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Abstract
Word pairs across argument spans have been
shown to be effective for predicting the dis-
course relation between them. We propose
an approach to distill knowledge from word
pairs for discourse relation classification with
convolutional neural networks by incorporat-
ing joint learning of implicit and explicit re-
lations. Our novel approach of representing
the input as word pairs achieves state-of-the-
art results on four-way classification of both
implicit and explicit relations as well as one of
the binary classification tasks. For explicit re-
lation prediction, we achieve around 20% error
reduction on the four-way task. At the same
time, compared to a two-layered Bi-LSTM-
CRF model, our model is able to achieve these
results with half the number of learnable pa-
rameters and approximately half the amount of
training time.

1 Introduction

Implicit discourse relation identification is the task
of recognizing the relationship between text seg-
ments without the use of an explicit connective
indicating the relationship. For instance, while
a connective such as “because” may indicate a
causal relationship when present between sen-
tences, it is not necessary for causality (as in Ex-
ample 1). Without the explicit connective, au-
tomatically identifying the relationship is much
more difficult. Improvement in identifying im-
plicit discourse relations will also improve perfor-
mance in downstream tasks such as question an-
swering, textual inference (for determining rela-
tionships between text segments), machine trans-
lation and other multi-lingual tasks (for transfer-
ring discourse information between languages).

The Penn Discourse Tree Bank (PDTB) theory
of discourse relations (Prasad et al., 2008) defines
a shallow discourse representation between adja-
cent or nearby segments. As a result, the span of

the arguments participating in the discourse rela-
tion is often the most important input to a classi-
fier.

Initial approaches used linguistically informed
features derived from the arguments as inputs to
traditional machine learning methods (Pitler et al.,
2008). More recently, the application of neural
methods has resulted in the best performance on
this task, modeling the relationship between words
in the arguments in context (Ji et al., 2015; Dai and
Huang, 2018).

A common approach in prior work is to
use pairs of words from across the arguments
as features (Marcu and Echihabi, 2002; Blair-
Goldensohn et al., 2007; Pitler et al., 2009). Con-
sider the example:

I am late for the meeting because the
train was delayed.

(1)

The words “late” and “delayed” are semantically
related and (absent the connective) one might hy-
pothesize that their presence is what triggers a
causal relation. Therefore, pairs of words across
discourse arguments should be useful features for
identifying discourse relations. However, learn-
ing these specific word pairings requires lever-
aging large text corpora to observe them in the
relevant discourse context (Biran and McKeown,
2013). Furthermore, as the number of possible
word pairs grows quadratically with the size of the
vocabulary, representing word pairs discretely re-
sults in very sparse feature sets. Since a contin-
uous representation of the word pairs allows for
better generalization to unseen pairs, we thus use
a Convolutional Neural Network (CNN) to embed
word pairs from the arguments in a dense vector
representation. We also extend this idea of word
pairs beyond a single pair of words by using larger
filter sizes.

Our results show that these word pairs provide
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improved performance in transferring knowledge
from explicit relations, indicating less sensitivity
to word ordering. Finally, an additional advantage
is that our architecture based on convolution lay-
ers allows for additional improvement in the speed
of training through parallel processing unlike se-
quential models based on LSTMs.

Our primary contributions are as follows:

• A novel application of convolutional neural
networks to model word pairs in the argu-
ments in a discourse relation

• A demonstration that joint learning of im-
plicit and explicit relations with both word
pairs and n-grams improves performance
over learning implicit relations only

• State-of-the-art results on four-way classifi-
cation for both implicit and explicit relations,
reducing the error by 20% in the latter case

• A model with half the number of learn-
able parameters compared to a state-of-the-
art two-layered Bi-LSTM-CRF model along
with approximately half the training time

