
Proceedings of the SIGdial 2020 Conference, pages 132–135
1st virtual meeting, 01-03 July 2020. c©2020 Association for Computational Linguistics

132

rrSDS: Towards a Robot-ready Spoken Dialogue System

Casey Kennington Daniele Moro Lucas Marchand
Department of Computer Science

Boise State University
1910 W University Dr

Boise, ID 83725
firstnamelastname@boisestate.edu

Jake Carns David McNeill

Abstract

Spoken interaction with a physical robot re-
quires a dialogue system that is modular, mul-
timodal, distributive, incremental and tempo-
rally aligned. In this demo paper, we make sig-
nificant contributions towards fulfilling these
requirements by expanding upon the ReTiCo
incremental framework. We outline the incre-
mental and multimodal modules and how their
computation can be distributed. We demon-
strate the power and flexibility of our robot-
ready spoken dialogue system to be integrated
with almost any robot.

1 Introduction

Spoken Dialogue Systems (SDSs) are well-suited
to handle complex artifacts of dialogue such as hes-
itations and clarification requests in many domains.
However, to further extend SDSs to work effec-
tively on physical robots, we offer the following
additional requirements towards a robot-ready SDS:
modular: robot components are modular and indi-
vidual modules must be able to integrate with SDS

modules, multimodal: robots are situated dialogue
partners whose many sensors must be integrated
with the SDS speech input, distributive: robot and
SDS modules should easily communicate with each
other in a distributed environment, incremental:
modules must be able to process input quickly and
immediately, aligned: sensors must be temporally
aligned, i.e., synchronized in time.

Existing systems offer solutions to some of
the requirements. The OpenDial toolkit gives re-
searchers the ability to model dialogue states using
probabilistic rules (Lison and Kennington, 2016),
but any incrementality has not been systematically
evaluated. InproTK (Baumann and Schlangen,
2012), is incremental and InproTKs (Kennington
et al., 2014) added distributiveness and multimodal-
ity, and Kennington et al. (2017) offered an ap-

proach to temporal alignment, albeit with offline
evaluation.

The PSI framework is inherently modular, multi-
modal, temporally aligned, has been evaluated on
robot platforms, and has several options for dis-
tributing computation (Bohus et al., 2017). How-
ever, the PSI framework does not yet build on any
incremental framework. Also similar to our work
is the platform MultiBot presented in Marge et al.
(2019), but that model does not work incrementally
nor does it consider temporal alignment.

In this paper, we design and evaluate a modular,
incremental, multimodal, and distributive robot-
ready SDS, called rrSDS which is primarily writ-
ten in the Python programming language.1 To ad-
dress the requirements of modularity and incremen-
tality, we adopt the Incremental Unit Framework
(Schlangen and Skantze, 2011) where incremental
units (IUs) are passed between modules (IUs can
be added to reflect new information, or revoked
if a previously added IU needs to be updated) by
building on the ReTiCo (Michael and Möller, 2019)
platform. To handle distributiveness, rrSDS has
modules (i.e., ZeroMQ, ROS) that afford interopa-
bility with processes outside of the system. To
address the requirement of multimodality, we build
on top of the modularity requirement and incorpo-
rate additional sensors (e.g., cameras and internal
robot states).

2 The rrSDS Spoken Dialogue System

ReTiCo has existing modules for built-in micro-
phones and Google Speech API for speech recog-
nition. We extend it to be multimodal by adding
additional sensor modules such as cameras and in-
ternal robot states, depicted in Figure 1. We add
distributive modules that handle interopability with

1Available at https://github.com/bsu-slim/
rr-sds

https://github.com/bsu-slim/rr-sds
https://github.com/bsu-slim/rr-sds


133

outside modules. The rest of this section explains
the modules for rrSDS.

Dialogue Management OpenDial is a toolkit for
developing SDSs with probabilistic rules (Lison and
Kennington, 2016) that can be used as a rule-based
dialogue manager (DM), but can be extend any do-
main to include stochastic processes when data is
available. We incorporate a recent Python imple-
mentation called pyOpenDial (Jang et al., 2019)
into our SDS as a DM. Our pyOpenDial module
takes any IU payload, expecting a list of attributes
(i.e., variables) and values that it adds to pyOpen-
Dial’s dialogue state as attribute/value pairs.

