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Abstract

We describe a longitudinal user study con-
ducted in the context of a Spoken Dialogue
System for a household robot, where we ex-
amined the influence of time displacement and
situational risk on users’ preferred responses.
To this effect, we employed a corpus of spo-
ken requests that asked a robot to fetch or
move objects in a room. In the first stage of
our study, participants selected among four re-
sponse types to these requests under two risk
conditions: low and high. After some time,
the same participants rated several responses
to the previous requests — these responses
were instantiated from the four response types.
Our results show that participants did not rate
highly their own response types; moreover,
they rated their own response types similarly
to different ones. This suggests that, at least in
this context, people’s preferences at a particu-
lar point in time may not reflect their general
attitudes, and that various reasonable response
types may be equally acceptable. Our study
also reveals that situational risk influences the
acceptability of some response types.

1 Introduction
Spoken Dialogue Systems (SDSs) must often en-
gage in follow-up interactions to deal with Auto-
matic Speech Recognizer (ASR) errors or eluci-
date ambiguous or inaccurate requests (which are
exacerbated by ASR errors):

• ASR errors, although significantly reduced in
recent times,1 may produce wrong entities or
actions, or ungrammatical utterances that can-
not be processed by a Spoken Language Under-
standing (SLU) system (e.g., “the plate inside
the microwave” being misheard as “of plating
sight the microwave”).2

19to5google.com/2017/06/01/google-speech-recognition
-humans/.

2All the sample ASR outputs in this paper are real.

• People often express themselves ambiguously
or inaccurately (Trafton et al., 2005; Moratz
and Tenbrink, 2006; Funakoshi et al., 2012;
Zukerman et al., 2015). An ambiguous refer-
ence to an object matches several objects well,
while an inaccurate reference matches one or
more objects partially. For instance, a refer-
ence to a “big blue mug” is ambiguous if there
is more than one big blue mug, and inaccurate
if there are two mugs – one big and red, and
one small and blue.

In the last two decades, research in response
generation has focused on techniques that gen-
erate response policies that optimize dialogue
completion, using Markov Decision Processes
(MDPs), e.g., (Singh et al., 2002; Lemon, 2011),
and Partially Observable MDPs (POMDPs), e.g.,
(Williams and Young, 2007; Gašić and Young,
2014). Recently, deep-learning algorithms have
been used to generate dialogue responses on the
basis of request-response pairs, e.g., (Li et al.,
2016; Prakash et al., 2016; Serban et al., 2017).
Human and simulation-based evaluations of MDP
and POMDP systems focus on dialogue com-
pletion, while evaluations of deep-learning algo-
rithms focus on individual responses.

In this paper, we draw inspiration from research
in Recommender Systems, where Amatriain et al.
(2009) and Said and Bellogín (2018) showed that
over time, users gave inconsistent ratings to items,
leading to the “magic barrier” to prediction ac-
curacy in Recommender Systems (Said and Bel-
logín, 2018). This prompted us to posit that people
may also be inconsistent when assessing responses
in a dialogue at different times, which may affect
the results of human evaluations.

To investigate this claim, we conducted a longi-
tudinal study in the context of an SDS for a house-
hold robot. We first collected a corpus of spo-
ken requests that asked a robot to fetch or move
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objects in a room. Our participants were shown
the top ASR outputs for these requests (the in-
tention was to replicate the information available
to an SDS, without the extra information people
can glean from what they hear). They were also
told that these requests had to be executed under
two risk conditions: low risk, where the conse-
quences of performing the wrong action are trivial,
and high risk, where performing the wrong action
could significantly inconvenience the speaker. The
participants had to choose among four response
types: DO the request without further interaction,
CONFIRM the intended object, ask the requester to
CHOOSE between a few candidate objects, or ask
the requester to REPHRASE all or part of the re-
quest. After 1.5-2 years, the same participants
were shown the original requests and ASR out-
puts, and were asked to rate responses generated
from their previously selected response types and
from other sources, in particular response types
selected by one of the authors and by a classifier
trained on the author’s chosen response types.