2 Related Work

Previous work on discourse relations found suc-
cess using word pairs as features. In the earli-
est work using word pairs, Marcu and Echihabi
(2002) used unambiguous explicit markers such
as “but” to create a corpus of discourse relations.
They used a Naive Bayes approach by taking the
cross-product of words on either side of the con-
nective. Blair-Goldensohn et al. (2007) used word
pairs for discourse relations as well. Later work
(Pitler et al., 2009) applied this approach to the
PDTB but found that the top word pairs were dis-
course connectives, which is counter-intuitive as
connectives were removed to obtain word pairs.
These earlier approaches use word pairs directly
as features, which creates a large sparse feature
space. In more recent work, Biran and McKeown
(2013) address the sparsity issue by using features
based on word pairs in the context of an explicit
connective in the Gigaword corpus. Even though
this approach addresses the sparsity issue by using
a much larger corpus, it is still impractical to ac-
count for every possible word pair. In comparison
to these previous word pair methods, our model
takes advantage of the continuous representation

of word embeddings to model similarity between
word pairs.

In other work, researchers have found that ap-
proaches using neural networks have helped in-
crease performance on this task, as neural models
are better at dealing with sparsity. Some work has
focused on using novel representations. Ji et al.
(2015) model the arguments with recursive neu-
ral networks (modeling the tree structure of each
argument). Lei et al. (2017) model interaction be-
tween words in arguments by learning linear and
quadratic relations. Liu and Li (2016) develop a
method for repeated reading over the discourse
context by using an external memory. Other re-
searchers have found success by modeling the se-
quence of words using recurrent neural networks
(Chen et al., 2016) with a gating mechanism to
combine contextual word pairs while some ap-
proaches have used convolutional neural networks
over each argument (Qin et al., 2016). Most recent
work has focused on joint learning, as the PDTB
is a relatively small dataset for neural methods.
Liu et al. (2016) and Lan et al. (2017) propose
a multi-task learning approach across PDTB and
other corpora. Qin et al. (2017) have demonstrated
the effectiveness of an adversarsial approach, forc-
ing one model without connective information to
be similar to a model with connective. Rönnqvist
et al. (2017) developed the first attention-based
BiLSTM network for Chinese implicit discourse
relations. Dai and Huang (2018) show that incor-
porating additional document context at the para-
graph level and jointly predict both implicit and
explicit relations. Finally, Bai and Zhao (2018)
propose a deep model using contextual ELMo em-
beddings, multiple CNN layers and Bi-attention.
Unlike these approaches, we represent the input in
a novel way as a set of word pairs, while using a
much simpler architecture, and distill knowledge
between explicit and implicit relations.

3 Methods

Our architecture consists of two primary compo-
nents. The first component learns complex inter-
actions from word pairs and the second component
learns n-gram features from individual arguments.
The features from word pair convolutions and in-
dividual argument convolutions are then combined
using a gating mechanism. Finally, we jointly
learn representations for implicit and explicit re-
lations.



444

the train was delayed
late late, the late, train late, was late, delayed
for for, the for, train for, was for, delayed
the the, the the, train the, was the, delayed

meeting meeting, the meeting, train meeting, was meeting, delayed

Table 1: Arg1 is along the rows, Arg2 is across the columns. Cell (i, j) corresponds to the word pair composed
from ith word of Arg1 and jth word of Arg2.

3.1 Product of Arguments

For the first component, we use convolution op-
erations over the Cartesian product of words from
the two arguments.

Word/Word Pairs Initially, we consider the in-
teraction between all pairs of individual words in
the arguments. Table 1 illustrates the use of word
pairs from Example 1 in Section 1, where Arg1 =
“I am late for the meeting” and Arg2 = “the train
was delayed.” The sequence of word pairs starts at
the first row and moves on to successive rows. In
this example, we remove the connective to illus-
trate an implicit relation. For explicit relations, we
include the connective as part of the second argu-
ment and create word pairs for the connective (e.g.
“because”) as well. When computing the Carte-
sian product, we drop very short (length < 3)
functional words to limit the number of word pairs
(hence the absence of the words “I” and “am”).

