEVSET at τ = 3 of 0.270831 bits/frame, which

is 0.0035400 bits/frame lower than the best value

for Q10

1 alone.

Absolute pitch, as represented by P, is patently

speaker-dependent; for the model to have suc-

cessfully leveraged absolute pitch, it must be ig-

noring a significant portion of the variability ob-

served in P. To quantify this, an experiment

was conducted which uses binary voicing V (in-

stead of P), whose elements vk [n] are unity if

the corresponding pk [n] is non-NaN and zero oth-

erwise. Denoted as “Q10 ∪ vτ” in Figure 1, the

curve exhibits a minimum on DEVSET at τ = 8
of 0.271698, which 0.0026730 lower than for Q10

1

alone and represents 76% of the reduction ob-

served for P. This is suprisingly high and im-

plies that the actual value of absolute pitch is not

as relevant for prediction as is its (non-NaN) ex-

istence. Exposing the model to both V and P

for the target participant (in addition to Q10
1

), de-

noted “Q10 ∪ vτ ∪ pτ” in Figure 1, is seen to lower

the cross entropy rate to 0.270304 bits/frame at

τ = 9, by 0.000527 bits/frame. It is possible that

the availability of V allows the model to focus on

extracting information from frames in which abso-

lute pitch is known to exist, and not waste its finite

capacity on inferring this by itself.

Since, as expected, variability in absolute pitch

P appears to present a problem for the model, an

experiment was conducted which Z-normalizes P

by each speaker’s mean and standard deviation.

These two quantities must be known a priori; as-

suming that they do not deviate from a speaker’s

conversation-specific statistics permits their esti-

mation from each conversation separately. This

leads to a new representation, Z, whose ele-

ments zk [n] are equal to (pk [n]− µP ) /σP where

pk [n] is non-NaN, and NaN otherwise. The curve

in Figure 1, denoted “Q10 ∪ zτ”, exhibits a DE-

VSET minimum of 0.270877 bits/frame at τ = 8.

flat. That they are not reflects the effect of random seeding
and the fact that each point represents one model rather than
an average over multiple, differently-seeded but otherwise-
same, models.
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Figure 1: Cross entropy rate, along the y-axis in bits per 100-ms frame, for several representations of pitch on top

of 10 frames of speech activity from both participants, as a function of the duration of the pitch history, along the

x-axis in number of 100-ms frames. Rates are shown from left to right for TRAINSET, DEVSET, and TESTSET.

This is only negligibly different from the mini-

mum of 0.270831 bits/frame achieved for absolute

pitch (cf. the previously-discussed curve denoted

“Q10 ∪ pτ”) at τ = 3, and at first glance suggests

the infelicity of Z-normalization. Closer inspec-

tion reveals that while Z-normalization usefully

removes inter-speaker variability, it also brings

values close to the speaker’s mean close to zero,

which makes them — from the model’s point of

view — indistinguishable from unvoiced frames.

Exposing the model to both V and Z corrects

this, and yields a cross entropy rate of 0.268366

at τ = 4, as can be seen in Figure 1 for the

curve denoted Q10 ∪ vτ ∪ zτ . This is lower than

the rate achieved by the Q10 ∪ vτ ∪ pτ curve by

0.0019380 bits/frame, almost 4 times more than

the reduction observed when including V with P.

Pitch is claimed to be perceived on a logarith-

mic scale; to explore whether log-pitch outper-

forms pitch on the speech activity prediction task,

L ≡ log2P was formed. Its elements lk [n] are

equal to log2 pk [n] when pk [n] is non-NaN, and

NaN otherwise. Z-normalizing L instead of P

yields a new representation Y, whose elements

yk [n] are equal to (lk [n]− µL) /σL if lk [n] is

non-NaN, and NaN otherwise. Denoted by the

curve “Q10 ∪ vτ ∪ yτ” in Figure 1, this representa-

tion yields a DEVSET cross entropy rate minimum

of 0.268441 at τ = 4. This is actually higher than

the DEVSET minimum of the “Q10 ∪ vτ ∪ zτ”

curve, but it is lower for all values τ 6=4, and also

smoother over the entire τ ∈ [1, 10] range.