Natural Language Understanding Words-as-
Classifiers (WAC) is a model of grounded semantics
that learns a ‘fitness’ score between physical enti-
ties and words (Kennington and Schlangen, 2015),
where each word in a known vocabulary is repre-
sented as a classifier. WAC is inherently incremental
and can learn word groundings with minimal train-
ing data. This module takes words from ASR and
features from detected objects. It outputs the best
fit word for the detected object as well as confi-
dence scores for all the words in its vocabulary and
their fitness to all detected objects.

Object Detection & Feature Extraction This
module uses Huang et al. (2017), which builds on
several other advances in fast object detection. The
output of this module is a list of bounding boxes for
each object, along with corresponding labels and
confidence scores. The feature extractor takes those
object bounding boxes, isolates the bounded object
from the rest of the image, and passes that single
object image through a pre-trained imagenet model,
for example, EfficientNet (Tan and Le, 2019) or
InceptionV3,2 but designers can specify any Keras
network and target layer. This module outputs a
list of vectors that represent each object that was
found in the input image.

Seeed Respeaker The respeaker is an array mi-
crophone with 6 individual microphones on a disc-
like board.3 Respeaker has built-in functionality
for direction-of-arrival, noise suppression, keyword
wake up, and network connectivity.

2This needs to match the vector representations that any
grounded NLU module (e.g., WAC) was trained with.

3http://wiki.seeedstudio.com/
ReSpeaker_Core_v2.0/

Respeaker 
(Microphone)

Google 
(ASR)

Words-as-
Classifiers

(NLU)

OpenDial 
(DM)

MaskRCNN 
(Object 

Detection)

VGG19 
(Feature 

Extraction)

Camera

Internal
States

Action

Robot

Figure 1: Overview of our rrSDS integrated with the
robot modules. Dashed lines represent sensory input
modules.

Distributive Interop ZeroMQ is a universal
message passing library that builds and maintains
sockets that carry atomic messages across various
transports.4 ZeroMQ supports most programming
languages and operating systems. The amount of
code required to use ZeroMQ to pass messages
between separate processes is very minimal. For
our SDS, we have two types of ZeroMQ modules:
Readers and Writers.

A key interopability module in rrSDS is the
Robotics Operating System (ROS), which is
widely adopted in the robotics community.5 ROS
has a built-in communication layer across any
robotic system’s architecture that provides data
pipelines on different scopes (Quigley et al., 2009).
Our rrSDS interfaces with ROS using Publish and
Subscribe modules (similar to ZeroMQ’s Writer
and Reader modules). We evaluated our implemen-
tation using Turtlesim, a common test bed simula-
tion for ROS.6

Additional Modules rrSDS has additional mod-
ules that we do not use in our evaluation, but we do
mention them for completeness: Azure Cognitive
Services Speech Recognition (ASR), Azure Emo-
tion Recognition API (takes in an image and returns
a distribution over 8 emotional states), Azure Ob-
ject Detector (similar to the MaskRCNN module
above, this takes an image as input and returns a
list of bounding boxes and corresponding labels),
RASA (NLU) (Bocklisch et al., 2017) which has
been evaluated to be competitive with commercial
NLU platforms (Braun et al., 2017; Liu et al., 2019)

4https://zeromq.org/
5We note that our chosen interopability platforms are also

available on PSI, which motivated our choices.
6http://wiki.ros.org/turtlesim

http://wiki.seeedstudio.com/ReSpeaker_Core_v2.0/
http://wiki.seeedstudio.com/ReSpeaker_Core_v2.0/
https://zeromq.org/
http://wiki.ros.org/turtlesim


134

Figure 2: Misty in its task setting: Misty could move
its head left and right, and had to look down at the ob-
jects on the table.

and has recently been incrementalized Rafla and
Kennington (2019).

3 Evaluation

We used the Mistyrobotics Misty II and Anki
Cozmo robot platforms to evaluate rrSDS, depicted
in Figures 2 and 3. We briefly explain the two plat-
forms and the modules we built to integrate them
into our rrSDS, then we describe the evaluation.

Robot Modules Integration of Cozmo with
rrSDS is done using its Python SDK and Misty us-
ing its REST API, each broken into three ReTiCo
modules: (1) camera, (2) internal state, and
(3) action control. The output of each camera
module is an IU with a still image as its pay-
load. Both robots have internal state variables
(e.g., left-wheel-speed, head-height,
light-height). As the state of the robot
changes, this module produces an IU containing
a full attribute-value matrix of the internal state
representation (e.g., wheel speed, lift height) at the
state update. The action modules use the decisions
made by the DM to produce the following actions:
explore, align, approach, confirm, and
speak.

