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Abstract

Contextualized language modeling using deep
Transformer networks has been applied to a va-
riety of natural language processing tasks with
remarkable success. However, we find that
these models are not a panacea for a question-
answering dialogue agent corpus task, which
has hundreds of classes in a long-tailed fre-
quency distribution, with only thousands of
data points. Instead, we find substantial im-
provements in recall and accuracy on rare
classes from a simple one-layer RNN with
multi-headed self-attention and static word em-
beddings as inputs. While much research has
used attention weights to illustrate what input
is important for a task, the complexities of our
dialogue corpus offer a unique opportunity to
examine how the model represents what it at-
tends to, and we offer a detailed analysis of
how that contributes to improved performance
on rare classes. A particularly interesting phe-
nomenon we observe is that the model picks
up implicit meanings by splitting different as-
pects of the semantics of a single word across
multiple attention heads.

1 Introduction

Many semantic classification tasks have seen a
huge boost in performance in recent years (Wang
et al., 2018, 2019), thanks to the power of con-
textualized language models such as BERT (De-
vlin et al., 2019), which uses a Transformer
(Vaswani et al., 2017) architecture to produce
context-specific word embeddings for use in down-
stream classification tasks. These large, data-
hungry models are not always well suited to tasks
that have a large number of classes or relatively
small data sets (Mahabal et al., 2019).

One task having both of these inauspicious prop-
erties is the Virtual Patient corpus (Jin et al., 2017),
a collection of dialogues between medical students
and a virtual patient experiencing back pain. The

corpus contains examples of nearly 350 questions
that the virtual patient knows how to answer, and
the interaction is modeled as a text-based conver-
sation in which the human, as the interviewer of
the patient, always has the conversational initiative.
Thus, the corpus represents a question identifica-
tion task from the perspective of the dialogue agent,
in which natural language inputs must be mapped
to semantically equivalent classes, so that the ap-
propriate fixed response can be returned to the user
to achieve the desired pedagogical objectives.1

Many of the classes in this task are distinguished
in subtle ways, e.g., in degree of specificity (“Are
you married?” vs. “Are you in a relationship?”)
or temporal aspect (“Do you [currently] have any
medical conditions?” vs. “Have you ever had a
serious illness?”). A few classes are very frequent,
but many appear only once in the data set, with
almost three quarters of the classes comprising only
20 percent of the examples (Jin et al., 2017).

The current best approach to this task uses an en-
semble of Text CNNs (Kim, 2014) combined with a
rule-based dialogue manager (Wilcox, 2019) via a
logistic regression model, to leverage complemen-
tary performance characteristics of each system on
the rare classes (Jin et al., 2017). This approach
naı̈vely treats all classes as orthogonal, so the se-
mantic similarity of the classes above can be prob-
lematic. Ideally, a model should be able to learn
the semantic contributions of common linguistic
substructures from frequent classes, and use that
knowledge to improve performance when those
structures appear in infrequent classes.

We hypothesize that multi-headed attention
mechanisms may help with this kind of general-
ization, because each head is free to specialize, but
should be encouraged to do so cooperatively to

1We are currently working to anonymize this corpus, and
we will release code and data at https://github.com/
OSU-slatelab/ when it is available.

https://github.com/OSU-slatelab/
https://github.com/OSU-slatelab/
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maximize performance. Three different methods
of utilizing BERT-based architectures for this task
surprisingly did not improve upon the performance
of the CNN models of Jin et al. (2017). In contrast,
a very simple RNN equipped with a multi-headed
self-attention mechanism improves performance
substantially, especially on rare classes. We as-
sess the reasons for this using several techniques,
chiefly, visualization of severely constrained inter-
mediate representations from within the network,
and agglomerative clustering of full representations.
We find evidence that independent attention heads:
1) represent the same concepts similarly when they
appear in different classes; 2) learn complementary
information; and 3) may learn to attend to the same
word for different reasons. This last behavior leads
to discovery of idiomatic meanings of some words.