Word/N-Gram Pairs We also use larger filters
to capture relations between word pairs. A filter
of size 2k will capture k word pairs. Henceforth
we use the notation WP-k to indicate a sequence of
k word pairs (where WP-1 refers to a single pair of
words). We use the following notation to describe
concrete examples of word pair features: (“late”
: “delayed”) is an example of WP-1. Similarly
(“late” : “the train was delayed”) is an example of
WP-4 and corresponds to the following sequence
of word pairs (as in row 1 of Table 1): “late the
late train late was late delayed”. In other words, it
corresponds to the Cartesian product of “late” with
the 4-gram “the train was delayed.” Thus, another
interpretation of WP-k is a mapping of a word in
Arg1 to a k-gram in Arg2 and vice-versa. This in-
terpretation of WP-k is not true at word transitions.
For instance, in the above example, a filter of size
8 will also capture “late was late delayed for the
for train” as one of the WP-4. By learning WP-k
features (for k > 1) we are able to capture more
complex interaction between the arguments. This

Figure 1: Architecture of our proposed network.
Dashed arrows indicate that weights are shared among
CNNs

is novel in comparison to the common practice of
just using WP-1 as features. We use filters of even
length and a stride of two to ensure the filter will
always end at word pair boundaries.

Mathematically, the input to the CNN (where [·]
means concatenation) is:

vArg1×Arg2 = [x11 · x12 · x11 · x22 · x11 · x32 · · · ]

where xi
1 is the concatenation of word and POS

embeddings corresponding to the ith word of
Arg1 and xj

2 is the concatenation of word and
POS embeddings corresponding to the jth word of
Arg2. We also include the representation obtained
from (Arg2 × Arg1), as our preliminary experi-
ments showed that this approach was complemen-
tary to the representation from (Arg1 × Arg2):

vArg2×Arg1 = [x12 · x11 · x12 · x21 · x12 · x31 · · · ]

Following convolution, in line with the common
practice, we apply max pooling along the length
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of the sequence to pick the most prominent fea-
ture per feature map. Next we concatenate the
max-pooled features from different filter sizes to
obtain a hidden representation. This hidden repre-
sentation from the CNN has dimensionality equal
to the number of feature maps × the number of fil-
ters. Thus, for each discourse relation comprised
ofArg1 andArg2, we obtain two hidden represen-
tations hArg1×Arg2 and hArg2×Arg1 . We concate-
nate these representations to obtain a vector hWP .
The weights of the convolution layers are shared
between Arg1 × Arg2 and Arg2 × Arg1 to allow
the model to learn from both types of interaction.
The left side of the Figure 1 depicts this compo-
nent of our combined architecture.

3.2 Individual Arguments

For the second component, we use a CNN over
individual arguments Arg1 and Arg2 (illustrated
on the right side of Figure 1). As discussed in
Rönnqvist et al. (2017), arguments provided with-
out context may contain elements indicative of
a discourse relation (Asr and Demberg, 2015),
e.g. implicit causality verbs (Rohde and Horton,
2010). We thus hypothesize that the hidden repre-
sentation obtained from individual arguments will
complement the representation obtained from the
word pairs. To learn representations from the in-
dividual arguments we use filters of odd and even
length and stride equal to one.

As with word pairs, the weights of the convolu-
tion layers are shared between Arg1 and Arg2 to
allow the model to learn representations from both
sides independent of the order of the arguments.

3.3 Combination of Argument
Representations

In order to combine the representations hArg1 and
hArg2 , we incorporate a method for the model to
learn to weight the interaction between the argu-
ment features. We employ Gate1 as shown on the
right side of Figure 1. This gate is defined as fol-
lows:

c = Relu(W1 · hArgs + b1)

ga = σ(W2 · hArgs + b2)

ĥArgs = c� ga

(2)

where hArgs is the concatenation of hArg1 and
hArg2 .