Our findings show that (1) participants down-
rated responses sourced from their previously cho-
sen response types; and (2) these responses were
liked as much as different responses sourced from
the response types selected by one of the authors
or by the above-mentioned classifier. The first re-
sult indicates that, at least in the context of one-
shot dialogues with an SDS for a household robot,
people’s preferred response types at a particular
point in time may not reflect their general atti-
tudes. The second result suggests that, instead
of one best response type, several reasonable re-
sponse types may be acceptable, including those
selected by a classifier trained on a non-target but
relevant corpus.

We also investigated the influence of situational
risk on the acceptability of response types. We
found that (3) as expected, under the high-risk
condition, the preferred response types were gen-
erally more conservative than under the low-risk
condition; but (4) surprisingly, participants’ atti-
tudes toward certain response types, e.g., CONFIRM,
were not affected by risk.

The rest of this paper is organized as follows.
In the next section, we discuss related work. Our
experimental setup is described in Section 3. In
Section 4, we present our classifier and the fea-
tures used to train it. The results of our experi-
ment are described in Section 5, and concluding
remarks appear in Section 6.

2 Related Work
Decision-theoretic approaches have been the ac-
cepted standard for response generation in di-
alogue systems for some time (Carlson, 1983).
These approaches were initially implemented in
SDSs as Bayesian reasoning processes that opti-
mize a system’s confidence when making myopic
(one-shot) decisions regarding dialogue acts (Paek
and Horvitz, 2000; Sugiura et al., 2009), and as
Dynamic Decision Networks that make decisions
about dialogue acts over time (Horvitz et al., 2003;
Liao et al., 2006).

MDPs (Singh et al., 2002; Lemon, 2011),
POMDPs (Williams and Young, 2007; Gašić and
Young, 2014), and their extensions Hidden Infor-
mation State Model (Young et al., 2010, 2013)
and Conversational Entity Dialogue Model (Ultes
et al., 2018) were used, often in combination with
Reinforcement Learning (RL), to learn policies
that optimize dialogue completion on the basis of
feedback given by real or simulated users.

Recently, deep learning has been applied to var-
ious aspects of SDSs (Wen et al., 2015; Li et al.,
2016; Mrkšic et al., 2017; Prakash et al., 2016;
Serban et al., 2017; Tseng et al., 2018; Yang et al.,
2017). Wen et al. (2015) and Tseng et al. (2018)
considered the generation of linguistically varied
responses; Li et al. (2016) and Prakash et al.
(2016) produced dialogue contributions of chat-
bots; and Serban et al. (2017) generated help-
desk responses and Twitter follow-up statements.
Mrkšic et al. (2017) proposed a dialogue-state
tracking framework, and Yang et al. (2017) a
mechanism for slot tagging and user-intent and
system-action prediction in slot-filling applica-
tions. A combination of deep learning and RL
has been used in end-to-end dialogue systems that
query a knowledge-base, where user utterances are
mapped to a clarification question or a knowledge-
base query (Williams and Zweig, 2016; Zhao and
Eskenazi, 2016; Dhingra et al., 2017). All these
systems harness large corpora comprising request-
response pairs to learn responses that are assumed
to be better than alternative options.

Like evaluations based on simulated users, hu-
man evaluations of (PO)MDP/RL systems focus
on successful dialogue completion (Singh et al.,
2002; Thomson et al., 2008; Young et al., 2010),
while human evaluations of deep-learning systems
assess individual responses (Wen et al., 2015; Li
et al., 2016; Prakash et al., 2016; Serban et al.,
2017; Dhingra et al., 2017).
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(a) Positional relations in a room (b) Colour, size and positional relations on a table

(c) Projective and positional relations on a table (d) Colour, size and positional relations in a room

Figure 1: Household scenes used in our study

The findings reported in this paper contribute
to (PO)MDP/RL research by determining whether
there are factors other than dialogue completion
that affect the suitability of responses, and to deep-
learning research by ascertaining whether indeed
there is a single best response to each request.

The research described in (Jurčíček et al., 2011)
and (Liu et al., 2016) shed light on ancillary as-
pects of human evaluations of system responses.
The former compared evaluations by Amazon Me-
chanical Turk workers with evaluations by partici-
pants recruited for a lab experiment; and the latter
conducted user studies to determine the validity of
word-based evaluation metrics.

This paper also addresses ancillary aspects of
human response evaluations, viz the influence
of temporal displacement and situational risk on
users’ attitudes toward response types, and users’
opinions of response types obtained from different
sources (including a classifier trained on a corpus
that differs from the target corpus).