2 Related Work

Self-attention, in which a model examines some
hidden representation to determine which portions
of that representation should be passed along for
further processing, became prominent relatively
recently (Vaswani et al., 2017; Lin et al., 2017).
These models have been very successful for some
tasks (Wang et al., 2019), but other approaches
may work better for classification tasks with many
classes and few examples (Mahabal et al., 2019).
We explore two types of self-attentive models for a
virtual patient dialogue task (Danforth et al., 2013;
Jaffe et al., 2015), which has many classes and
scarce data. Previous authors have used memory
networks (Weston et al., 2015) to improve perfor-
mance on rare classes for this task (Jin et al., 2018).

Despite the contrast presented above, our self-
attentive model actually shares characteristics with
the work by Mahabal et al. (2019), as we find that
individual word tokens carry parallel meanings.

We present a detailed analysis of our model’s
behavior using clustering and visualization tech-
niques; this bears a resemblance to the analysis
by Tenney et al. (2019), although they use internal
representations to make predictions for linguistic
tasks, rather than examining correlations between
representations and individual input tokens.

3 Task and Data

As described above, our task is a text-based
question-answering task for an agent that has a
fixed set of responses. The goal is to classify input
queries as paraphrases of canonical questions that

the agent knows how to answer, so we call this a
question identification task.

Data are collected from actual user interactions
with a virtual patient, which is a graphical avatar
with a text input interface and subtitles as output.
After collection, the system’s responses are anno-
tated as correct or not, and if not, annotated with
the correct label. Jin et al. (2017) used a data set
consisting of 4,330 inputs, comprising 359 classes.
We extended this data set by replicating the hybrid
system described in their work, and deploying it to
collect more data. This resulted in a combined data
set of 9,626 examples over 259 dialogues.

We noticed that the annotation method for the
data used by Jin et al. (2017) introduced a bias for
classifications that produce acceptable responses,
since only examples deemed to be incorrect were
reviewed to identify the correct class. Since our
evaluation metrics are on the basis of classes and
not the agent’s responses, we re-annotated every
example, with the aim of maximizing the semantic
equivalence of members of the same class. This
resulted in the elimination and addition of some
classes, leaving 348 in the re-annotated set. The
long-tailed distribution is no less a problem in the
re-annotated set than in the original, but our base-
line outperforms theirs since we use cleaner data.

We hold out 2,799 examples from the com-
bined set as a test set, and perform tenfold cross-
validation on the training set for development. The
test set only contains 268 classes, but fifteen are
unseen in the training data (other than the canonical
question, see Appendix A).

4 Experimental Design and Results

We start from a Text-CNN baseline for this task
(Jin et al., 2017), utilizing a single stream system
for comparisons. This system convolves GloVe
word embeddings with 300 filters of widths 3, 4,
and 5; the max of each filter over the sequence
serves as input to a fully connected leaky ReLU
layer (Nair and Hinton, 2010), followed by a soft-
max layer.

We compare this against two contextual models:
the relatively well known Fine-tuned BERT (De-
vlin et al., 2019) using the pretrained base model 2,
as well as a variant of a simpler RNN model with

2https://github.com/google-research/
bert

https://github.com/google-research/bert
https://github.com/google-research/bert
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System Acc. (%) F1
Baseline CNN 80.7 55.6
BERT Fine-tune 79.8 46.6
Self-attention RNN 82.6 61.4
BERT Static CNN 76.9 49.4
BERT Contextual CNN 75.3 45.2
Mean-pool RNN 81.8 59.4
Bottleneck RNN 80.8 57.2

Table 1: Dev set results comparing different models
(top, Sec. 4), word embeddings (middle, Sec. 5.1), and
attentional mechanisms (bottom, Sec. 5.2).

self-attention (Lin et al., 2017).3 Note that despite
extensive experimentation, only minor modifica-
tions of the work of Lin et al. (2017) proved bene-
ficial for our task, so the architecture we describe
here is not a novel contribution.

