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Abstract

In this paper we aim to predict dialogue suc-
cess and user satisfaction as well as emo-
tion on a turn level. To achieve this, we in-
vestigate the use of spectrogram representa-
tions, extracted from audio files, in combina-
tion with several types of convolutional neural
networks. The experiments were performed on
the Let’s Go V2 database, comprising 5065 au-
dio files and having labels for subjective and
objective dialogue turn success, as well as the
emotional state of the user. Results show that
by using only audio, it is possible to predict
turn success with very high accuracy for all
three labels (90%). The best performing input
representation were 1s long mel-spectrograms
in combination with a CNN with a bottleneck
architecture. The resulting system has the po-
tential to be used real-time. Our results signif-
icantly surpass the state of the art for dialogue
success prediction based only on audio.

1 Introduction

Spoken Statistical Dialogue Systems (SDS) have
gained much popularity in the last years, espe-
cially due to the widespread need for applications
such as assisted living (Portet et al., 2013), phone
banking (AbuShawar and Atwell, 2016), intelli-
gent virtual agents (Matsuyama et al., 2016) and
health care (Korpusik and Glass, 2017).

An important part of an SDS is spoken lan-
guage, which is used to communicate directly with
the virtual agent in order to pose questions and
reply to the agent output. In a modular spoken
SDS system, the speech part is converted to text
through Automatic Speech Recognition Systems
(ASR), which is then analysed using Natural Lan-
guage Processing (NLP) methods. However, the
audio part, which could be of low audio quality, is
usually then discarded while the extracted text is
fed forward to the SDS. In our view (and this is

an important part of our motivation), when look-
ing at dialogue success prediction, this can be seen
as a waste of possible resources, since the speech
part can contain useful information regarding the
emotional state of the user, or verbal cues which
can indicate if the user is satisfied with the sys-
tem performance. The prediction or recognition
of such cues can be very helpful for supporting
a dialogue management system, which can make
better assessments as to what the next steps should
be. Taking this thought one step further, we want
to assess if it is possible to predict dialogue suc-
cess based only on the audio, in order to find a
light-weight, real-time method to manage the user
expectations and, eventually, to build more effi-
cient and user-friendly spoken SDS. A final moti-
vation of this work is that we wanted to experiment
with spectrogram input representations and convo-
lutional neural networks (CNNs) as classifiers. Al-
though there have been several examples of such
uses for other topics, especially in image process-
ing (Krizhevsky et al., 2012) and music informa-
tion retrieval (Schlüter and Böck, 2014; Schreiber
and Müller, 2018), this approach remains under-
represented in the area of dialogue success predic-
tion. Therefore, our research closes this gap and
attempts to evaluate how well such approaches can
function for dialogue success prediction.

Considering related works, the use of neu-
ral networks in the wider area of modular SDS
has been gaining some popularity the last years.
For example, neural networks have been utilised
for dialogue state tracking. Korpusik and Glass
(2018) use CNNs in order to track the user’s goal
over the whole dialogue without the use of hand-
crafted semantic dictionaries and achieve high ac-
curacy for their task. Henderson et al. (2014) sim-
ilarly employ recurrent neural networks to map
the results of ASR directly to a dialogue state and
also report high performance. Another approach
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(Zhao and Eskenazi, 2016) uses deep reinforce-
ment learning to discover dialogue states and out-
perform a standard baseline. An additional deep
reinforcement learning approach (Su et al., 2015)
shows that using both RNNs and CNNs with turn
level-features (non-audio) can be useful in predict-
ing dialogue success. Research from Wen et al.
(2016) shows that deep learning can be useful in
creating more natural conversation task-oriented
SDS, whereas Kim et al. (2016) use CNNs and
RNNs for dialogue topic tracking.

As the listing of the related previous work
shows, the use of neural networks with audio spec-
trograms or waveforms for the analysis of the au-
dio part of the SDS and its consequent use for
tasks such as dialogue success prediction has not
been researched adequately. Only a limited num-
ber of papers (Papangelis et al., 2017; Kotti et al.,
2017; Lykartsis et al., 2018) exist which explore
the possibility of dialogue success prediction us-
ing audio features extracted from speech paired
with standard machine learning techniques such as
support vector machines.