3 Experimental Setup
Our experiment comprises two main stages: (1) re-
sponding to requests, and (2) rating responses to
the same requests.

Creating a corpus of requests
We created a corpus of requests by collecting

a corpus of spoken descriptions, and converting
them to requests.

To collect the spoken descriptions, we repli-
cated the experiment described in (Zukerman
et al., 2015), but we used the Google ASR, instead
of the Microsoft Speech API. In our experiment,
the top-ranked outputs produced by this ASR had
a 13% word error rate, which resulted in 53% of
the descriptions having imperfect top-ranked ASR
outputs. In addition, 33% of the descriptions had
errors in all top four ASR outputs.

Following the protocol in (Zukerman et al.,
2015), 35 participants were asked to describe 12
designated objects (labeled A to L) in four scenes
(Figure 1); speakers were allowed to restate the de-
scription of an object up to two times. In total, we
recorded 478 descriptions such as the following:
“the flower on the table” (object A in Figure 1(a)),
“the plate inside the microwave” (object D in Fig-
ure 1(b)), “the plate at the center of the table” (ob-
ject G in Figure 1(c)), and “the large pink ball in
the middle of the room” (object J in Figure 1(d)).
20% of the descriptions had an unintelligible ob-
ject in all ASR outputs, e.g., “the Heartist under
the table”, 17.9% were ambiguous (several objects
matched the description), and only 3.8% were in-
accurate (no object matched the description per-
fectly).
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We retained 292 descriptions,3 and for each de-
scription, we used the top four ASR outputs. The
corpus of requests, denoted RequestCorpus, was
created by prefixing the verb “get” (for small ob-
jects) or “move” (for large objects) to each ASR
output (which remained unchanged), e.g., “get the
flower on the table”. This corpus was divided into
sets of at most 12 requests (one request per object,
mostly from one speaker).

Demographic and risk-propensity information
We gathered information about the partici-
pants’ gender, English nativeness, age, educa-
tion and risk propensity. For the last item, we
showed the participants twelve statements ob-
tained from (Rohrmann, 2005): six risk-proneness
statements, e.g., “I follow the motto ‘nothing
ventured, nothing gained’ ”, and six risk-aversion
statements, e.g., “My decisions are always made
carefully and accurately”; (dis)agreement was in-
dicated on a 1-5 Likert scale. The hope was that
these information items would assist in predicting
participants’ responses.

Stage 1 – Responding to requests
This corpus was collected through an online sur-
vey where participants had to indicate how they
would respond to potentially misheard requests.
Each participant was shown at most 12 requests
from RequestCorpus (spoken by other people).
Each request consisted of four verb-prefixed ASR
outputs, and was accompanied by a version of the
appropriate image in Figure 1 where the objects
were numbered (to enable participants to identify
any object as the referent). Each participant was
then asked to select one of four response types for
each request: DO, CONFIRM, CHOOSE or REPHRASE.
Figure 3 in Appendix A displays a screenshot con-
taining a numbered version of Figure 1(a), four
ASR outputs for a request for object #5 (labeled
B in Figure 1(a)), and the four response types.

Prior to presenting the survey questions, partici-
pants were given a training example containing the
descriptions shown below in italics:

DO: Fetch object # [This response is suitable
if you are sure which object you should get].
Here participants were asked to enter the num-
ber of the object they would get or move.

3186 descriptions were removed as follows: 20 and 45
descriptions that were not tagged by Stage 1 and Stage 2 par-
ticipants respectively, 59 descriptions that could not be pro-
cessed by the SLU system, and 62 descriptions that had more
than one prepositional phrase (to simplify the dataset used to
train our classifier, Section 4).

CONFIRM: Ask: Did you mean object #? [This
response is suitable if you feel the need to con-
firm the requested object before taking action].
Here too participants were asked to enter the
number of the object they were confirming.

CHOOSE: Ask: Which object did you mean? [This
response is suitable when you are hesitating
between several objects]. In this case, partic-
ipants were asked to enter the numbers corre-
sponding to their candidate objects.

REPHRASE: Ask: Please rephrase your request.
[This response is suitable when a request is so
garbled you can’t understand it].4

These choices were made under two risk condi-
tions: low risk – where participants were told that
the requested object must be delivered to some-
one in the same room; and high risk – where they
were told that the object must be delivered to a
remote location (Figure 3). These settings were
designed to discriminate between situations where
mistakes are fairly inconsequential and situations
where mistakes are costly.