We subsequently join the word pair representa-
tions and the individual argument representations

with a similar mechanism. The two components
are combined using Gate2 which is defined as in
Equation 2 but instead takes as input the concate-
nation of ĥArgs and hWP

To predict the discourse relation, the output of
Gate2 is then input to a separate dense layer with
softmax non-linearity for either explicit or implicit
relation classification as shown in Figure 1.

3.4 Joint Learning of Implicit and Explicit
Relations

Finally, to fully take advantage of the labeled data
in the PDTB, we jointly learn implicit and explicit
relations. For explicit relations, we add the con-
nective to the beginning of Arg2. As shown in
Figure 1 and similar to (Dai and Huang, 2018), we
use separate classification layers for explicit and
implicit relations. To jointly learn both types of
relations, we randomize the order of implicit or ex-
plicit relations rather than training each mini-batch
separately.

4 Experiments

4.1 Data

We run experiments on three different tasks (bi-
nary, four-way and fifteen-way). For binary and
four-way tasks, we train and test on the class level
relations defined in the PDTB: Comparison, Con-
tingency, Temporal, and Expansion. We use a
common partition of the data: sections 2-20 for
training, 0-1 for validation, and 21-22 for testing.
For this partition, there are 1046 implicit relation
instances and 1285 explicit relation instances in
the test set. For fifteen-way task, we precisely fol-
low the setup of CoNLL 2016 shared task on shal-
low discourse parsing and evaluate our approach
on their test and blind test sets. A small fraction
(around 4%) of the relations in PDTB have mul-
tiple gold labels. During training, we replicate a
relation once for each gold label and for evalua-
tion we deem the prediction to be correct if the
predicted label matches any of the gold labels. We
use this scheme for all the tasks in this paper.

4.2 Experimental setup

We use Spacy to tokenize and annotate POS tags
for the individual arguments. To learn WP-k fea-
tures, we limit the Cartesian product to a maxi-
mum of 500 word pairs per relation. For n-gram
features, we limit the arguments to a maximum
of 100 words. For word embeddings, we used
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Model
Implicit

Macro
F1

Acc Com Con Exp Tem

LSTM
(Lei et al., 2017) 46.46 - - - - -
(Lan et al., 2017) 47.80 57.39 - - - -

(Dai and Huang, 2018)
-

(48.82)
-

(58.20)
-

(37.72)
-

(49.39)
-

(68.86)
-

(40.70)

CNN
(Liu et al., 2016) 44.98 57.27 - - - -

(Bai and Zhao, 2018) 51.06 - - - - -

Ours

WP-[1-4], Args,
Implicit Only

50.77
(49.2)

59.46
(56.11)

45.82
(42.1)

54.39
(51.1)

70.48
(64.77)

43.04
(38.8)

Args
Joint Learning

49.47
(48.1)

59.66
(57.50)

42.68
(35.50)

54.82
(52.5)

70.30
(67.07)

41.82
(37.47)

WP-1, Args,
Joint Learning

50.71
(48.73)

59.18
(57.36)

45.91
(37.33)

55.87
(52.27)

69.04
(66.61)

42.96
(38.70)

WP-[1-4], Args,
Joint Learning

51.84
(50.2)

60.52
(59.13)

46.84
(41.94)

53.74
(49.81)

72.42
(69.27)

43.97
(39.77)

Table 2: Results of four-way classification experiments on implicit relations. The numbers in the parenthesis
correspond to average of 10 runs

Model
Explicit

Macro
F1

Acc

(Dai and Huang, 2018)
-

(93.70)
-

(94.46)

Args, JL
95.48

(94.81)
96.2

(95.63)

WP-1, Args, JL
95.13

(94.83)
95.95

(95.67)

WP-[1-4], Args, JL
95.0

(94.50)
95.72

(95.33)

