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Abstract

We study the problem of schema discovery
for knowledge graphs. We propose a solution
where an agent engages in multi-turn dialog
with an expert for this purpose. Each mini-
dialog focuses on a short natural language
statement, and looks to elicit the expert’s de-
sired schema-based interpretation of that state-
ment, taking into account possible augmen-
tations to the schema. The overall schema
evolves by performing dialog over a collection
of such statements. We take into account the
probability that the expert does not respond
to a query, and model this probability as a
function of the complexity of the query. For
such mini-dialogs with response uncertainty,
we propose a dialog strategy that looks to elicit
the schema over as short a dialog as possi-
ble. By combining the notion of uncertainty
sampling from active learning with general-
ized binary search, the strategy asks the query
with the highest expected reduction of entropy.
We show that this significantly reduces dialog
complexity while engaging the expert in mean-
ingful dialog.

1 Introduction

Increasingly, within and outside of enterprises,
knowledge is represented and stored in knowl-
edge graphs (Pujara and Singh, 2018). Many such
knowledge graphs have a schema (Mitchell et al.,
2015), so that entities and relationships are la-
beled with discrete categories. There has been
a lot of research on annotating natural language
text using the provided schema of such knowledge
graphs(Chakrabarti and Talukdar, 2017).

A task that is often overlooked in this context
is that of designing and updating the knowledge
graph schema itself. It is common for such knowl-
edge graphs schemas to be incomplete. The schema
is typically designed by a human expert ahead of
time based assumptions about the data to be accom-
modated in the future. Thus schema design is not

a one-shot affair, since the expert becomes better
aware of the need once the system is deployed. Up-
dating the schema based on new needs forms an
integral part of maintaining a knowledge graph.

In this paper, we propose dialog with an expert
as a means to construct and update such a schema
using as evidence a collection of short natural lan-
guage statements from the domain. The role of
dialog has been explored in the context of updating
schema-free knowledge(Hixon et al., 2015; Pappu
and Rudnicky, 2014a,b). Our purpose is to recover
the expert’s desired schema for such knowledge.
The proposed overall dialog consists of a sequence
of many mini dialogs. Each mini dialog focuses
on a single short natural language statement, and
recovers the expert’s desired schema-based annota-
tion of the statement, taking into account possible
enhancements to the current schema. The overall
schema is augmented iteratively by performing di-
alog over the collection of statements. The dialog
ends when the agent is able to confidently annotate
all statements with its current schema.

As an illustration, consider the following mini
dialog between a human (H) and an agent (A).
A: I need help with the statement Tom Mitchell works on never-

ending learning. Is Tom Mitchell a Researcher?

H: Yes.

A: Is never ending learning any-of Paper or Topic?

H: It’s a topic.

A: Is this about Researcher writing Paper about Topic?

H: No.

A: Is this about a new entity type?

H: Yes.

A: What is the name of the new entity?

H: This is about a project

A: Is this about Researcher related to Project related to Topic?

H: Yes, that is right.

A: How is Project related to Researcher?

H: Researchers lead projects.

A: How is Project related to Topic?

H: Projects focus on topics.
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A: I understand the statement as researcher Tom Mitchell

leading project focusing on topic never ending learning.

The agent had existing knowledge of certain en-
tity and relationship types, but needed to introduce
the new entity type Project and the relation types
leads(Researcher, Project) and focusesOn(Project
Topic) to the schema. It was then able to associate
a short path from the schema (Research to Project
to Topic) with the statement. It elicited this knowl-
edge from the expert using a short dialog.

Queries are sequentially chosen based on their
‘utility’ - the reduction in uncertainty over path
probabilities. This has high-level similarities with
active learning for structured prediction (Culotta
and McCallum, 2005; Settles and Craven, 2008).
This considers eliciting the entire structured label
for an instance from the expert in one shot. In
reality, experts do not always answer queries. If
the query is too ‘complex’ (e.g. “Which of the
following 100 paths is the right schema path for this
statement?”), the expert is very likely to not answer
at all. On the other hand, a simpler query (e.g.
“Is this statement about a project?”) is more likely
to get a response. Therefore, we consider a mini
dialog for each instance consisting of a sequence
of simple queries, based on their utility.

Each query has an associated probability of re-
sponse from the user, thereby affecting its util-
ity. The response probability depends on the com-
plexity of the query. Active learning literature
has studied no-response probability for complex
queries(Yan et al., 2016). However, the notion of
complexity in this work relates to closeness to the
decision boundary. In the structured prediction set-
ting, we hypothesize that the complexity relates
more to the ‘size’ of the query.