40 people took part in this stage of the exper-
iment, but six dropped out after this stage. Half
of the remaining participants were male, and 18
were native English speakers. 4 participants were
between 18-24 years of age, 16 between 25-34
years of age, 7 between 35-44, and 7 over 45.
In terms of education, 5 participants had a sec-
ondary education, 16 had a Bachelor, 8 a Mas-
ters, and 5 a PhD. To assess the participants’ risk
propensity, we subtracted their total risk-aversion
score from their total risk-proneness score (the to-
tal risk-aversion/proneness score was calculated
by adding up the Likert score of the six risk-
aversion/proneness statements): 16 participants
were risk prone, 8 were risk averse, and 10 were
fairly neutral (the difference between the scores
was less than 3).

In total, this corpus, denoted ResponseCorpus,
contains 584 response types (= 292 requests ×
2 conditions), which are distributed as shown in
Columns 2 and 3 of Table 1.

To determine the influence of speaker diversity
on classifier performance (Section 4), we created a
second corpus, denoted AuthorCorpus, where one
of the authors selected response types for all the

4As seen in Figure 3, this response type comprised three
options: REPHRASE OBJECT, REPHRASE POSITION and
REPHRASE ALL. But we merged them into just REPHRASE
owing to their low frequency in the dataset (Table 1).
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ResponseCorpus AuthorCorpus
Response Low High Low High

type risk risk risk risk
DO 61.3% 45.5% 56.2% 50.3%
CONFIRM 8.9% 17.8% 14.4% 20.2%
CHOOSE 20.2% 23.3% 22.9% 22.9%
REPHRASE 9.6% 13.4% 6.5% 6.5%

Table 1: Response type distribution under high- and
low-risk conditions

requests. The distribution of their response types
appears in Columns 4 and 5 of Table 1.

Stage 2 – Rating responses to the same requests
After 1.5-2 years, we were able to reach 34 par-
ticipants from Stage 1, and we built RatingsCor-
pus as follows. Each participant was shown the
requests they had seen before (without alerting
them to this fact) together with several candidate
responses. They were then asked to rate the suit-
ability of each response on a 1-5 Likert scale under
the low- and high-risk conditions.

The candidate responses were sourced from
the response types chosen by the participant (Re-
sponseCorpus) and the author (AuthorCorpus) in
Stage 1, and the response types returned by a clas-
sifier trained on AuthorCorpus (Section 4).5 In
addition, for every DO response from Stage 1, we
also presented a CONFIRM response in Stage 2, and
vice versa. Clearly, if more than one source had
the same response type for a request, this response
type was presented only once in Stage 2. Figure 4
in Appendix A displays a screenshot of Stage 2
survey questions regarding the same request as
that in Figure 3, presented to the same participant.

Two Stage 2 responses, viz DO and REPHRASE,
are direct renditions of the corresponding Stage 1
response types. However, to enable participants
to rate CONFIRM and CHOOSE response types, we
needed to refer to specific objects. We decided
to use images to mimic pointing in CONFIRM re-
sponses (e.g., “Do you want this [PICTURE]?”) and
in CHOOSE responses with two or three candidate
objects (e.g., “There are two things on the table, do
you want this [PICTURE 1] or that [PICTURE 2]?”).
We restricted the number of CHOOSE responses
with images because we deemed it unnatural to

5We chose this classifier as it posts high accuracy when
trained with limited data, while at the same time, represent-
ing a “worst case” for ResponseCorpus, as it was trained on
a different corpus (the difference between the corpora is sta-
tistically significant, χ2 with p-value < 0.05).

1 Is there an ASR output with all correct words?
2 % of wrong words in the top ASR output
3 % of wrong words in all ASR outputs
4 % of ASR outputs with all correct words

Table 2: Features that reflect the ASR’s confidence

point to more than three things.6 In addition, all
CHOOSE responses were realized as text only, e.g.,
“There are two things on the table, which one do
you want?”. That is, there were two CHOOSE re-
sponses with two or three candidate objects, and
one CHOOSE response with more candidate objects.
Figure 4 illustrates two CHOOSE responses, a CON-
FIRM response and a DO response.