These approaches have shown promising re-
sults, especially for creating a way to reliably esti-
mate the user satisfaction. Additionally, they are
able to do so in real-time or near-real-time and
subsequently enable suitable next steps for the dia-
logue policy. Moreover, the recent success of deep
learning approaches for audio tasks suggests that
using these can bring an advantage: By exploiting
input representations such as spectrograms, the es-
timation of task success can take place even at an
ever finer time resolution level (e.g., very short
audio frames), providing the possibility for even
faster processing and reaction. Furthermore, data
augmentation methods can provide a possibility to
achieve higher accuracy rates.

Since CNNs combined with audio spectrograms
as input have been shown to provide very good re-
sults in a multitude of tasks (for example for tempo
estimation (Schreiber and Müller, 2018) and beat
tracking (Schlüter and Böck, 2014)), we choose
to employ them for the creation of an experimen-
tal setup for dialogue success prediction. In that
sense, we frame our task as an emotion recogni-
tion one: As dialogue success is expected to show
a high correlation with user satisfaction, which in
turn is closely related with the user’s emotional
state, we investigated similar works using neural
networks for speech emotion recognition.

Such works include those of Tzirakis et al.
(2017) who use a Long-Short-Term-Memory
(LSTM) network on top of a CNN in order to
extract information and consider contextual infor-
mation from raw audio data (waveforms), out-
performing existing systems for speech emotion
recognition. Similar work has been performed
by Trigeorgis et al. (2016), where audio wave-
forms are used in combination with a CNN fol-
lowed by an LSTM for speech emotion recogni-
tion, achieving high results for arousal and va-
lence. In the work of Lee et al. (2017), a CNN
is used to predict emotions based on speech spec-
trograms for a virtual elderly companion agent
with very good results. Gu et al. (2018) create a
multimodal framework with text and speech for
emotion recognition. For the audio part, besides
hand-crafted features, spectrograms with CNNs
and LSTMs are used and fused with text fea-
tures to predict 5 emotions and achieve better re-
sults than all other methods. Another interesting
method comes from Yenigalla et al. (2018), where
spectrograms of different sizes are used as an input
for a CNN, achieving very good results for 4 emo-
tional states. Neumann and Vu (2017) study the
impacts of input features, signal length and speech
type, using spectrogram or raw waveform input
and CNNs, achieving state of the art results and
reaching very useful conclusions for speech emo-
tion recognition: input representation is not as im-
portant as the model architecture, which in turn is
task and speech type specific. Fayek et al. (2015)
also achieve very good results in speech emotion
recognition using a simple deep neural network
and spectrograms as input. A similar strategy is
employed by Wang and Tashev (2017) for success-
ful prediction of emotion, as well as gender and
age on an utterance level, showing that even sim-
ple deep architectures can provide good results for
speech emotion recognition. CNNs have also been
used with success for general audio classification
(Lee et al., 2009), which is a broader task, hinting
at the suitability of this architecture for the task at
hand in this paper. For this paper, we decided - for
the sake of simplicity and due to the not enormous
size of the dataset - to resort to only CNNs and de-
termine which architectures, input representation
forms and parameters provide good classification
results for this task. Another reason for the use of
CNNs is not only their aforementioned success in
many tasks, but also the possibility to establish a
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better understanding of the suitability of this ap-
proach for the task of dialogue success prediction.
The latter is slightly different than speech emotion
recognition per se because the user’s emotional
state is not the only factor that affects the final
success label. Finally, this way we can establish
a very fast and simple pipeline, which can also be
used in a real-time setting to provide useful aux-
iliary information about the dialogue success, so
as to inform the dialogue manager. This approach
is compared to a baseline, involving hand-crafted
audio features as in (Lykartsis et al., 2018), which
have been shown to provide satisfactory results.
Experiments are performed on the publicly avail-
able Let’s Go V2 Database (Schmitt et al., 2012),
which contains three kind of labels (for objective
and subjective dialogue success and the emotional
state of the user, for more information see 2.3).

This paper is structured as follows: In the next
section the used methods are presented in depth,
whereas in section 3, the results of the classifica-
tion are shown and discussed. We close with con-
clusions and suggestions for future work.