Table 3: Results of four-way classification experiments
on explicit relations. JL : Joint Learning

word2vec pre-trained embeddings. However, for
words not found in word2vec, we back-off to em-
beddings trained on the raw WSJ articles. We fix
the word embeddings during training. We also
concatenate one hot POS embeddings to the fixed
word embeddings. We use 100 and 50 feature
maps per filter size for learning WP-k and n-grams
respectively. For WP-k, we use filters of size 2, 4,
6 and 8. For n-grams, we use filters of size 2, 3,
4 and 5. For all dense layers and gate layers, we
set the output dimension of the weight matrices to
300. For regularization, we use dropout (Srivas-
tava et al., 2014) of 0.5 after convolution opera-
tions and before the softmax layers. We also use
L2 regularization with a coefficient of 0.0001 and

early stopping to prevent over-fitting. For training,
we minimize multi-class cross-entropy loss using
the Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 0.0005 and batch size of 200.
Our architecture is implemented in Theano deep
learning framework.1

5 Results

We compare our results to previous work along
two dimensions: the architecture of the model
(CNN or LSTM) and whether the model employs
a joint learning component.
Our work and the work of (Dai and Huang, 2018)
and (Lan et al., 2017) involves jointly training on
explicit relations. (Lan et al., 2017) and (Liu et al.,
2016) also train on BLLIP and RST, respectively.

5.1 Four-way classification

Tables 2 & 3 show the results of four-way exper-
iments on implicit and explicit relations respec-
tively.2 Please note that these results are from the
same joint learning experiments wherever appli-
cable and they are presented in different tables for
the sake of better presentation. We compare the
performance of our models under different con-
figurations. We gradually add WP-k features to
study their contribution. First we add WP-1 (fil-

1https://github.com/siddharthvaria/WordPair-CNN
2(Qin et al., 2017) reported only one-versus-all binary

classification so their results are only included in Table 4



447

Model Com Con Exp Tem

LSTM

(Lei et al., 2017) 40.47 55.36 69.50 35.34
(Lan et al., 2017) 40.73 58.96 72.47 38.50

(Dai and Huang, 2018)
-

(46.79)
-

(57.09)
-

(70.41)
-

(45.61)

CNN
(Liu et al., 2016) 37.91 55.88 69.97 37.17
(Qin et al., 2017) 40.87 54.56 72.38 36.20

(Bai and Zhao, 2018) 47.85 54.47 70.60 36.87

Ours
WP-[1-4], Args
Joint Learning

45.03
(44.1)

56.53
(56.02)

73.5
(72.11)

46.15
(44.41)

Table 4: Results of binary classification experiments. The numbers in the parenthesis correspond to average of 10
runs

ters of size 2) and then we add WP-k features to
illustrate the contribution of more complex inter-
actions for k > 1. Additionally, we compare joint
learning of implicit and explicit relations (Joint
Learning) against learning implicit relations only
(Implicit only). Args refers to n-grams from in-
dividual arguments. For all experiments, we re-
port both the maximum and average (in parenthe-
sis) of 10 runs for fair comparison with all prior
work. It is not surprising to see that gradually
adding word pair features improves performance
on implicit relations. When using joint learning
and WP-[1-4] we obtain an improvement in Macro
F1-Score and Accuracy for implicit relations over
previous state of the art works (Dai and Huang,
2018) and (Bai and Zhao, 2018). We also observe
improvement for the expansion class in the joint
learning setting, likely due to its prevalence in both
implicit and explicit relations. In these cases, we
observe that joint learning improves over train-
ing on just implicit relations (with a 3 point im-
provement in overall accuracy primarily due to a
5 point improvement in classification of the ex-
pansion class). On the other hand, we find that
in just Args setting, we obtain state-of-the-art per-
formance compared to prior work (Dai and Huang,
2018) for explicit relation F1-Score and accuracy,
achieving 20% reduction in error rate. We don’t
get any benefit by combining it with word pairs
(for WP-1), and the extra complexity for k > 1
makes it more difficult for the model to distinguish
the effective features. This may occur because the
connective itself is a very strong baseline.