In the presence of such response uncertainty,
given a collection of statements and an initial
knowledge graph, our goal is to design a dialog
strategy that picks the statements in some sequence
and elicits their desired schema paths from the ex-
pert with the shortest overall dialog length.

We propose a dialog strategy that combines the
notion of uncertainty sampling from the active
learning literature with that of generalized binary
search. We iteratively pick the best statement to
query, and then the query for the statement by con-
sidering expected entropy reduction, accounting
for no-response probability. We propose two dif-
ferent types of categorical queries, any-of queries,
where the expert confirms one part of a bi-partition

of the current candidate set, and which-of queries,
where the expert is asked to pick a specific candi-
date from a set. We model response probability as
a parametric function of query complexity, which
we represent as the sum of the lengths of the paths
included in the query. We show that the standard
active learning strategy falls out as a special case of
our strategy when there is no response uncertainty.
The no-response parameters are learnt by the agent
as the dialog progresses.

We evaluate our strategy using a collection of
short statements from the web-page of a large or-
ganization. We show that our proposed strategy
results in meaningful and dialog with an expert
that yields the expert’s desired schema for the orga-
nization via significantly lower dialog complexity
compared to multiple baseline strategies.

2 Related Work

Hixon et al. (2015) investigate the problem of aug-
menting knowledge graphs using an open dialog
with the user to improve factual multiple-choice
science question answering. Earlier work(Pappu
and Rudnicky, 2014a,b) looks at designing dialog
for the related task of information retrieval for aca-
demic events. In all of these cases, the back-end
knowledge graph is type-free and does not involve
a schema. Mazumder et al. (2019) address lifelong
learning via dialog, where they query the expert
back for supporting facts when confronted with
queries for entities and relationships with insuffi-
cient evidence in the knowledge graph. In contrast,
we focus on dialog for augmenting the schema for
typed knowledge graphs.

There is existing work on active learning for
structured output spaces(Culotta and McCallum,
2005; Settles and Craven, 2008; Tong and Koller,
2001). Of these, sequence annotation (Culotta and
McCallum, 2005; Settles and Craven, 2008) also
considers paths, but not on schema graphs. More
importantly, these pose a single query to the expert
for the structured label of an instance. In contrast,
we propose to break this into a series of simple
queries, in view of answer uncertainty, which is not
considered in this line of work.

Active learning with imperfect labelers (Yan
et al., 2016) considers no-response and query com-
plexity. However, since this is not for structured
labels, query complexity does not account for struc-
tural complexity.
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3 KG Schema Learning Problem

Schema and statement schema paths: A
Knowledge Graph schema is a graph G ={E,R}
where E is the set of entity types and R is the
set of binary relation types. For example, a Re-
search domain may have entity types Researcher,
Paper, Project and Topic, and relation types autho-
rOf(Researcher, Paper), affiliatedWith(Researcher,
Project) and focusesOn(Project, Topic).

A typed knowledge graph (or KG in short) K =
(G, I) has a schema G and instances I of the entity
and relation types in G. For example, our Research
KG may contain entity instances isResearcher(T.
Mitchell), isProject(NELL), isPaper(Coupled semi-
supervised learning), and relation instance affiliat-
edWith(T. Mitchell, NELL), etc. We assume that
every entity type has a single Name attribute.

Consider an example statement si: “A scientist
wrote the paper ‘coupled semi-supervised learn-
ing’”. We restrict ourselves to short statements that
refer to at most two entities and two entity types,
which we call ei1, ei2 and ti1, ti2 respectively. In
si, ti1=Researcher, and ‘scientist’ is a mention
of ti1, which we denote as m(ti1). ti2= Paper,
and its mention m(ti2) is ‘paper’. ei2 is a specific
paper instance and its mention m(ei2) is ‘Coupled
semi-supervised learning’. The first entity ei1 is
not explicitly mentioned in this statement. Beyond
mentioning the entities and their types, si also
refers to a connection between them in the schema
via the defined binary relations. We call this the
statement schema path pi, which is a subgraph of
the schema. Here, pi is Researcher-authorOf-Paper.
Typically, given a statement, the above variables
other than mentions are latent or unobserved. We
will assume the availability of a probability model
for the posterior distribution of these variables
P (ei1, ei2, ti1, ti2, pi|m(ei1),m(ei2),m(ti1),m(ti2))
given the mentions in the statement. In Sec.4,
we define such a model and its corresponding
inference and learning algorithms.