A human user utters a short description and the
robot attempts to explore its surroundings until it
finds an object that matches the description. After
a user description, the robot enters an explore
state to seek out an object, then an align state to
move the object into center view. Then the robot
confirms if the description matches the object it
is looking at. The robot speaks, uttering either
That looks X or Uhh that’s not X that’s Y where X
is the description and Y is the robot’s best guess at
a description (i.e., a better color word).

An overview of our rrSDS is depicted in Figure 1.
We use the Respeaker microphone, Google ASR,

Figure 3: Cozmo in its task setting: in order for Cozmo
to observe objects with it’s camera, its head had to be
pointed slightly down, and its lift had to be raised.

and WAC modules for spoken input, recognition,
and understanding, respectively. Each robot’s cam-
era passed image frames to the MaskRCNN Object
Detection module, then we used the VGG19 fc1
layer (4096 features; pre-trained on imagenet data)
to represent objects for the WAC module. For dia-
logue and action management, we used the pyOpen-
Dial module. For the WAC module, we used logistic
regression classifiers pretrained on words that only
focused on colors. We obtained the training data
for WAC by capturing objects using Cozmo’s cam-
era; 5-10 training instances per color (trained using
l2 normalization).

We recruited 15 participants from Boise State
University (4 female, 11 male) to interact with each
robot and fill out the Godspeed Questionnaire (Bart-
neck et al., 2009) after each interaction.

Our rrSDS can run completely on a single ma-
chine;7 output from all system processing modules
were logged using PSI on a separate machine. We
used the ZeroMQ modules to send information
from rrSDS to PSI.

We found in our evaluation that participants were
able to accomplish the same number of tasks with
both robots, but generally found Cozmo interesting,
likeable and pleasant whereas Misty was judged
as more mechanistic, rigid, stagnant and machine
like.

4 Conclusions & Future Work

Our rrSDS is flexible, being evaluated on multiple
robot platforms to create engaging human-robot
interactions, and fulfills the modular, incremen-
tal, multimoal, and distributive requirements for a
robot-ready SDS. Our evaluation of rrSDS allowed
users to successfully interact with two different

7Our Machine had 32GB of RAM and an NVidia Tesla
M40 with 12GB of Video RAM.



135

robots to accomplish a simple task with comparable
performance. rrSDS is agnostic to the robot plat-
form used, enabling future research to experiment
with robot platforms using our flexible system. For
future work, we plan to add natural language gen-
eration modules and integrate rrSDS more directly
with PSI to make use of its architecture, thereby
allowing developers and researchers to make use
of PSI temporal alignment functionality, but spend
most of their development time with Python.

Acknowledgements We thank the anonymous
reviewers for their feedback and useful insights.
We thank Microsoft Research for answering ques-
tions related to PSI. This work was approved under
the Boise State University IRB #126-SB20-012.

References
Christoph Bartneck, Dana Kulić, Elizabeth Croft, and

Susana Zoghbi. 2009. Measurement instruments
for the anthropomorphism, animacy, likeability, per-
ceived intelligence, and perceived safety of robots.
International journal of social robotics, 1(1):71–81.

Timo Baumann and David Schlangen. 2012. The In-
proTK 2012 release. In NAACL-HLT Workshop on
Future directions and needs in the Spoken Dialog
Community: Tools and Data (SDCTD 2012), pages
29–32.

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open Source Language
Understanding and Dialogue Management. Pro-
ceedings of the 31st Conference on Neural Informa-
tion Processing Systems.

Dan Bohus, Sean Andrist, and Mihai Jalobeanu. 2017.
Rapid Development of Multimodal Interactive Sys-
tems: A Demonstration of Platform for Situated In-
telligence. In Proceedings of ICMI, Glasgow, UK.
ACM.

Daniel Braun, Adrian Hernandez Mendez, Florian
Matthes, and Manfred Langen. 2017. Evaluating
Natural Language Understanding Services for Con-
versational Question Answering Systems. In Pro-
ceedings of the SIGDIAL 2017 Conference, pages
174–185.