5.2 Four-way Ensemble results

As the experiments described in 4.2 were con-
ducted with 10 random initializations, we also

present the results of an ensemble created out of
these 10 runs via majority voting in Table 5. Com-
pared to (Dai and Huang, 2018), while our ensem-
ble achieves marginal improvement of 0.59 F1 on
implicit relations, it improves by around 1 point on
explicit relations for both metrics, around a 20%
error reduction.

5.3 Binary classification

In Table 4, we report our results on four binary
classification tasks. From the results, we see that
our model does better on all classes in compar-
ison to other CNN-based architectures. Our av-
eraged results are directly comparable to those of
(Dai and Huang, 2018) and we observe improve-
ment for the expansion class. Our model may not
generalize as well on other three classes because
they account for 14, 26.4, and 6% of the test set,
respectively, leading to high variance across mul-
tiple runs.

5.4 Fifteen-way classification

CoNLL organized a multilingual shallow dis-
course parsing shared task in 2016. In this shared
task (Xue et al., 2016), they consider second level
types and release test and blind test sets for fifteen-
way classification of explicit and implicit rela-
tions, including EntRel and AltLex relations as
implicit relations. We compare our architecture
against the systems that participated in that task,
with results presented in Table 6. Our architec-
ture produces very similar results in line with the
results reported by various neural network based
systems that participated in the task. However,
we also observe that using word pair features does
not lead to further improvement over using just n-
gram features. One possible explanation for this
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Model
Implicit Explicit

Macro
F1

Acc
Macro

F1
Acc

Dai et al.
(2018)

51.84 59.85 94.17 94.82

WP-[1-4],
Args,

IO
51.63 58.03 - -

Args,
JL

49.54 58.70 94.81 95.64

WP-1,
Args,

JL
51.90 59.94 95.16 95.95

WP-[1-4],
Args,

JL
52.53 61.28 94.38 95.25

Table 5: Ensemble results of four-way classification
experiments. JL : “Joint Learning” and IO : “Implicit
Only”

Model
F1 score

Implicit Explicit
PDTB Blind PDTB Blind

Xue et al.,
(2016)

40.91 37.67 90.22 78.56

Lan et al.,
(2017)

39.40 40.12 - -

Args, JL 39.68 38.74 89.91 76.98
WP-[1-4],
Args, JL

39.39 39.36 89.48 77.00

Table 6: Results of fifteen-way task on CoNLL 2016
test and blind test sets

trend is that word pair features capture enough se-
mantic information to discriminate the top-level
classes however it fails to separate the second level
of types. Comparing against (Lan et al., 2017),
we see that our model is competitive with their
LSTM-based architecture in spite of the fact that
they used external data to achieve these results.
This also possibly indicates that it is hard to get
further improvements on this task without data
augmentation due to lack of enough training data
for second level types in PDTB.

6 Discussion

6.1 Comparison of Model Complexity

In Table 7 we present the number of parameters of
our model in the first two columns. We have con-

Model Parameters
Ours

Conv 2,3,4,5 50 per size 242.2k
Conv 2,4,6,8 100 per size 692k
Gate1 240k
Gate2 660k
Total 1834.2k

LSTM Model
Bi-LSTM Layer 1 1550.4k
Bi-LSTM Layer 2 2160k
Total 3710.4k

Table 7: Comparison of model complexity. Gate1 &
Gate2 have output of size 300. LSTMs have hidden
state of size 300.

volution layers to learn n-gram features and WP-k
features. Apart from these layers, we have two
gate layers: Gate1 and Gate2 in the table. Our
model has approximately 1.8 million parameters.
The input embeddings to our model have dimen-
sionality of 346 (300 (word) + 46 (POS)). Assum-
ing the same input to the two-layered Bi-LSTM
model with a hidden state of size 300, this model
will have approximately 3.7 million parameters.
For this comparison, we have assumed the num-
ber of parameters of the LSTM given input vec-
tors of size m and giving output vectors of size n
is 4(nm+n2). Both models have dense layers for
implicit and explicit relation prediction so they are
ignored for these calculations.