An important consideration for such a model
in the context of schema discovery is its abil-
ity to consider entity types (also entities) not
contained in the current KG schema (also in-
stances). Consider the statement s1 from the in-
troduction: “Tom Mitchell works on never end-
ing learning”. The true schema path p1 in this
case looks as follows: Researcher-leads-Project-
focusesOn-Topic. This includes the entity type
Project and relation types focusesOn(Project, Key-

word) and leads(Researcher, Project) which are not
contained in the observed schema G; i.e., p1 6⊂ G.
In order to correctly interpret s1, its schema path
p1, and therefore the schema, needs to be enhanced
to include an additional entity type and two new
relation types. In other words, the posterior dis-
tribution should be capable of assigning non-zero
probability to previously unseen yet likely entity
types and schema paths.

Given a set of statements S and an initial schema
G0, our goal is an enhancement G∗ of G0 such that
the schema paths pi for all statements si ∈ S are
contained in G∗. Along with G∗, the schema paths
for the individual statements are unknown as well,
and need to be identified.

Dialog for schema path discovery: The prob-
lem above is difficult to solve in practice, even
without considering schema enhancements, and
requires very large volumes of training data. To
aid this generally intractable search, we propose a
dialog with an expert. Our task is to design a dia-
log strategy that reduces the uncertainty (entropy)
about the schema path pi for each si ∈ S — and
as a result about the complete schema graph G∗

— as much as possible given a dialog length as a
budget. The length of the dialog is the aggregated
complexity of all the queries posed to the expert
during the dialog.

Our strategy uses one mini dialog for each ques-
tion statement in S. The jth mini dialog considers
some statement si ∈ S, and poses a sequence of
queries to identify the true schema path pi for si.
Each mini dialog consists of a sequence of simple
mini-queries, denoted as q(si). Specifically, the
agent poses two kinds of close-ended mini-queries
to the expert. The first is a binary (yes/no) query
of the form “Is the statement about any of p1 OR
p2 OR ... pk?”, where each p1 is a possible path
in G∗. The second is an n-ary query of the form
“This statement is about which of p1 OR p2 OR ...
pk?” Note that the response for this query can be
‘none’. The paths in the queries can include new
entity and relation types that are not in the current
schema graph. Note that such categorical queries
can only recover the structure of pi. An additional
type of query therefore asks for the names of any
new entity or relation types in pi.

Any such query q(si) has a utility. Intuitively,
utility measures potential reduction in entropy of
the posterior distribution over possible responses to
the query. There reduction is 0 if the query gets no
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response from the expert. The response probability
depends on the complexity of the query. Our goal
is design a strategy that can evaluate the utilities
for the different query types taking into account no-
response probability, and then select the mini-query
with the best utility at each step.

4 Candidate Schema Paths

In this section, we discuss a probabilistic model
for schema paths for a statement, and then an al-
gorithm for finding the best schema path given a
statement along with their probabilities. This is
not the focus of our work, and ideally we would
prefer to use a state of the art method for this task.
There has been recent progress on joint linking of
mentions in short statements to entities and rela-
tionships in a knowledge graph (Sakor et al., 2019).
This is similar to our task, but does not consider the
possibility of extending the current schema with
new entity and relationship types. There is also
work on inferring paths in schema-based knowl-
edge graph given a query node (Lao et al., 2011)
using random walks. We extend this line of work
for statements with mentions while also consider-
ing new schema nodes in the random walk. In this
section, we first explain our probabilistic model,
and then the candidate path sampling algorithm.

4.1 Model for Schema Paths

For a statement si such as “Researcher Tom
Mitchell works on never ending learning”, and a
current KG K(G, I), our first goal is to define a
posterior distribution for the types and path for si.
This statement has entity mentions m(ei1)=‘Tom
Mitchell’ and m(ei2)=‘never ending learning’, and
one type mention m(ti1)=‘Researcher’. The sec-
ond type mention is absent.

Mention identification is not the focus of our
work, and we use simple unsupervised NLP tech-
niques which were sufficient for our purposes.
These may be substituted with more sophisticated
supervised techniques when needed without af-
fecting the remaining components of our solution.
We assume that a verb phrase separates the first
(m(ei1),m(ti1)) and second (m(ei2),m(ti2)) set
of entity and type mentions, such as ‘works on’
in this statement. We use a combination of noun
phrase detection and named entity detection from
nltk1 to identify me1 and me2.

1https://www.nltk.org/

We factorize the posterior distribution as

P (ei1, ei2, ti1, ti2, pi|mi1,mi2)

=P (ei1, ti1|mi1)P (ei2, ti2|mi2)P (pi|ti1, ti2)
(1)

We have used mi1 and mi2 as shorthand for
m(ei1),m(ti1) and m(ei2),m(ti2) respectively.
Here, the first term is the posterior distribution over
the entity and type for the first mention pair, the
second that for the second mention pair, and the
third is the posterior for the schema path given the
two entity types.