The last experiment of this subsection builds on

the logarithmic version, including voicing and z-

normalized log-pitch not just for the target partici-

pant but also for their interlocutor. This is denoted

in Figure 1 by “Q10 ∪ Vτ ∪ Yτ”, and its minimum

is reached at τ = 4 with a value of 0.267864

bits/frame. It can be tentatively concluded that

model sensitivity to the non-target participant’s re-

cent pitch history reduces average surprise, by the

small amount of 0.000577 bits/frame.

4.2 History Duration

Experiments in the previous subsection show that

recent pitch appears to be correlated with incipi-

ent speech activity, and that a predictor exposed

to 10 frames of most-recent speech activity should

also be exposed to at least 4 most-recent frames

of voicing (V4
1
) and Z-normalized log-pitch (Y4

1
).

Although it cannot be concluded that this particu-

lar representation is optimal, it is the most optimal

representation from amongst those investigated for

the Switchboard corpus. The experiments shown

in Figure 2 aim to establish whether this is true

even when much longer histories of speech ac-

tivity are considered; (Laskowski and Shriberg,

2012) had shown that speech activity histories as

long as 8 s (80 100-ms frames, compressed quasi-

logarithmically) continue to improve predictions.

Figure 2 depicts the same “Qτ” curve shown

in Figure 1, but extends this to τ = 20 100-



289

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Conditioning context (number of 100-ms frames)

0.265

0.27

0.275

0.28

0.285

0.29

C
ro

s
s
-e

n
tr

o
p

y
 r

a
te

 (
b

it
s
/1

0
0

m
s
)

Q

Q
10

  V   Y

Q
20

  V   Y

Figure 2: Cross entropy rate, along the y-axis in bits per 100-ms frame, for voicing (V) and speaker-dependent

Z-normalized log-pitch (Y) on top of either 10 or 20 frames of speech activity from both participants (shown

for reference with enlarged markers on the curve for Q alone), as a function of the duration of the pitch history,

along the x-axis in number of 100-ms frames. Rates are shown from left to right for TRAINSET, DEVSET, and

TESTSET. Lines connecting points are drawn for the purposes of visualizion.

ms frames of speech activity history. It can be

seen, for both TRAINSET and DEVSET (as well as

TESTSET), that the nearly-linear decrease in cross

entropy rate as τ increases continues, albeit less

steeply. Also shown in the figure is the same curve

as “Q10 ∪ Vτ ∪ Yτ”, for which the DEVSET min-

imum can be found at τ = 4. What is new in the

figure is the curve denoted as “Q20 ∪ Vτ ∪ Yτ”,

which depicts the impact of pitch when the speech

activity history is 2 seconds rather than 1 second

long. As can be seen, this third curve exhibits

its DEVSET minimum also at τ = 4. A system

trained on Q10
1

∪ V4
1
∪ Y4

1
reduces the cross en-

tropy rate of a system trained on Q10
1

alone by

0.274515 − 0.267864 = 0.0066510 bits/frame;

one that is trained on Q20
1

∪ V4
1
∪ Y4

1
exhibits a

reduction over a system trained on Q20
1

alone by

0.272448 − 0.265396 = 0.0070520 bits/frame.

This is not only a larger reduction in absolute

terms, it appears even larger relative to the speech-

only baseline. It suggests that the usefulness of the

most recent 400 ms of pitch grows as the duration

of speech activity history increases.

4.3 Model Complexity and Training

A final suite of experiments was conducted in or-

der to shed light on potential under-training or

over-fitting of the model, given the fixed size of

TRAINSET. The representation identified at the

end of Subsection 4.1 was used, namely Q10
1

∪

V4
1
∪Y4

1
; there, the model consisted of 8 units in

its hidden layer and its training consisted of 1000

iterations of SCG descent. Figure 3 compares

cross-entropy rates when the number of training it-

erations and the number of hidden units are varied

in {1000, 2000, 3000, 4000} and {8, 16, 32, 64},

respectively. Note that these numbers of hidden

units correspond to 305, 609, 1217, and 2433 free

parameters, given an input representation dimen-

sionality of 36.