The self-attentive RNN is a single-layer BiGRU
(Cho et al., 2014) equipped with a two-layer per-
ceptron that takes hidden states as inputs, and pro-
duces one attention score for each of eight atten-
tion heads, for each input step. These scores are
then softmaxed over the input, and the attention-
weighted sum of the corresponding hidden states
serves as the value of the attention head. These
values are concatenated and fed into a fully con-
nected layer with tanh activations, and a softmax
output determines the class. We use dropout of 0.5
in the attention module and in the fully connected
layer. The size of hidden states in the BiGRU is
500 dimensions (in each direction), the size of the
hidden layer in the attention module is 350 units,
and the fully connected classification layer has 500
dimensions. The original model utilizes an orthog-
onality constraint on the attention vectors for each
attention head, but we find that this is detrimental
to our task, so we disable it.

Training parameters for all three models are pro-
vided in Appendix A.

The development set results (top 3 lines of Ta-
ble 1) were a bit surprising to us: while we expected
that contextual models would outperform the base-
line CNN, fine-tuned BERT performed compara-
tively poorly. The Self-attention RNN, however,
performed significantly better than the baseline
CNN, which carries over to a smaller degree to the
test set (CNN: 76.2% accuracy, 51.9% F1; RNN:

3https://github.com/ExplorerFreda/
Structured-Self-Attentive-Sentence-
Embedding

79.1% accuracy, 54.7% F1).4 A breakdown of accu-
racy by class frequency quintiles for the test results
is shown in Figure 1, to emphasize the relationship
between F1 and rare class performance.

In particular, the BERT model has a very low
F1, likely because of the large number of subtly
distinguished classes, the relatively small data set,
and the high degree of freedom in the BERT model.
That is, BERT may be representing semantically
similar sentences in nearby regions of the repre-
sentation space, but with enough variation within
those regions that our training set does not permit
enough examples for the classifier to learn good
boundaries for those regions. Alternatively, the
masked language modeling task may simply not
induce the grammatical knowledge required to dis-
tinguish some classes well.

The success of one attention-based contextual
model (Self-attention RNN) and the failure to im-
prove of another (Fine-tuned BERT) led us to ask
two analytical questions: first, are the BERT repre-
sentations not as appropriate for the Virtual Patient
dialog domain compared to GloVe embeddings?
Second, is there something that we can learn about
how the attention-based method is helping over the
CNN (and particularly on F1)?

5 Analysis

5.1 Why did BERT perform less well?
The difference in accuracy from the baseline CNN
model to the BERT fine-tuning result is fairly small,
while the drop in F1 is substantial. Since there are
many more infrequent than frequent classes, this
suggests that BERT is seriously underperforming
in the least frequent quintiles, and making up for
it in the most frequent. That, in turn, supports the
interpretation that small numbers of examples are
inadequate to train a classifier to handle the varia-
tion in representations that come out of a contextu-
alized model. This would be consistent with other
research showing poor performance of BERT in
low-data regimes (Mahabal et al., 2019). Some of
the discrepancy may also be explained by a domain
mismatch. The BERT base model is trained on
book and encyclopedia data (Devlin et al., 2019),
to provide long, contiguous sequences of text. In
contrast, our inputs are short, conversational, and
full of typos. GloVe.42B, trained on web data (Pen-
nington et al., 2014), may simply be a better fit for

4We only tested on the baseline and best system in this
paper to minimize use of the test set for future work.

https://github.com/ExplorerFreda/Structured-Self-Attentive-Sentence-Embedding
https://github.com/ExplorerFreda/Structured-Self-Attentive-Sentence-Embedding
https://github.com/ExplorerFreda/Structured-Self-Attentive-Sentence-Embedding
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Figure 1: Quintile accuracies for the tested RNN and
CNN baseline

our corpus.
To try to tease apart the contributions of model

architecture and learned representations, we uti-
lized two different embeddings within the CNN:
the contextual BERT embeddings from the first
layer5 of the BERT model, and a static BERT em-
bedding for each token calculated from the average
contextual embedding over all instances of the to-
ken in our corpus.