4 Using a Classifier to Select Responses
One of the aims of this project is to determine
whether we can generate acceptable responses us-
ing a classifier trained on a small non-target but
relevant corpus. As noted in Section 3, in order
to simplify the classifier, we removed descriptions
with more than one prepositional phrase. Hence,
most descriptions have semantic segments corre-
sponding to an OBJECT, a POSITION SPECIFIER and a
LANDMARK (only 22 (7.5%) descriptions have no
prepositional phrase, e.g., “the big pink ball”).

4.1 Classification features
To extract features of interest, we assume an SLU
system that returns several ranked interpretations,
and can represent (a) the ASR’s confidence in the
correctness of its candidate outputs, and (b) how
well an interpretation (in the context of the room)
matches a given description.

We employed the output of the SLU system de-
scribed in (Zukerman et al., 2015), and for each
description, we automatically extracted features
that represent the above two types of information.
We also included information about situational
risk (high or low); and for ResponseCorpus, we
added the participants’ demographic characteris-
tics gender, English nativeness, age and education,
and the difference between their risk-proneness
and risk-aversion scores (Section 3).

Features that reflect the ASR’s confidence. These
features are shown in Table 2. They reflect the
ASR’s “opinion” of the correctness of its output,
rather than the ground truth. The last feature is
noteworthy because the ASR may have high con-
fidence in a few ASR outputs, e.g., “the flower on

6Only 10 (7.9%) CHOOSE responses under both risk con-
ditions had more than three candidate objects.
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1 # of interpretations with similar total match score to that of the top-ranked interpretation (×1)
2 How well the relative position of OBJECT and LANDMARK in an interpretation matches (×10)

the position specified in the description
3 Lexical-match score of the OBJECT, LANDMARK and POSITION SPECIFIER in an interpretation (×30)

with the corresponding semantic segment in the description
4-6 Other match scores of each OBJECT and LANDMARK in an interpretation with the

corresponding semantic segment in the description
4 Colour match score (×20)
5 Size match score (×20)
6 # of Unknown modifiers (×20)

Table 3: Features extracted from top-10 SLU system interpretations

the table” and “the flour on the table”, even if only
one is intended by the speaker.

Features that represent how well an interpreta-
tion matches a description. These features are
summarized in Table 3. They are calculated for
the top-N interpretations returned by the SLU sys-
tem, where N = 10 (in this system, the correct in-
terpretation is among the top ten in about 90% of
the cases). The scores calculated by the SLU sys-
tem for these features are combined into a total
match score for each interpretation, which deter-
mines its ranking. For instance, given the descrip-
tion “the brown stool near the table”, two stools in
Figure 1(d) have a high total match score, as both
are brown and near the table: the stool to the right
of the table and stool L, which is to the left of the
table. However, since the former stool is closer to
the table, it has a slightly higher total score, and is
ranked first, while stool L is ranked second.

The first feature in Table 3 represents the am-
biguity of a description through the similarity be-
tween the total match score of the top-ranked in-
terpretation and that of subsequent interpretations.
We encode this similarity as the ratio between the
total score of the i-th interpretation (i = 1, . . . , N )
and the total score of the top-ranked interpreta-
tion. All the interpretations whose ratio is above
an empirically-derived threshold are deemed sim-
ilar to the top-ranked interpretation.

The second feature, computed for each of the
top-N interpretations, represents the goodness of
the match between the position of the OBJECT in
the interpretation (i.e., in the room) and its re-
quested position in the description. For example,
both stools in Figure 1(d) are near the table, but
the position match score of the stool to the right of
the table is higher than that of stool L.

The rest of Table 3 contains features that rep-
resent the quality of the match between individ-

ual elements in an interpretation and their corre-
sponding semantic segments in the given descrip-
tion. Feature #3 represents how well the canonical
name of each element in an interpretation matches
the corresponding lexical item in the description.
For instance, the terms “stool” and “table” re-
spectively match perfectly the terms that designate
stool L and the yellow table in Figure 1(d). How-
ever, if the speaker had said “ottoman”, the lexical
match with the canonical term for stool L would
have been poorer.