2 Methods

2.1 Input Features

The input features chosen to be used for the
CNN classifier in our case were mel-spectrograms
(which can be seen as images summarizing the fre-
quency content of a turn over time), extracted with
the librosa python library (McFee et al., 2015).
Mel-spectrograms have been used in a multitude
of tasks for music information retrieval (Schlüter
and Böck, 2014; Lidy and Schindler, 2016; Choi
et al., 2017), as they are relatively simpler to cal-
culate (in contrast to other transforms), while also
providing a connection to human auditory percep-
tion through the use of the mel-scaling. There-
fore, we reasoned that they could be a good ba-
sis for the task of dialogue success and speech
emotion recognition. For an 1s long audio file
we acquired a resulting 32 bins x 16 frames array
(using the default librosa settings for spectrogram
extraction that is a frame size of 92ms, a hann
window and an overlap of 75% between consec-
utive frames). These settings are fairly standard
for audio processing, as they allow a good tem-
poral resolution but also a fair enough frequency
resolution. We used this window size could mean
that the speech segment is not necessarily sta-
tionary, but since we are looking for larger struc-

ture in the spectrogram (probably spanning sev-
eral frames), this should not constitute a problem
for the further processing (as it was also shown by
our results). Using a shorter time window might
produce even more temporally accurate spectro-
grams, but it would also require more computa-
tional resources. After conducting preliminary ex-
periments with a window of 46ms, we could see
that results were not improved, while at the same
time requiring much more computational power
for the spectrogram extraction. Therefore, we re-
tained the window size of 92ms for all the further
experiments. We also experimented with a length
of 2s in order to see if longer (in the time domain)
spectrograms would give better results - which can
be seen as a trade-off between speed of processing
(and therefore a close to real-time behavior of the
classification/prediction system) and the accuracy
of the prediction itself. This resulted to a 32 bins
x 32 frames input array. We did not experiment
with longer files, since most files in the Let’s Go
V2 database are not much longer than 2s (the av-
erage user turn duration is 1.5s with a standard de-
viation of 1.9s (Schmitt et al., 2012)). If the file
is shorter than the selected analysis length, it is
zero-padded at its end. All the files were of 8000
kHz sampling rate, no further preprocessing was
performed, leading to a very lightweight pipeline,
which is very close to a real-time processing. The
goal of using these input features was to determine
if a short spectrogram could suffice for providing
good classification results.

2.2 Neural Nets/Classifiers

As mentioned in Section 1, we employ CNNs in
this paper. The theory and inspiration for using
CNNs can be found in Section 1. Specifically, we
utilized Keras, which is based on the tensorflow
library in python (Abadi et al., 2016). Keras has
many advantages, such as that it is very effective,
allowing for fast prototyping and training, even
just by using CPUs (instead of GPUs). Inspired
by similar experiments in other areas, we wished
to test two different types of architectures:

• A standard bottleneck architecture, with 4
convolutional layers with 2-by-2 rectangu-
lar filters and a decreasing number of nodes
(100-75-50-25), 2-by-2 max pooling and all
activation functions being ReLU. This was
followed by a batch normalization and 2 fully
connected (FCN) layers (also with a decreas-
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Figure 1: Bottleneck architecture flowchart diagram. For the details of the CNN, see the detailed architecture
description in section 2.2

Figure 2: Parallel architecture flowchart diagram. For the details of the CNN, see the detailed architecture descrip-
tion in section 2.2

ing number of nodes, namely 50 and 12 and
a dropout of 50%) and an output layer with
softmax activation. The stride is always one,
padding is always set at “same”, so as that the
output has the same length as the original in-
put. As an optimizer, ADAM was used with a
learning rate of 0.001, whereas a categorical
cross entropy was utilized as the loss func-
tion. For this architecture we were inspired
from (Tzirakis et al., 2017; Trigeorgis et al.,
2016). The above architecture is depicted in
Figure 1.