The worst of our BERT-based models is the full
contextualized embeddings fed into the baseline
CNN. Since the classification architecture is the
same as the baseline, this suggests that a signifi-
cant contributor to the reduced performance of the
BERT-based models is the contextualized represen-
tations themselves. It seems that stable representa-
tions of lexical items are beneficial for generaliz-
ing to unseen sentences when few training exam-
ples are available. Consistent with this, the static
BERT CNN result, despite a lower accuracy than
the fine-tuning result, shows a gain in F1. Again,
this supports the idea that variation is harmful for
rare classes, since stable representations of infor-
mative words for those classes help.

5.2 Analyzing the Self-attention RNN

One question is how much attention versus recur-
rency is playing a role in the Self-attention RNN’s
improvements. We replaced the attention mecha-
nism with mean pooling over the input, control-
ling for parameter counts by replicating the mean
hidden state once for each attention head; Table 1
shows that performance is intermediate between
the CNN and the self-attentive RNN, suggesting

5Empirically, and surprisingly, this worked better than
other layers.

that the attention does play a role.

To better understand the behavior of the self-
attentive RNN, we employ a relatively novel
method of analyzing attention: we insert bottle-
neck layers of just eight dimensions after each
attention head, with sigmoid activations and no
dropout. This adds another nonlinearity into the
model, but reduces the total number of parameters
substantially. Color coding gives an easily inter-
pretable representation of both what each head is
attending to, as well as how it represents it. Exam-
ples are shown in Figure 2. The bottleneck RNN
and CNN have similar overall performance (Ta-
ble 1), but the RNN’s performance on the least
frequent classes is still superior.

By finding the greatest Jensen-Shannon diver-
gence between predictions made by the baseline
CNN and the RNN, as well as the largest change
in class recall between the systems, we can iden-
tify interesting cases illlustrating the benefit of the
RNN system. One compelling case is the difference
between Do you drink [alcohol]?, Do you drink
coffee?, and Do you drink enough fluid? (classes
85, 86, and 87 in development data). The Do you
drink? class is very frequent, while the other two
are in the least frequent quintile. Since drink by
itself implies alcohol, the trigram do you drink is
highly predictive of the alcohol class, and the CNN
almost always errs on the other classes.

The RNN, on the other hand, handles this dis-
tinction quite well. In all cases, drink is attended by
multiple heads (Figure 2), but across the set most
of the heads are focused on representing the verb
itself, while the magenta and tan representations
(third and last row, respectively) are representing
the object of the drinking. In the absence of an
object, the object-focused head lands on the verb
itself, and learns the implicit meaning of alcohol
from the supervision.

We confirm that this behavior persists in the full
model by performing agglomerative clustering on
the full head representation in the test RNN. We
see that the head that attends most strongly to water
and coffee also often represents alcohol and drink
in the same cluster. Meanwhile, other heads attend
to the verbal meaning of drink, and encouragingly,
these representations cluster nearby to similar con-
sumption verbs such as use in the context of illegal
drugs (Stiff, 2020). This may be expected due to
the pretrained word vectors, but we also observe
clusterings of apparently unrelated words like take
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Figure 2: Example inputs with bottleneck attention
head representations. The colored underlines show
the foci of the attention heads, with opacity reflect-
ing attention weights. The activation patterns in the
correspondingly-colored rows of the grid representa-
tions reflect how the attended tokens are represented
by each head. Note that heads consistently attending to
“drink” (e.g. yellow and green) have similar represen-
tations across classes, while heads attending to the ob-
ject of drinking (e.g. magenta and tan) have distinct rep-
resentations for each class; further, the object-focused
heads accept the verb as a stand-in for its implicit ob-
ject when alcohol is not explicitly mentioned.

and on, which are similarly predictive of questions
about prescribed medication (e.g. “Are you on any
prescriptions?”), but which word senses are un-
likely to converge representationally from pretrain-
ing on a general domain corpus. We take this as
evidence of the BiGRU’s ability to disambiguate
word senses based on context, especially since we
occasionally observe the same word types in differ-
ent clusters within the same head. Finally, we ob-
serve some very broad concepts being captured by
some attention heads that generalize across many
classes, such as the notion of temporal existential
quantifiers (ever, before, experienced).