Features #4-6 pertain to intrinsic attributes of
things, which are normally stated as noun modi-
fiers in a description. They are computed for the
OBJECT and LANDMARK of each of the top-N inter-
pretations. Following Zukerman et al. (2015), we
have focused on colour and size modifiers, desig-
nating other modifiers, e.g., composition or shape,
as Unknown. Features #4 and #5 respectively re-
flect the goodness of a match between the color
and size of an OBJECT or LANDMARK in an inter-
pretation and the colour and size specifications in
the corresponding semantic segment in the given
description. For example, a request for a “brown
stool” in the context of Figure 1(d) returns a high
colour match with stool L, while a request for a
“blue stool” would return a low colour match. Fi-
nally, the match score for Feature #6, which per-
tains to Unknowns, e.g., “the plastic stool”, re-
flects the badness of a match.

4.2 Classifying responses
We considered several classification algorithms to
learn response types from the corpora collected
in Stage 1 of our experiment (Section 3):7 Naïve
Bayes, Support Vector Machines, Decision Trees,
Random Forest (RF) and Recurrent Neural Nets

7We tried over- and under-sampling to deal with the large
majority class (DO, Table 1), and applied Principal Compo-
nents Analysis to reduce the number of features, but these
measures did not affect classifier performance.
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Response ResponseCorpus + AuthorCorpus
type Gender & English +

RiskPronenessDiff
Precision Recall Precision Recall

DO 0.77 0.83 0.945 0.945
CONFIRM 0.44 0.41 0.842 0.842
CHOOSE 0.77 0.72 0.985 0.985
REPHRASE 0.70 0.55 1.00 1.00
Accuracy 0.72 0.94

Table 4: Per-class and overall classifier performance

(RNNs). RF yielded the best performance for
both ResponseCorpus and AuthorCorpus (RNNs
under-performed, as there were not enough data).

Table 4 displays the per-class and overall per-
formance of the RF classifier with 10-fold cross
validation for both corpora. As seen in Table 4, RF
performed much better for AuthorCorpus than for
ResponseCorpus. This is attributable to the con-
sistency of the 584 ratings provided by one per-
son in AuthorCorpus, compared to the variabil-
ity among participants in ResponseCorpus (differ-
ent participants selected different responses for re-
quests that had the same features).

The demographic features gender and En-
glish nativeness and the difference between risk-
proneness and risk-aversion scores mitigated the
impact of speaker diversity in ResponseCorpus
(age and education had no effect). In addition, sit-
uational risk had some influence on classification
results in ResponseCorpus. This is consistent with
the observation that the vast majority of the dif-
ferences between the low- and high-risk condition
were due to changes from DO to more conservative
response types, in particular CONFIRM (represented
in Columns 2 and 3 in Table 1). Despite this, most
of the misclassifications were also between DO and
CONFIRM.

Although the performance of the RF classifier
on ResponseCorpus is disappointing, this result is
tangential to the main thrust of this paper. In Sec-
tion 5, we examine participants’ attitudes toward
responses obtained from the RF classifier trained
on AuthorCorpus (which is significantly different
from ResponseCorpus, Section 3).

5 Results
The main objective of our experiment is to de-
termine whether participants’ attitudes toward re-
sponses remain consistent over time. That is, how
well do participants like their own previous re-
sponses? And do they prefer them to other re-

sponses? As mentioned in Section 3, these other
responses were sourced from the response types in
AuthorCorpus and the response types chosen by
the RF classifier trained on AuthorCorpus.

In addition, we sought to gain insights about the
feasibility of using a classifier trained on the re-
sponses of one person, and to determine the in-
fluence of situational risk on people’s attitudes to-
ward response types.

Hypotheses pertaining to fewer than 200 sam-
ples were tested using Wilcoxon matched-pairs
signed-rank test, and for more than 200 sam-
ples, we used the Normal approximation of this
test (Siegel and Castellan, 1988).

How well do people like their previously selected
response types? In order to answer this question,
we had to address the following issues:
1. In Stage 1, participants selected a response

type for each request, while in Stage 2, they
rated responses. To compare Stage 1 selections
to Stage 2 ratings, we ascribed ratings to the
response types selected in Stage 1. In order
to account for participants’ rating bias, we as-
signed to each response type selected by a par-
ticipant in Stage 1 the highest rating this partic-
ipant gave to any response in Stage 2 (87% of
these highest ratings were 5 – the maximum on
the Likert Scale, Section 3).