• A parallel CNN architecture: In this case, 4
input layers with 32 nodes and with differ-
ent kernel sizes (a quadratic 4-by-4 kernel,
a quadratic 8-by-8 kernel, a 1-dimensional
32-by-1 filter (for the mel-spectrogram fre-
quency bins) and a 1-dimensional 1-by-16
or 1-by-32 filter (for the time frames, corre-
sponding to the file length of 1s or 2s, respec-
tively)) are processed in parallel and their
output is combined (concatenated and flat-
tened). In this case, the max-pooling is done
in a 4-by-4 manner and the activations are
also all ReLU. The combined output of the
four parallel layers is batch-normalized fed

into 2 FCN layers with 50 and 12 nodes with
a dropout of 0.5 between them, followed by
a 2-node output softmax layer. Same as be-
fore, the stride is always one and padding
is set at “same”. Also in this case, an
ADAM optimizer was used (with a learning
rate of 0.001), and a categorical cross en-
tropy as a loss function. For this architec-
ture we were inspired from the implementa-
tion in (Yenigalla et al., 2018) (using paral-
lel layers) and from the one in (Schreiber and
Müller, 2018), using one-dimensional filters.
Our reasoning was that combining these two
features, a powerful network could be con-
structed which would be able to learn features
pertaining to emotional states of the user, as
well as more specific signal features inherent
in the spectrogram (such as the tempo of the
utterance). The above architecture is depicted
in Figure 2.

Finally, we implemented a baseline following
the scheme in (Lykartsis et al., 2018), compris-
ing 5 hand-crafted spectral and rhythmic features
(the standard deviation of the three MFCCs and
the tempo and mean of the RMS-based beat his-
tograms) and featuring an SVM classifier with
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C = 2, γ = 1/Nfeatures and an RBF kernel using
the scikit learn python module. These parameters
were kept the same as in the aforementioned pub-
lication, since they resulted via a grid search there
for a dataset of similar audio quality, and for en-
suring comparability between the studies.

The whole pipeline was developed and tested
using python 3.6 on a Windows 7 OS with 8 GB
of RAM and an Intel i5 quad core processor run-
ning at 3.2 GHz. Using this, extracting the spec-
trogram of a turn with librosa is achieved in under
1s, whereas training of the model for one epoch
takes around 5s. After the model has been created,
prediction, that is running the validation spectro-
gram via the trained CNN, is taking 0.1-0.2s (de-
pending on the length of the turn), resulting into a
near-real-time system. We refrained from using a
development set due to the small size of the dataset
and because our averaged results over the 3 valida-
tion folds should provide sufficient validity.

2.3 Dataset

The spoken dialogue corpus used in this study is
based on the the CMU Let’s Go Bus Information
System (Schmitt et al., 2012) (from this point on
referred to as the Let’s Go V2 dataset). This has
been developed by the university of Ulm in or-
der to evaluate dialogue quality, user emotion and
task success for an SDS which was used as an
information system for bus itinerary search. The
database contains 9083 system-user exchanges (to
which we will refer as interactions in the follow-
ing). For our experiments, we kept a total of 5065
audio files for the interactions, for which all labels
where available, so as to be able to compare be-
tween the results using the different label sets.

Each interaction has been rated with three la-
bels. The first is an emotional label, signifying
the emotional state of the user. The label has four
levels, ranging from non-angry to very angry. This
label was assigned from the users themselves. An-
other label shows the subjective dialogue success,
dubbed IQ (Interaction Quality) in the corpus an-
notation (Schmitt et al., 2012), indicating whether
the user was satisfied with the interaction. This la-
bel ranges from satisfied to extremely unsatisfied
and has five levels and was agreed on by three in-
dividual external raters. We refer to it here as sub-
jective label. Finally, the objective labels indicate
whether the goal of the dialogue was reached, i.e.,
the information looked for was actually provided

by the system. This label also exists on an interac-
tion level and has two levels (successful or not).

In order to simplify the classification, we
choose to create a binary model which results from
taking the most highly ranked result of each label
set as the positive label, and all the other results
pooled together as the negative label. In that way,
it was possible to create an almost balanced dataset
for the subjective labels (53% negative and 47%
negative ones), but not for the other two labels
sets (having correspondingly a distribution of 65%
positive/35% negative for the emotional labels and
85% positive/15% negative for the objective sam-
ples). Therefore, we then created a balanced ver-
sion of the dataset for the emotional and the ob-
jective labels by taking the smaller class and ran-
domly choosing as many examples for the other
class. The balanced subjective set contained 5065
samples, the balanced objective one 1146 and the
balanced emotional one 3660 samples.