6.2 Comparison of Training Time
We also compare the running time of our model to
the model of (Dai and Huang, 2018). We compare
the wall clock training time per epoch of both sys-
tems, using their released code as well as our own.
For a fair comparison, we re-implemented our ar-
chitecture in Pytorch to match their usage. Fur-
thermore, the models were run on the same GPU
(Tesla K80) on the same machine. We ran each
model three times for five epochs. The training
time of our model was 109.6 seconds on average
compared to 206.17 seconds for their model.

6.3 Qualitative Analysis
We conduct a qualitative analysis in an attempt to
understand the most important WP-k and n-grams
learned by our architecture. We modified our ar-
chitecture to get rid of all non-linear layers after
the convolutional layers, which allows us to ex-
amine the effect of the word pairs and n-grams
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Implicit Relations and Top Features
Arg1: Alliant said it plans to use the microprocessor in future products
Arg2: It declined to discuss its plans for upgrading its current product line
Class: Comparison
WP-k: (said : declined), (Alliant : product line), (declined : Alliant said), (upgrading :
microprocessor future products), (plans : declined discuss its plans), (discuss : use the mi-
croprocessor future)
Arg1 n-grams: (Alliant said), (microprocessor in future products), (plans to use the micropro-
cessor)
Arg2 n-grams: (product line), (It declined to discuss), (for upgrading its current product)
Arg1: I ca n’t see why there would be a conflict of interest
Arg2: Estimates are based on the previous price of similar works sold at auction and current
market conditions, and are not affected by any knowledge of who the potential buyer could be
Class: Contingency
WP-k: (n’t : affected), (not : conflict), (why : not affected), (not : n’t see), (see : works sold
auction and), (affected : why there would conflict)
Arg1 n-grams: (a conflict of interest), (ca n’t see why there)
Arg2 n-grams: (Estimates are based on), (works sold at auction), (are not affected by any)
Arg1: And it allows Mr. Van de Kamp to get around campaign spending limits
Arg2: He can spend the legal maximum for his campaign
Class: Expansion
WP-k: (And : can), (limits : spend), (allows : spend), (And : He can), (maximum : spending
limits)
Arg1 n-grams: (And it allows), (spending limits)
Arg2 n-grams: (He can spend), (legal maximum), (his campaign)
Arg1: As the market dropped Friday , Robertson Stephens slashed the value of the offering by
7%
Arg2: Yesterday , when similar securities rebounded , it bumped the valuation up again
Class: Temporal
WP-k: (As : when), (bumped : slashed), (As : Yesterday when), (Yesterday : As the market),
(when : As the market dropped)
Arg1 n-grams: (market dropped), (Robertson Stephens slashed the value)
Arg2 n-grams: (similar securities), (Yesterday , when), (bumped the valuation up again)
Arg1: the fact that seven patents were infringed suggests that infringement was willful
Arg2: It ’s difficult to be that consistently wrong
Class: Contingency
WP-k: (willful : consistently), (willful : wrong), (suggests : difficult that consistently wrong),
(consistently : infringed suggests that infringement)
Arg1 n-grams: (the fact), (suggests that infringement was willful)
Arg2 n-grams: (consistently wrong), (’s difficult to be that)
Arg1: and special consultants are springing up to exploit the new tool
Arg2: Blair Entertainment has just formed a subsidiary – 900 Blair – to apply the technology
to television
Class: Expansion
WP-k: (springing : formed), (exploit : formed), (springing : subsidiary Blair), (formed :
springing exploit), (springing : has just formed subsidiary), (Blair : and special consultants)
Arg1 n-grams: (special consultants are springing up)
Arg2 n-grams: (Blair Entertainment has), (subsidiary – 900 Blair –)