We assume the first two distributions to be identi-
cal. We associate two distributions with each entity
type ti in the current KG. The first θti is a distri-
bution over entity instances e currently associated
with ti. For example, the Researcher type may
have a non-zero probability over entity instances
Tom Mitchell, Will Cohen, etc. The second φti is
over possible mentions of this type. For example,
the type Researcher may have non-zero probability
over mentions researcher, scientist, professor, etc.
An individual entity instance ei also has a distribu-
tion φei over possible mentions of it. For example,
entity Tom Mitchell has non-zero probability over
different ways of mentioning the name, e.g. Tom
Mitchell, T. Mitchell, etc. Accordingly, the pos-
terior distribution over type and entity is further
factorized as

P (ei1, ti1|m(ei1),m(ti1)) ∝
P (m(ei1)|ei1;φe)P (m(ti1)|ti1;φt)P (ei1|ti1; θt)

(2)

For previously encountered mentions, we use these
two distributions to identify the most likely type.
For new mentions, the type could be one of the
existing types in E or a new type. For this, all
three sets of distributions are smoothed to allow for
previously unseen mentions and entities.

We now come to the posterior distribution
P (pi|ti1, ti2) of the connecting schema path given
the two entity types. We model the statement path
as a random path in a partially-observed schema
graph, with start probabilities over entity types and
transition probabilities over relations between en-
tity types. The path needs to start at ti1 and end
at ti2. This is similar to random walks used in
(Lao et al., 2011) for link prediction in knowledge
graphs. The difference is that we admit the possibil-
ity of previously unseen entity and relation types.
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The probability of a statement path is defined as:

P (pi|ti1, ti2;π,Q) = Ps(ti1)
∏

(tj ,tk)∈pi

Pt(tk|tj)

(3)

where Ps( ) is the distribution over start entities
of the random walk, and Pt( |tj) is the transition
distribution from entity type tj to other entity types.

The definitions for π and Q need to account for
new entity and relationship types. Accordingly,
we define the probability π(k) of the random path
starting at entity type k as follows:

Ps(k) ∝ nk + αe for existing k

∝ αn for new k

Here, nk is the number of previously seen edges
from entity type k, and αe > 0 allows new start
entities. Similarly, the probability Pt(k|j) of entity
type k following entity type j in the path is defined
as follows:

Pt(k|j) ∝ njk + βee for existing j and k

∝ βen for existing j, new k

∝ βne for new j, existing k

∝ βnn for new j and k

Here, njk is the number previously seen transi-
tions from entity type j to entity type k, and
βee > βne, βen > βnn > 0 allows transitions
from and to previously unrelated and unseen entity
types. The intuition is that (a) more frequently seen
transitions are more likely, and (b) while encounter-
ing new entities and relationships is possible, that
probability progressively reduces with increasing
training count.

4.2 Sampling Algorithm for Schema Paths
Since all the distributions involved are multinomi-
als, their parameters can be estimated in a closed
form, given an initial KG and training statements
labeled with schema paths. Given estimates of
these parameters, we now address the problem of
identifying possible candidate paths for a statement
along with their probabilities.

Having defined the distribution over schema
paths p for a statement s, we need to identify the
top-k most likely schema paths. For this, we use
a MCMC technique based on Metropolis Hasting
sampling (Neal, 1993; Andrieu et al., 2003) that
performs a random walk over the space of schema

paths for a statement. This requires a proposal dis-
tribution q(p′|p) over possible next paths p′ given
the current path p. We define the neighbors p′ of
any statement path p using two operations. (a)
Vertex insertion: This introduces a vertex between
currently adjacent entity types in p. For example,
Researcher-rel-Topic has Researcher-rel-Paper-rel’-
Topic as a vertex-insertion neighbor. Note that this
inserted entity type can be an existing type or a new
one. Vertex insertion can operate on any currently
adjacent pair of types in the statement schema path.
(b) Vertex collapse: This is the inverse of vertex
insertion. This collapses an intermediate vertex of
p by introducing a direct edge between its neigh-
bors. Vertex collapse can operate any current in-
termediate vertex of the schema path. At each
step, we sample a neighbor using a uniform pro-
posal distribution q(p′|p) over all the neighbors p′

of the current schema path p defined by these two
operations, and accept the sample with probabil-
ity A(p′, p) = min{1, p(p

′)q(p|p′)
p(p)q(p′|p) }, where the path

probabilities follow Eqn.1.