3 Results and Discussion

The results of the classification for all 3 labels can
be seen in Tables 1 and 2 for the training and the
validation set, respectively. The respective results
for the baseline system can be seen in Table 3. The
results reported here are the average accuracy over
the three folds, followed by the loss of the net-
work. The standard deviation of the accuracy over
the folds is not reported, since it ranges from 0.5%
to 1.5%, and can therefore be considered negligi-
ble, showing that the system is robust. It must be
mentioned here again, that the basic unit of classi-
fication was the audio of the user turn, for which
the labels are also available. The accuracy re-
ported refers to the amount of correctly predicted
labels for the user turns as a ratio of all turn clas-
sifications.

Concerning the effect of different parameters
for the CNNs, the best parameter set was deter-
mined by 3 fold cross-validated grid search. The
aforementioned cross-validation lead to the results
reported in tables 1 and 2. We experimented with
several values for the learning rate, the optimizer
and the batch size. We observed an effect for better
results with a learning rate of 0.001, a batch size of
8 and by using the ADAM optimizer. Finally, the
results shown here were the result of 500 epochs
long training procedure. We did not observe any
improvement when training for longer time, and
this is definitely an amount of training time which
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Setting 1s 2s
Accuracy Loss Accuracy Loss

Bottleneck Architecture, subjective labels 0.95 0.12 0.97 0.07
Bottleneck Architecture, objective labels 0.97 0.07 0.98 0.05
Bottleneck Architecture, emotional labels 0.98 0.06 0.98 0.05

Parallel Architecture, subjective labels 0.81 0.31 0.97 0.07
Parallel Architecture, objective labels 0.91 0.24 0.97 0.1
Parallel Architecture, emotional labels 0.92 0.17 0.97 0.07

Table 1: Classification results, training set, average accuracy over 3 folds and corresponding loss for 1 and 2 s
segments. All datasets are balanced, the prior is 0.5.

Setting 1s 2s
Accuracy Loss Accuracy Loss

Bottleneck Architecture, subjective labels 0.78 0.57 0.9 0.3
Bottleneck Architecture, objective labels 0.9 0.48 0.86 0.5
Bottleneck Architecture, emotional labels 0.9 0.33 0.86 0.5

Parallel Architecture, subjective labels 0.7 0.93 0.7 0.93
Parallel Architecture, objective labels 0.88 0.46 0.88 0.78
Parallel Architecture, emotional labels 0.82 0.69 0.74 1.25

Table 2: Classification results, validation set, average accuracy over 3 folds and corresponding loss for 1 and 2 s
segments. All datasets are balanced, the prior is 0.5.

Setting Whole turn
Baseline (SVM), subjective labels 0.59
Baseline (SVM), objective labels 0.57
Baseline (SVM), emotional labels 0.75

Table 3: Classification results, baseline system, average accuracy over 3 folds. Features are extracted over the
whole turn and aggregated. All datasets are balanced, the prior is 0.5.

is very manageable on reasonably strong compu-
tation systems (see 2.2). With regards to the ef-
fect of the spectrograms’ length, this did not seem
to have a large effect on classification accuracy.
In general, results were somewhat better for then
1s case. We therefore assume that in the case of
less data, the length of the segment can be kept
to a minimum value. These findings corroborate
the results from Neumann and Vu (2017), which
mention that the NN architecture is more impor-
tant than the input representation form, at least in
the context of speech emotion recognition.

Comparing the two architectures, the first ar-
chitecture with the sequential layers has shown
slightly better results. This might be due to the
parallel models lacking the information to extract
useful patterns, probably due to possible data de-
privation. In total, the results are much higher than
the ones produced from the baseline. We observed
some important trends (with regards to the valida-
tion set results). The first architecture using the
bottleneck structure has proven to be useful for all
labels. This might be due to phonetic features in
the spectrogram indicating task success being very

concrete (such as “thank you”, or the user’s voice
melody sinking) and therefore rendering a simpler
structure to extract the features more suitable. Be-
tween the different label types, the emotional and
objective label sets show somewhat better results
when using smaller lengths, showing that for the
subjective labels, a greater length is essential for
the CNN to extracting more relevant information.
The parallel layer architecture has shown to be
useful for the objective labels. This is probably
due to the higher complexity of predicting an ob-
jective task success from purely sound data. Ad-
ditionally, the turn length does not seem to play an
important role, which might mean that for more
complex architectures, less information length can
be sufficient to achieve good accuracy. All in all,
the parallel architecture was somewhat less perfor-
mant than the bottleneck one, which shows that for
these data, simpler structures are more useful.