As can be seen in the figure, extending the train-

ing regimen to 2000 iterations is clearly beneficial;

extending it further to 3000 iterations yields only

negligibly lower DEVSET cross entropy rates. In-

creasing the model complexity from 8 to 64 hid-

den units is also beneficial, but on DEVSET the

improvement from 32 to 64 units is much smaller

than on TRAINSET, indicating not-yet overfitting

but getting close. The DEVSET cross entropy rate

for 64 units and 4000 iterations is already higher

than that for 64 units and 3000 iterations. Note

that there is no evidence that more than 400 ms of

pitch might benefit any of these larger systems.

5 Discussion

5.1 Generalization

The models presented in this article have all been

trained using TRAINSET alone; model selection

has been conducted using cross entropy rate min-
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Figure 3: Cross entropy rate, along the y-axis in bits per 100-ms frame, for four models differing in the number

H of hidden units and using 4 100-ms frames of voicing (V) and speaker-dependent Z-normalized log-pitch (Y)

on top of 10 100-ms frames of speech activity from both participants, as a function of the number of iterations

of SCG training, along the x-axis in thousands. Rates are shown from left to right for TRAINSET, DEVSET, and

TESTSET. Lines connecting points are drawn for the purposes of visualizion.

Feature Set H I X

Q1 8 1000 0.285379

Q10
1

8 1000 0.275052

Q10
1

∪Vτ=8
tar,1 8 1000 0.272502

Q10
1

∪Pτ=3
tar,1 8 1000 0.271450

Q10
1

∪Vτ=9
tar,1 ∪Pτ=9

tar,1 8 1000 0.271006

Q10
1

∪Vτ=9
tar,1 ∪ Zτ=4

tar,1 8 1000 0.269953

Q10
1

∪Vτ=9
tar,1 ∪Yτ=4

tar,1 8 1000 0.269690

Q10
1

∪Vτ=9
1

∪Yτ=4
1

8 1000 0.269568

Q10
1

∪Vτ=9
1

∪Yτ=4
1

64 1000 0.267630

Q10
1

∪Vτ=9
1

∪Yτ=4
1

64 3000 0.267358

Table 1: Cross entropy rates X in bits per 100-ms

frame, obtained for TESTSET using several representa-

tions of pitch, numbers H of hidden units, and numbers

I of training iterations. All models trained on TRAIN-

SET, and model selection (over τ , H , and/or I as ap-

plicable) performed using DEVSET.

imization on DEVSET. TESTSET has been left

untouched, and therefore presents a suitable can-

didate set for characterizing how the proposed

framework generalizes to completely unseen data.

Table 1 summarizes these achievements, from the

right-hand-side of Figures 1 and 2.

As can be seen, the absolute reduction in cross

entropy rate due to the inclusion of pitch infor-

mation (in the form of voicing and Z-normalized

log-pitch) is 0.275052 − 0.267358 = 0.0076940

bits/frame. This magnitude represents approxi-

mately 75% of the reduction observed when pitch

information is excluded and the speech activity

context is increased from 1 frame to 10 frames

(0.285379− 0.275052 = 0.010327 bits/frame, ie.

rows 1 and 2 in the table). All trends observed for

TESTSET in Figures 1, 2, and 3 are nearly identi-

cal to those observed for DEVSET.

5.2 Normalization

That the prediction of speech activity can success-

fully make use of approximately 8 s of most-recent

speech activity history (Laskowski and Shriberg,

2012), but of only 400 ms of most-recent pitch his-

tory, is surprising and somewhat deflating. How-

ever, it is important to note that the optimal rep-

resentation of pitch was determined to involve

Z-normalization, for which the conversation-side

mean and standard deviation were assumed to be

known a priori. In reality, these statistics would

need to be accumulated from the start of each con-

versation, up to and including the (n− 1)th frame.