2. In Stage 2, we offered two options for CHOOSE

response types with two or three candidate ob-
jects: CHOOSE+pictures and CHOOSE+text (Sec-
tion 3). For each description, we assigned to a
Stage 2 CHOOSE response type the maximum of
the ratings of the two options.

We tested the hypothesis that participants’
Stage 1 response types yield highly rated re-
sponses in Stage 2 under both risk conditions.
The result of this test was that participants’
Stage 2 ratings of responses sourced from their
own Stage 1 response types were significantly
lower than the ratings ascribed to these Stage 1
response types under the low- and high-risk con-
ditions (p-value� 0.01).

Figure 2 displays a histogram of the differences
between the ratings ascribed to Stage 1 response
types and the ratings given to the corresponding
responses in Stage 2 under both risk conditions.
For example, the leftmost bars indicate that the
ratings of 159 response types under the low-risk
condition and 123 response types under the high-
risk condition did not change between Stage 1 and
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Figure 2: Differences between ratings ascribed to
Stage 1 response types and ratings of the corresponding
Stage 2 responses under low- and high-risk conditions

Stage 2 (the difference is 0). In other words, par-
ticipants lowered their ratings of 133 response
types under the low-risk condition and 169 re-
sponse types under the high-risk condition. DO

(majority class) accounts for 71% of these down-
rated response types under the low-risk condition,
and 60% under the high-risk condition.

Do users prefer their previously selected re-
sponse types to other response types? To answer
this question, for each risk condition, we collected
the participants’ Stage 1 response types that differ
from those in AuthorCorpus for the same request,
and their response types that differ from those cho-
sen by the RF classifier trained on AuthorCorpus.

Table 5 compares participants’ ratings of re-
sponses (RS1) sourced from their Stage 1 response
types (S1) with their ratings of responses (Rd)
sourced from different response types (d) selected
by the RF classifier for the same requests under
the low- and high-risk conditions. In total, 107 re-
sponse types chosen by the classifier differ from
the participants’ selected response types under the
low-risk condition, and 126 under the high-risk
condition. In 47 of the low-risk cases and 46 of
the high-risk cases, the responses sourced from the
classifier’s response types received a higher rat-
ing than the responses sourced from the partici-
pants’ own response types (the results are similar
for AuthorCorpus). Table 6 illustrates two of these
low-risk cases, and two of these high-risk cases.
For instance, in the high-risk example pertaining
to Figure 1(a), the participant chose REPHRASE in
Stage 1, but gave it a rating of 1 in Stage 2, while
CONFIRM received a rating of 5.

As seen in Table 5, under the low-risk condi-
tion, participants generally preferred the responses
sourced from the classifier response types, while
the opposite effect was observed under the high-

Users’ Stage 1 response type (S1) Low High
versus a different response type (d) risk risk
Rating(RS1) > Rating(Rd) 32 55
Rating(RS1) = Rating(Rd) 28 25
Rating(RS1) < Rating(Rd) 47 46
# of requests where S1 6= d 107 126

Table 5: Comparison between participants’ ratings of
responses sourced from their Stage 1 response types
and responses sourced from different classifier-selected
response types

risk condition (these findings are corroborated by
the results in Table 7). Nonetheless, when we
tested the hypothesis that participants liked re-
sponses sourced from their own previous response
types as much as responses sourced from differ-
ent response types in AuthorCorpus and different
response types chosen by the classifier, both tests
returned the same result: there were no statisti-
cally significant differences between users’ rat-
ings of responses sourced from their own Stage 1
response types and their ratings of responses
sourced from different response types under the
low- and high-risk conditions (p-value > 0.15).

How does situational risk affect participants’ at-
titudes toward different response types? As seen
in Table 1, the proportion of DOs in ResponseCor-
pus decreased under the high-risk condition, while
the proportion of the other response types in-
creased (the difference between the low- and high-
risk response types is statistically significant, χ2

with p-value � 0.01). This indicates that par-
ticipants preferred more conservative (risk-averse)
response types under the high-risk condition.

Figure 2 suggests that participants were also
more critical of their own previous response types
under the high-risk condition than under the low-
risk condition (they reduced the ratings of 169 re-
sponse types under the high-risk condition com-
pared to only 133 under the low-risk condition).
This observation is confirmed by the mean ratings
of the Stage 2 responses in our corpora under the
low- and high-risk conditions, which are shown in
Table 7 for the responses sourced from Respon-
seCorpus and the responses obtained from the RF
classifier (the AuthorCorpus results are similar).