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong
Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer,
Zbigniew Wojna, Yang Song, Sergio Guadarrama,
and Kevin Murphy. 2017. Speed/accuracy trade-offs
for modern convolutional object detectors. In Pro-
ceedings - 30th IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2017, volume
2017-Janua, pages 3296–3305.

Youngsoo Jang, Jongmin Lee, Jaeyoung Park, Kyeng-
Hun Lee, Pierre Lison, and Kee-Eung Kim. 2019.

PyOpenDial: A Python-based Domain-Independent
Toolkit for Developing Spoken Dialogue Systems
with Probabilistic Rules. In Proceedings of EMNLP.

Casey Kennington, Ting Han, and David Schlangen.
2017. Temporal Alignment Using the Incremen-
tal Unit Framework. In Proceedings of the 19th
ACM International Conference on Multimodal Inter-
action, ICMI 2017, pages 297–301, New York, NY,
USA. ACM.

Casey Kennington, Spyros Kousidis, and David
Schlangen. 2014. InproTKs: A Toolkit for Incre-
mental Situated Processing. In Proceedings of the
15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue (SIGDIAL), pages 84–
88, Philadelphia, PA, U.S.A. Association for Com-
putational Linguistics.

Casey Kennington and David Schlangen. 2015. Simple
learning and compositional application of perceptu-
ally groundedword meanings for incremental refer-
ence resolution. In Proceedings of ACL-IJCNLP
2015, volume 1.

Pierre Lison and Casey Kennington. 2016. OpenDial:
A toolkit for developing spoken dialogue systems
with probabilistic rules. In 54th Annual Meeting of
the Association for Computational Linguistics, ACL
2016 - System Demonstrations.

Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and
Verena Rieser. 2019. Benchmarking Natural Lan-
guage Understanding Services for building Conver-
sational Agents.

Matthew Marge, Stephen Nogar, Cory J Hayes,
Stephanie M Lukin, Jesse Bloecker, Eric Holder, and
Clare Voss. 2019. A Research Platform for Multi-
Robot Dialogue with Humans. Technical report.

Thilo Michael and Sebastian Möller. 2019. ReTiCo:
An open-source framework for modeling real-
time conversations in spoken dialogue systems.
In Tagungsband der 30. Konferenz Elektronische
Sprachsignalverarbeitung 2019, ESSV, pages 134–
140, Dresden. TUDpress, Dresden.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh
Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and
Andrew Y Ng. 2009. ROS: an open-source Robot
Operating System. In ICRA workshop on open
source software.

Andrew Rafla and Casey Kennington. 2019. Incremen-
talizing RASA’s Open-Source Natural Language Un-
derstanding Pipeline. arXiv.

David Schlangen and Gabriel Skantze. 2011. A Gen-
eral, Abstract Model of Incremental Dialogue Pro-
cessing. In Dialogue & Discourse, volume 2, pages
83–111.

Mingxing Tan and Quoc V. Le. 2019. EfficientNet:
Rethinking Model Scaling for Convolutional Neural
Networks. arXiv.

http://arxiv.org/abs/1712.05181
http://arxiv.org/abs/1712.05181
https://doi.org/10.1145/3136755.3143021
https://doi.org/10.1145/3136755.3143021
https://doi.org/10.1145/3136755.3143021
https://www.wit.ai
https://www.wit.ai
https://www.wit.ai
https://doi.org/10.1109/CVPR.2017.351
https://doi.org/10.1109/CVPR.2017.351
http://ailab.kaist.ac.kr/papers/pdfs/emnlp2019.pdf
http://ailab.kaist.ac.kr/papers/pdfs/emnlp2019.pdf
http://ailab.kaist.ac.kr/papers/pdfs/emnlp2019.pdf
https://doi.org/10.1145/3136755.3136769
https://doi.org/10.1145/3136755.3136769
http://www.aclweb.org/anthology/W14-4312
http://www.aclweb.org/anthology/W14-4312
http://arxiv.org/abs/1903.05566
http://arxiv.org/abs/1903.05566
http://arxiv.org/abs/1903.05566
http://wiki.ros.org/smach
http://wiki.ros.org/smach
http://arxiv.org/abs/1907.05403
http://arxiv.org/abs/1907.05403
http://arxiv.org/abs/1907.05403
https://doi.org/10.5087/dad.2011.105
https://doi.org/10.5087/dad.2011.105
https://doi.org/10.5087/dad.2011.105
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946