In general, the results were very positive and
surpass results on similar datasets which are state-
of-the-art: The maximum accuracy on the vali-
dation set, for the subjective labels, achieved us-
ing only sound files was 90%, which surpasses
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the best results in (Lykartsis et al., 2018) by 16%.
However, it must be noted, that the datasets used
are slightly different, in the sense that the task is
a different one (finding the right laptop vs. find-
ing the right itinerary while interacting with an
SDS). Also, in (Lykartsis et al., 2018), both the
subjective and the objective labels were provided
by the user, but in the Let’s Go V2 system, those
were provided by external raters, as well as hav-
ing a different resolution (labeled turns instead
of full dialogues). Therefore, the results not di-
rectly comparable, but the research question is the
same. Furthermore, the length and audio quality
of the recordings is very similar, so that it can
be claimed that using mel-spectrograms as input
and CNNs as classifiers provides a successful and
computationally not too intensive way to achieve
emotion detection and dialogue success prediction
only from audio. We are therefore optimistic, that
with more training data, we could build sounder
models which can generalize better and build on
the tendencies observed here, achieving even bet-
ter results. Finally, the results achieved in (Lykart-
sis et al., 2018), that smaller files are more suitable
for higher accuracy, are also observable here.

In comparison to other studies which used the
Let’s Go V2 dataset, two works have been found in
the literature, that of Schmitt et al. (2011) and that
of Stoyanchev et al. (2019), both of which resort
to linguistic features, among others. In (Schmitt
et al., 2011), the best achieved result was 61.6%
unweighted average recall for predicting quality of
interaction (i.e., the subjective label as mentioned
in this paper) using a multitude of automatically
extracted hand-crafted features (linguistic and di-
alogue state ones) and support vector machines.
Our baseline system achieves a close result (59%
average accuracy). Also, by using ASR and lin-
guistic features alone in combination with support
vector machines, Stoyanchev et al. (2019) man-
age to achieve 50% unweighted average recall.
It must be mentioned, that a direct comparison
is not possible due to the different nature of the
features and the different categories (both papers
mentioned here predicted 5 categories of interac-
tion quality), however we can see that our system
can predict dialogue success with very high per-
formance. Another interesting observation in that
context is the fact that although in our study the
best results were achieved with the objective la-
bel set, in (Lykartsis et al., 2018), the better results

were achieved with the subjective labels, which in
our case provide the least good results - but still
better than the baseline. This might be a conse-
quence of a different definition of what constitutes
subjective success between the two datasets: For
the laptop dataset of (Lykartsis et al., 2018), sub-
jective success means that the users found all the
information they were looking for (when asked at
the end of the dialogue), whereas for the Let’s Go
V2 system, subjective success meant that external
raters were judging the interaction to be successful
or not, probably leading to different label distribu-
tions. The different results might also be a conse-
quence of the different tasks involved.

4 Conclusion

In this paper, we have shown that classification of
user emotion, and prediction of objective and sub-
jective task success of a spoken SDS using only
audio in the form of spectrograms is not only pos-
sible, but also can be achieved to a high standard
using CNNs with small computational effort, re-
sulting in an almost real-time system. Our results
greatly surpassed those of other similar studies and
can be used to train models which can - on a turn
level, i.e., with audio information of limited du-
ration - predict the direction a dialogue takes and
can therefore act to change the dialogue course.

We are optimistic that if our features are com-
bined with other non-sound features (such as lin-
guistic features), we will have the possibility to
raise classification accuracy even more. However,
this falls outside the aim of the current study and
will be part of our future work. Furthermore, a
possibility would be to perform system fusion at
the classifier level, combining for example differ-
ent CNN architectures (like the ones shown in this
paper) and other classifiers with hand-crafted fea-
tures, as in the approach from (Lykartsis et al.,
2018). Such a system could benefit from the multi-
ple different input representation and could poten-
tially provide very good results, as in (Gu et al.,
2018). As additional future work, we plan to con-
duct experiments with more architectures and pa-
rameters, and also employ other neural network
classifiers such as Temporal Convolutional Net-
works (TCNs), which combine the merits of both
CNNs and RNNs/LSTMs. Finally, we will also
experiment with data preprocessing methods, such
as denoising and data augmentation methods such
as transformations in time and frequency.
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