In addition, the ratings of DO and of both ver-
sions of CHOOSE were significantly lower under the
high-risk condition than under the low-risk con-
dition (p-value� 0.01 for DO and CHOOSE+text,
and p-value < 0.05 for CHOOSE+pictures). In con-
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Top four ASR outputs

a. get the paint on the wall
b. get the paint on the walls
c. get the paint on the world
d. get the painting on the wall

a. get the green light next to the blue plate
b. get the green light next to the Blue Plate
c. get the green light next to the blue planet
d. get the green light next to the blue plates

Figure, requested object 1(a), C 1(b), E
Situational risk High High
Stage 1 response type REPHRASE (rating: 1) CHOOSE (rating: 1)
Stage 2 preferred response type CONFIRM (rating: 5) CONFIRM (rating: 5)

Top four ASR outputs

a. move the green book rack
b. move the Greene book rack
c. move the Green Book rack
d. move the green book RAC

a. get the blue light on the left corner of the table
b. get the blue plate on the left corner of the table
c. get the bloop light on the left corner of the table
d. get the Blue Planet on the left corner of the table

Figure, requested object 1(d), K 1(c), H
Situational risk Low Low
Stage 1 response type DO (rating: 1) CHOOSE (rating: 3)
Stage 2 preferred response type CONFIRM (rating: 4) DO (rating: 5)

Table 6: Examples where users gave lower ratings in Stage 2 to responses sourced from their selected Stage 1
response types than to responses sourced from different response types chosen by the RF classifier; the correct
ASR output is italicized

ResponseCorpus RF Classifier
Low risk High risk Low risk High risk

3.99 (1.31) 3.59 (1.49) 4.09 (1.29) 3.54 (1.49)

Table 7: Mean (Stdev) of response ratings under low-
and high-risk conditions

trast, no statistically significant differences were
found with respect to CONFIRM and REPHRASE un-
der the two risk conditions. Also, participants
preferred CONFIRM to DO and CHOOSE+pictures
to CHOOSE+text under both risk conditions
(p-value� 0.01).

These findings suggest that situational risk
influences the acceptability of certain response
types, but further research is required to identify
these response types in a broader context.

6 Conclusion
We have offered a longitudinal study where par-
ticipants initially selected response types for ASR
outputs of spoken requests; and after some time,
they rated responses sourced from their own re-
sponse types, as well as responses sourced from
other response types. Our results show that
the participants did not think that their original
choices were the best, and that overall, they had
the same opinion of responses sourced from their
own response types, the response types chosen by
one of the authors and those selected by a classifier
trained on the response types of the author. These
findings suggest that, at least in the context of one-
shot dialogues with a household robot, people’s
response preferences at a particular point in time
may not reflect their general attitudes, and that var-

ious reasonable responses may be equally accept-
able. Our results also indicate that, at least in this
context, a classifier trained on a small non-target
but relevant corpus may yield adequate responses.

Our experiment also distinguished between two
types of situational risk: low and high. We found
that risk influences people’s general attitudes to-
ward responses — they were more risk averse
and critical under high-risk conditions than un-
der low-risk conditions. However, this attitude
was directed toward some response types (DO and
CHOOSE) and not others (CONFIRM and REPHRASE).
This finding, if generalized, may influence re-
sponse type selection.

The implications of our findings for deep-
learning systems are that training on a single best
response may be unjustified, as several responses
are equally acceptable. Further studies are re-
quired to determine whether our findings gener-
alize to longer dialogues in more complex do-
mains. If this is the case, (PO)MDP/RL systems
do not need to take into account people’s prefer-
ences when generating a response. However, if
extra-linguistic factors such as risk come into play,
they should be incorporated into policy-learning
algorithms to bias response selection in favour of
risk-sensitive responses preferred by people. Fi-
nally, our findings regarding rating inconsistency
over time may affect the results of comparative
studies, such as that of Liu et al. (2016).
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A Screenshots for Stage 1 and Stage 2

Figure 3: Screenshot for Stage 1



319

Figure 4: Screenshot for Stage 2