5 Dialog for Schema Path Discovery

At this point, for each statement si, we have n can-
didate schema paths pi1, pi2, . . . , and their proba-
bilities. Our task now is to minimize the entropy of
schema path predictions over all statements with
a dialog of length L, knowing that the expert may
not answer all queries.

Let us recall the standard active learning
paradigm: (a) select the next statement for expert
labeling, (b) acquire expert’s preferred label for
selected statement, (c) retrain model with newly
labeled statement in training data, and continue
until budget is exhausted. For selecting the next
statement, the principle of uncertainty sampling is
followed, with entropy as the notion of uncertainty
(Hwa, 2004). In step (b), the expert provides the
preferred label in one shot, even for structured out-
put spaces (Culotta and McCallum, 2005). We call
this interaction format the active learning dialog
format and the overall strategy the entropy-based
active learning strategy (E-AL).

Our major departure from this strategy is in step
(b). We may present the expert with candidate
schema paths and ask the expert to pick one. We
call this a which-of query. When the list is long,
this is unlikely to receive a response.

In addition, we can elicit the schema path with
a mini-dialog, which is a sequence of simple mini-
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queries. The basic idea is to iteratively prune the set
of remaining candidates by splitting into two parts
at each step, showing any one part to the expert and
querying if it contains his preference. We call this
an any-of query. Within a mini dialog (step (b)),
our strategy repeatedly chooses the best (which-of
or any-of) mini-query until the complete schema
path is obtained from the expert. We call this the
mixed any-which mini dialog format.

We can see that this is more general than the
active learning dialog format.
Lemma 1. The mixed any-which mini dialog for-
mat reduces to the active learning dialog format
when each mini dialog has a single which-of query.

For completion, we point out that if the elicited
schema path in a mini dialog includes new entities
and relationships, their names are also elicited from
the expert via name queries. An example name
query may be “What is the name of the new entity
related to both researchers and topics?”.

Generalized binary search and Entropy Reduc-
tion: At any step within a mini dialog, the strat-
egy needs to choose between the which-of query
and many possible any-of queries, one for each
bi-partition of the remaining candidate set. To eval-
uate different queries, we define the utility u(q)
of a query q borrowing from entropy-based un-
certainty sampling and generalized binary search
(Pelc, 2002).

Let P k
i be the set of remaining candidates at step

k of the mini dialog for statement si, and eki denote
the entropy of the candidate distribution. A bi-
partition πki splits P k

i into P k
i1 and P k

i2 such that the
entropies of the two splits are eki1 and eki2. Depend-
ing on the expert’s response to the any-of query
with this bi-partition, either P k

i1 or P k
i2 becomes the

next candidate set. So the residual entropy after
this query is either (eki − eki1) or (eki − eki2). We
define the utility u(q) of this bi-partition (any-of)
query q as the average reduction of entropy after
the query, which is pki1(e

k
i − eki1) + pki2(e

k
i − eki2),

where pki1 (pki2) is the sum of candidate probabilities
in the first (second) split.

Instead of all partitions, we order the candidate
schema paths by probability, and consider each
position in the order as a possible splitting point.

The alternative to partitioning is to present the
entire set of candidates P k

i to the expert and pose a
which-of query. If the expert responds to this query,
this mini dialog concludes and the entropy becomes
0, so that the utility (reduction in entropy) of the

which-of query is eki . But this query is ‘complex’
and may not be answered by the expert.

Response uncertainty and Expected utility:
Utility as defined above is not sufficient when
queries are not answered with certainty. We
define the complexity c(q) of a query q as
the sum of lengths of the paths specified in
the query. For example, the query “Is this
about Researchers-relatedTo-Projects-relatedTo-
Topics?” has complexity 3, while the query “Is this
about Researchers-relatedTo-Projects-relatedTo-
Topics OR Researchers-relatedTo-Topics?” has
complexity 5. We model the no-reponse probabil-
ity r(q) for a query as a function of its complexity.
We have the option of various squashing functions
which map positive integers to [0, 1]. We use the
generalized logistic function:

r(q) =
1

1 + exp(−w × (c(q)− t))
(4)

Using this definition of no-response probability,
we define the expected utility of a query as ū(q) =
u(q)(1−r(Q)). Our strategy picks that mini-query
at step k of a mini dialog that maximizes this ex-
pected utility. If the expert does not respond, then
the next best mini-query is posed.

Having introduced the notion of expected utility
to deal with no-response probability, we also mod-
ify step (a) of the framework by using expected util-
ity instead of entropy to select the next statement
for mini dialog. The expected utility of a statement
is taken to be the maximum of the expected utili-
ties of the which-of query and the possible any-of
queries for its candidate set. This completes the
description of our overall expected utility based
dialog strategy (EU).