6 Conclusion

In some sense, our analysis is unsurprising. Words
having the same input representations should clus-
ter together in model-internal representations, and
members of the same class should similarly cluster.
However, we have shown evidence that the self-
attentive RNN does some amount of word sense
disambiguation that generalizes across classes, and
this behavior is driven only by semantic classifica-
tion. From a human perspective, it makes sense
that learning the most generalizable representation
should be effective, but it’s not clear that a model
would need to learn those generalizations in order
to perform the classification task. Clearly it ben-

efits from doing so, so it seems the multi-headed
self-attention at least allows for learning these gen-
eralizable concepts and the corresponding better
optimum.

There are some interesting questions and open
issues that should be addressed with future work.
Additional experiments should do more to control
for parameter counts; these should be matched for
comparisons of the Bottleneck RNN to the full Self-
attentive RNN, to more robustly characterize the
effects of the additional nonlinearity in the bottle-
neck model. The Bottleneck representations also
seem to reflect something like rudimentary “con-
cepts,” insofar as similar semantics often cluster
together in the representation space. This raises
the intriguing possibility that “metacognitive” pro-
cesses could improve performance, for example
with deductive or abductive inferences about rela-
tionships between representations across attention
heads.

Overall, our analysis supports the claim that rep-
resentations learned in frequent classes are transfer-
ring to, and improving performance on, rare classes,
and further supports the value of a data set with a
large number of subtly distinct classes.
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A Model Training

A.1 CNN Baseline

During cross-validation, we take ten percent of the
data as test, and another ten percent for validation.
We train on the remainder using Adadelta (Zeiler,
2012) for up to 25 epochs, and the model that pro-
duces the best validation accuracy is tested on the
test set. Each training fold is augmented with the
canonical questions for each class, so that no class
is entirely unseen at test time. At test time, we
take ten percent of the training data as a validation
set, train on the other 90 percent, and use the same
method of choosing which model to test. We use
batch sizes of 50, and use GloVe.42B (Penning-
ton et al., 2014) pretrained word vectors as input.
We follow (Jin et al., 2017) for initialization and
optimization parameters.

A.2 BERT Fine-tuning

We follow the recommended procedure for fine-
tuning BERT to our task. We used the uncased
base pretrained BERT model as input to a dense
layer followed by a softmax for classification. All
parameters were tuned jointly. The grid search
optimized hyperparameters were a max sequence
length of 16, a batch size of 2, 10 training epochs,
and a learning rate of 2e-5.

A.3 CNN with Static BERT Embeddings

We expect that BERT model may be over-
parameterized and under-trained for our relatively
small data set. Thus, we collect non-contextual
representations for the words in our dataset from
the pretrained model. We then feed these as input
to the baseline CNN model instead of the GloVe
vectors.

We collect these static BERT embeddings by
running the training set through the BERT model,
and taking the state of the first layer from the BERT
model as the embedding of the correspond token.
We then average these representations for each
word type in the data set, and use that as the input
wherever the word occurs. Note that since BERT
is trained with positional embeddings instead of
ordering, representations from this layer likely re-
tain a lot of positional information, which could
be an important source of noise in the averaged
representations. Training the CNN is otherwise the
same as in the baseline experiment.

A.4 CNN with Contextual BERT
Embeddings

Finally among our experiments with BERT, we
feed the fully contextual representations into the
baseline CNN architecture. Here, we again take
the representation extracted from bottom layer of
the BERT model.

A.5 RNN Training
The RNN with self-attention is trained using the
same fold splits and canonical query augmenta-
tion as the CNN baseline. Here we use the Adam
optimizer (Kingma and Ba, 2014) with default pa-
rameters. We initialize layer weights uniformly at
random in the range [−0.1, 0.1], and tokenize in-
puts using default SpaCy tokenization (Honnibal
and Montani, 2017). We use GloVe.42B vectors
again, and batch sizes of 32. We train for 40 epochs
with an initial learning rate of 0.001, take the best
model, reinitialize an optimizer with learning rate
of 2.5 × 10−4, and train for another 20 epochs,
taking the best model of all 60 epochs to test.