It is also possible that estimation of these statis-

tics should favor the recent past, yielding local Z-

normalization statistics which themselves evolve

over time. This is currently under investigation.

5.3 Reproducibility

The experiments presented in this article number

just shy of 150; each experiment took approx-
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imately 6 hours to run on a hyper-threaded

6-core Intel Xeon E5645 2.40GHz machine,

running Debian Linux 3.16. The complete

experiment suite, including all source and inter-

mediate Switchboard Corpus data, are available at

www.cs.cmu.edu/˜kornel/software/

stt.html.

5.4 Potential Impact

For Switchboard conversations, the proposed

framework has demonstrated that attentiveness to

the pitch trajectories of both conversation sides

reduces the average surprise of incipient side-

attributed speech activity. It appears that it suffices

for the considered pitch trajectories to be quite

short (400 ms). The Switchboard corpus thereby

provides sufficient proof that the proposed frame-

work is capable of yielding findings such as these,

in cases in which only the actual speech activity

is available and for which pitch can be automati-

cally measured. The framework is agnostic to the

much more contentious attempts to define and an-

notate what a turn is, and not reliant on additional

turn-landmark or pitch-trajectory annotation.

The direct impact of this work is that it enables

the automated analysis — with regard to the role

of pitch in turn-taking — of large corpora which

would otherwise be intractable to analyze in their

entirety. Due to its quantitative nature, the frame-

work enables direct comparisons between corpora

which differ in arguably important ways, such as

language, dialect, or domain.

Furthermore, an indirect impact of the findings

of which the proposed framework is capable is

that such findings may inform automated speech

processing systems operating under specific lan-

guage, dialect, or domain conditions, for exam-

ple mixed-initiative dialog systems. Knowledge of

how such conditions affect the interplay between

pitch and turn-taking would enhance the natural-

ness and flexibility of those systems.

6 Conclusions

Pitch has long been held as an important signalling

channel when planning and deploying speech in

conversation, and myriad studies have been under-

taken to determine the extent to which it actually

plays this role. Unfortunately, these studies have

required considerable human investment in data

preparation and analysis, and have therefore often

been limited to a handful of specific conversational

contexts. This has made it difficult to compare and

contrast, in a quantitative way, the role played by

pitch in turn-taking as a function of language, di-

alect, domain, channel, other-party familiarity, etc.

The framework proposed in this article ad-

dresses these limitations, by enabling a nearly-

automatic quantitative characterization of the role

of pitch throughout an entire conversation, requir-

ing only the raw signal and speech activity refer-

ences. Although the latter may require prior man-

ual transcription of the lexical content (followed

by forced alignment), this is far easier than man-

ually annotating turn landmarks or pitch trajecto-

ries, and is often already available for a corpus un-

der study. The framework is adaptible to the role-

in-turn-taking analysis of any feature which can be

measured from the raw signal.

This article has evaluated the proposed frame-

work by answering three specific questions regard-

ing the role of pitch in turn-taking, in the Switch-

board corpus. First, the presented evidence sug-

gests that pitch can be leveraged to reduce the av-

erage surprise of incipient speech. Its inclusion,

on top of a conditioning context containing 1 sec-

ond of speech activity from both dialogue parties,

yields a cross entropy reduction of 0.014200 bits

per 100 ms; this is approximately half as much

as is gained by including the non-target partici-

pant’s 1-second of speech activity, over just the

target participant’s, in the first place. Second, the

optimal representation of pitch appears to be Z-

normalized log-pitch, together with the binary in-

dicator variable of voicing; at least in part, the role

of the latter is to differentiate between unvoiced

frames and voiced mean-log-pitch frames. Finally,

experiments indicate that the dynamic pitch trajec-

tory information which is useful for speech activ-

ity prediction is limited to the most recent 400 ms;

pitch trajectory information less recent than that is

necessary only to provide static Z-normalization

statistics. Furthermore, the reduction in average

surprise appears to be a function of the duration of

the considered speech activity history; the longer

the speech activity history, the more valuable do

those most recent 400 ms of pitch seem to be.
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