Theorem 2. When the expert’s response probabil-
ity is 1, and the dialog strategy is aware of this,
the EU dialog strategy recovers the entropy-based
active learning strategy (E-AL).

The proof follows from the observation that
when response probability is 1, the query with the
highest expected utility is the which-of query on
the entire set of candidates, and a mini dialog re-
duces to a single which-of query. So the dialog
format becomes identical to that of active learning.
Further, expected utility and entropy lead to the
same statement being selected for querying.

Thus E-AL is a special case of the EU dialog
strategy which is meaningful when the expert al-
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ways responds. Our experiments show that EU far
outperforms E-AL under response uncertainty.
Query for a partition: Having selected a bi-
partition for an any-of query, the query for it needs
to be formulated. Recall that any-of queries have
the form “Is the statement about any of p1 OR p2
OR ...?”. The naive query for a partition enumer-
ates all the paths in the smaller split. Instead, we
identify the smallest discriminating path feature
for the two parts of the partition — such as nodes,
edges, length-2 paths, etc. For example, if all the
paths in one of the splits contain the entity Paper,
and no path in the other split contains it, then a
possible query for the partition is the following: “Is
the statement about papers?”. Being a less complex
query, this is much more likely to get a response.
Estimating response probability: At the start
of a dialog, the agent has an initial guess about the
expert’s response probability model. After receiv-
ing responses or non-responses for specific queries,
the parameters of this model can be estimated. On
the conclusion of a mini dialog, we update the pa-
rameters w and t in the standard way for logistic
regression using gradient descent.

6 Experiments

For empirical evaluation, we experimented with
statements collected from the website of a large
multi-national company, to see how accurately an
expert’s desired schema behind the website data
can be recovered. From 64 web-pages on the com-
pany’s website, we picked short statements repre-
sentative about the company’s business, each con-
taining at most 2 pairs of entity / type mentions.
This resulted in a dataset of 850 short statements.
In addition, we obtained from an expert a schema
for the company’s business, which covers the state-
ments that were picked. The resultant schema con-
tains 15 entity types and 17 relationships between
these. Using this schema, we manually annotated
the statements with entities, entity types and type
paths. About 40% statements had schema paths of
length 1 and remaining of length 2. We used 200
the statements for train and the remaining 650 for
test, ensuring that all entity and relation types used
in the test schema paths are covered in the train.

To simulate the expert for large-scale experimen-
tation, we used an ‘expert bot’ that had knowl-
edge of the gold standard schema paths. The no-
response parameters of the expert bot were manu-
ally specified. For each query, the expert bot sam-

pled from a Bernoulli distribution for the query to
decide whether or not to respond.

To evaluate a dialog, we use the learning curve,
where we plot the length of the dialog (terms of
number of mini-queries) against the correctness of
the inferred schema paths for the statements in the
test set as compared with the gold-standard schema
paths, evaluated using the F1 measure.

Our proposed dialog strategy EU - L, picks the
next statement for mini-dialog and also the next
mini-query within a mini-dialog using expected
utility (EU) , and further learns (L) the no-response
parameter based on the expert’s action (response
/ no-response). We compare our strategy against
a few baselines. EU does not learn the expert’s
no-response probability. Random + EU picks the
next statement for dialog uniformly at random (R),
instead of expected utility, but uses expected utility
(EU) to selected the query within a mini dialog. E-
AL++ uses entropy (E) reduction assuming certain
response for selecting the next statement for dia-
log as well as the next query within a mini dialog.
Note that this is still more powerful than the E-AL
strategy(Culotta and McCallum, 2005), which only
poses which-of queries assuming the expert will
respond. This makes no progress for non-zero no-
response probability. In contrast, E-AL++ uses the
mixed any-which mini-dialog format and has the
flexibility to pose any-of queries by partitioning.
In addition, we also evaluate as a skyline EU-O,
where the agent is an oracle (O) with perfect knowl-
edge about the expert’s no-response parameters.