Table 8: Implicit examples along with top features selected from across three runs. Note that we drop very short
words in the cartesian product only and not in the individual arguments.
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directly on the output. Dropping the gate lay-
ers caused the F1 score averaged across the first
three runs to drop from 50.9 to 50.1, indicating
both that the gate layers help incorporate inter-
actions between the model components and that
our approach here is a reasonable approximation
to what the model is learning. Instead of the gates,
we concatenate the output of all the convolutional
layers and use a final classification layer (differ-
ent for implicit and explicit relations as in our full
model) to train this simplified architecture. In the
absence of non-linearity, we are able to map the
features selected by max pooling back to the WP-k
and n-grams associated with their embeddings (i.e.
argmax pooling rather than max pooling and map-
ping the selected indices back to the input). As
each filter is associated with multiple feature maps
(k = 100 for word pairs and k = 50 for n-grams
as described in Section 4.2), we count the number
of times each WP-k and n-gram was selected dur-
ing pooling and select the most prominent features
according to their frequency.

We present six implicit examples,3 in Table 8
and the corresponding top WP-k and n-gram fea-
tures. We selected these examples by running the
simplified architecture three times and selecting
implicit examples which were classified correctly
during all the runs in the Joint Learning setting.

We find the following general properties in the
examples we studied:

• We consistently observed that smaller fil-
ters learn either verb-to-verb mappings or
adjective-to-adjective mappings. In exam-
ples one, four and five, (said : declined),
(bumped : slashed) and (willful : wrong) are
selected respectively. The first two pairs cap-
ture antonymy and last one maps adjectives.

• Larger filters tend to align important words
(verbs and nouns) in either argument to
phrases in the other argument. In the third
example, (maximum: spending limits) is se-
lected, along with (affected : why there
would conflict) in the second example, and
(plans : declined discuss its plans) from the
first, among others.

• For the third example, while the true class is
Expansion, which the Joint Learning model
classifies correctly, the Implicit Only model

3Although we learn implicit and explicit relations jointly,
we focus on only implicit relations due to space constraints.

labels it as Contingency. The Joint Learn-
ing model selects functional word pair inter-
actions such as (And : can), which may be
more indicative of an Expansion relation due
to the presence of the connective “And” at
the start of the first argument. We also ob-
serve the word pair (Kamp : spend) is not
selected as a top feature in the Joint Learn-
ing setting, while it is selected in the Implicit
Only scenario. As it includes a proper noun,
it is unlikely to generalize as a useful feature.
Finally, Joint Learning identifies the seman-
tically coherent WP-2 (maximum : spending
limits). This pair does not appear in the Im-
plicit Only case.

7 Conclusion

We proposed an approach to learn implicit re-
lations by incorporating word pair features as a
novel way to capture the interaction between the
arguments, a distinct approach compared to the
popular attention-based approaches used with Bi-
LSTM based models. We also show that joint
learning of implicit and explicit relations is benefi-
cial to implicit relations. Our results show that our
model is able to surpass or match the performance
of a Bi-LSTM based model using paragraph level
context.

For future work, we plan to explore data aug-
mentation techniques. As our best performance is
on the expansion class, which is also the largest, if
we are able to obtain more data we might improve
our performance on smaller classes as well. We
will thus investigate extending our joint learning
method to include resources beyond the PDTB.

Another possible avenue is to replace word em-
beddings with contextualized embeddings to study
the efficacy of the latter with our architecture. Pre-
trained language models like BERT (Jacob et al.,
2018) have been recently used to achieve state-
of-the-art results on sentence pair classification
tasks. As a future step we will experiment with
our model on top of these contextual represen-
tations, which would likely enhance the perfor-
mance while still maintaining the interpretability.
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