Figure 1: Learning curve for various dialog strategies

In the first experiment, the agent has knowledge
of the complete schema, and does not need to con-
sider new entity or relation types. In Fig.1, we plot
the performances of EU-L along with the base-
lines. For each strategy, we plot the number of
mini-queries on the x-axis and cumulative F1 on
the test set after re-estimating parameters and re-
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inferring paths at the end of a mini-dialog on the y-
axis. E-AL++ performs quite poorly and gets very
little improvement in accuracy. Accounting for no-
response via expected utility for selecting the query
within a mini dialog (Random + EU) makes some
improvement over this, but a EU makes a major
improvement by using expected utility when select-
ing the next statement for dialog. Finally, EU-L
makes a steady improvement by estimating the no-
response parameters. Note that the skyline EU-O
with perfect knowledge of the no-response parame-
ters performs the best, but EU-L catches up with it
as the dialogs progress, showing the effectiveness
of our learning strategy. We also note that E-AL++
can be seen as a special case of EU where the agent
assumes that the expert always answers and does
not update this model.

Average number of mini-queries per statement
is very different for different strategies. This is 39
for E-AL++, 7.0 for Random EU, 7.0 for EU and
finally to 6.0 for EU-L. Average query complex-
ity (number of entity type nodes in a query) also
varies significantly across the strategies. For E-AL
(only which-of queries), average query complexity
is 73.5, which explains why it makes no progress
for non-zero no-response probability. This drops to
46 for E-AL++, 5.4 for Random EU, 4.8 for EU
and finally to 2.7 for EU-L. Beyond dialog length,
this also helps to highlight the benefit of expected
utility and learning.

In the first experiment, the agent had knowledge
of the complete schema, and only needed to detect
occurrences of known entity and relation types in
schema paths. We call this agent EU-L Detect.
In the second experiment we compare this with
an agent EU-L Discover, which only has partial
knowledge of the schema at the start, and discov-
ers new entity and relation types via dialog. In
the training data for EU-L Discover, we randomly
removed 5 entity types from the schema, which
appear either as intermediate nodes as well as end
nodes in the statement paths. We also removed the
9 relationships involving these entity types. This
resulted in a pruned schema with 10 entities and
8 relationships. Statements associated with prune
relationships were removed from the training data.
In contrast, EU-L Detect was given the complete
training data and the complete schema.

Fig.2 shows the performance of the two agents.
Unsurprisingly, performance of EU-L Discover
trails that of EU-L Detect, but it makes steady im-

Figure 2: Learning curves for discovery and detection

provement as the dialog progresses.
In summary, we have shown that with response

uncertainty, the EU strategy works significantly
better than E-AL for detecting and discovering
schema paths for short natural language statements,
thereby enabling the enhancement of the underly-
ing schema for the domain. On top of this, estimat-
ing the no-response parameters of the expert leads
to further improvements in the learning curve.

7 Discussion and Future Work

We have introduced the problem of discovering the
schema for the knowledge graph for a domain by
engaging in dialog with an expert about interpret-
ing short natural language statements in terms of
the desired schema. We have proposed dialogue
strategy that is aware of no-response probability
for the expert, and accounts for it in its strategy
by splitting the interaction for a statement into a
sequence of short and simple queries, which are
chosen using expected utility. The agent also es-
timates the no-response parameters for an expert.
We have demonstrated that the proposed strategy
is able to discover a schema starting from an initial
partial observation. This goes well beyond the state
of the art in active learning for structured spaces.

However, much remains to be done. One short-
coming of our expert model is that we have consid-
ered no-response to be the only form of ‘noise’. In
reality, the expert, when presented with a complex
question, may provide an incorrect response, and
the algorithm should be resilient to a small proba-
bility of such erroneous responses. Next, we have
only considered simple statements for which the
statement graphs are paths. In general, such state-
ment graphs can be trees or directed acyclic graphs.
We will investigate these aspects in future work.
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A Appendices

As appendix, we provide more details on the state-
ment data preparation and include some example
mini-dialogs generated on test statements by the
EU-L strategy.

A.1 Statement Data Preparation
We prepare our statement data from the website of
Tata Consultancy Services (TCS), which covers dif-
ferent Industries, Services, Products and Platforms
and has web-pages under these covering Solutions,
Insights, Customer Testimonials and Success Sto-
ries, White papers, etc. Each web-page is partially
structured mentioning key people and their desig-
nations, names of clients, services and industries,
along with descriptions of challenges, innovations
and results. We model each web-page as a rooted
directed acyclic graph, with each of the above as
individual nodes. Then we consider pairs of nodes
from within each web-page and create a statement
with these by connecting them with templatized re-
lation strings. The following are examples: Client
Woolworths Supermarkets appears in the context of
Technology Operations, Malaysia Airlines is men-
tioned in the context of Industries Airline Industry,
etc. Note that the original web-pages mention en-
tity types in some cases, such as in Client Wool-
worths Supermarkets, but not in others, such as in
Malaysia Airlines. The statements are created to
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match this data. For each statement, the unique
connecting path between the two end nodes is ini-
tially set as the gold-standard path and then verified
manually.

A.2 Example Mini Dialogs

We present three example mini-dialogs between the
agent (A) and the Expert (E) bot. Each agent query
is annotated with type of the query and its subject.
The query type can be any-of, which-of or name
query. Further, an any-of query can be enumerated
or posed using a discriminating feature, such as
node or short sub-path. The subject of the query
can be the entity, its type or the path connecting
two types. In addition to queries, the agent also
provides context to the expert by stating facts that
about which it is confident. These illustrate that the
agent has basic NLU capabilities so that the expert
does not have to stick to categorical answers.

The first example mini-dialog is a short one and
includes examples of any-of enumeration queries
on path and type and a which-of path query.
A: I need help with the statement Client Woolworths Super-

markets appears in the context of Technology Operations.

A: In Client Woolworths Supermarkets, I know Client means

type CLIENT.

A: I know Woolworths Supermarkets means CLIENT Wool-

worths Supermarkets.

A: Is the type of Technology Operations any-of the following:

SERVICE? [any-of-enumeration, type]

E: yes

A: Is the statement about any-of the following? CLIENT

related-to SERVICE? [any-of-enumeration, path]

E: no

A: Is the statement about any-of the following? [any-of-

enumeration, path]

1.CLIENT provides CUSTOMER TESTIMONIAL for SER-

VICE

2.CLIENT has SUCCESS STORY for SERVICE

E: yes

A: Which of the above? [which-of, path]

E: first one

A: Ok. I understand the statement as Client Woolworth pro-

vides Customer Testimonial for Service Technology Opera-

tions.

The second example mini-dialog additionally in-
cludes examples of which-of query on type, any-of
discriminating node query on path, and discovery
of a new entity.
A: I need help with the statement Malaysia Airlines appears

in the context of Industries Airline Industry.

A: Is the entity for Malaysia Airlines any-of the following:

new entity? [any-of-enumeration, entity]

E: yes

A: The type for Malaysia Airlines is which of the following?

[which-of, type]

1.CUSTOMER TESTIMONIAL

2.RESULTS

3.PARTNERSHIP

4.LEADERSHIP

5.CLIENT

6.SERVICE

7.INDUSTRIES

E: It is a Client

A: In Industries Airline Industry, I know Industries means

type INDUSTRIES.

A: Is the entity for Airline Industry any-of the following: new

entity of type INDUSTRIES? [any-of-enumeration, entity]

E: yes

A: Is the statement about any-of the following: SUCCESS

STORY? [any-of-discriminating-node, path]

E: yes

A: Ok. I understand the statement Client Malaysia Airlines

has Success Story for Industries Airline Industry.

The third example mini-query additionally in-
cludes examples of a no-response from the expert,
discovery of new types and relations and name
queries for these.
A: I need help with the statement Client Ceridian appears in

the context of Industries Communications, Media & Technol-

ogy.

A: In Client Ceridian, I know Client means type CLIENT.

A: Is the entity for Ceridian any-of the following: new entity

of type CLIENT? [any-of-enumeration, entity]

E: Yes

A: In Industries Communications, Media & Technology, I

know Industries means type INDUSTRIES.

A: Is the entity for Communications, Media & Technology

any-of the following: new entity of type INDUSTRIES? [any-

of-enumeration, entity]

E: yes

A: Is the statement about any-of the following: CLIENT has

SUCCESS STORY for INDUSTRIES? [any-of-enumeration,

path]

E: no

A: Is the statement about any-of the following: CLIENT re-

lated to INDUSTRIES? [any-of-enumeration, path]

E: no

A: Is the statement about any-of the following? [any-of-

enumeration, path]

1.CLIENT related to SERVICE mentioned in SUCCESS

STORY for INDUSTRIES
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2.CLIENT has SUCCESS STORY for SERVICE related to

INDUSTRIES

3.CLIENT related to SERVICE related to INDUSTRIES

4.CLIENT related to BENEFITS related to INDUSTRIES

E: [no answer]

A: Is the statement about any of the following: NEW TYPE

related to INDUSTRIES? [any-of-discriminating-edge, path]

E: yes

A: What is the name of the new type? [name, entity]

E: customer testimonial

A: Could you tell me how CLIENT is related to CUSTOMER

TESTIMONIAL? [name, relation]

E: client provides customer testimonial

A: Could you tell me how CUSTOMER TESTIMONIAL is

related to INDUSTRIES? [name, relation]

E: customer testimonial belongs to industries

A: Ok. I understand Client Ceridian provides Customer Testi-

monial belongs to Industries Communication, Media & Tech-

nology.


