
Proceedings of the SIGdial 2020 Conference, pages 261–264
1st virtual meeting, 01-03 July 2020. c©2020 Association for Computational Linguistics

261

Emora STDM: A Versatile Framework for
Innovative Dialogue System Development

James D. Finch
Department of Computer Science

Emory University
Atlanta, GA, USA

jdfinch@emory.edu

Jinho D. Choi
Department of Computer Science

Emory University
Atlanta, GA, USA

jinho.choi@emory.edu

Abstract

This demo paper presents Emora STDM (State
Transition Dialogue Manager), a dialogue sys-
tem development framework that provides
novel workflows for rapid prototyping of chat-
based dialogue managers as well as collabora-
tive development of complex interactions. Our
framework caters to a wide range of expertise
levels by supporting interoperability between
two popular approaches, state machine and in-
formation state, to dialogue management. Our
Natural Language Expression package allows
seamless integration of pattern matching, cus-
tom NLP modules, and database querying, that
makes the workflows much more efficient. As
a user study, we adopt this framework to an
interdisciplinary undergraduate course where
students with both technical and non-technical
backgrounds are able to develop creative dia-
logue managers in a short period of time.

1 Introduction

Constructing a functional end-to-end dialogue sys-
tem is typically an extensive development process.
Depending on the goals, such development often
involves defining models for natural language un-
derstanding and generation (Section 3), and also
creating dialogue management logic to control con-
versation flow. Training a deep learning-based end-
to-end model is a cost-effective way to develop a
dialogue agent when the goal is a system conform-
ing to behaviors present in training data; however,
substantial development effort must be spent as the
developer demands broaden to incorporate features
that are not well-represented in available data.

We present Emora STDM (State Transition Dia-
logue Manager), henceforth E-STDM, a dialogue
system development framework that offers a high
degree of customizability to experts while preserv-
ing a workflow intuitive to non-experts. E-STDM
caters to a wide range of technical backgrounds by

supporting the interoperability between two pop-
ular dialogue management approaches, state ma-
chine and information state (Section 4). Our frame-
work makes it easy for not only rapid prototyping of
open-domain and task-oriented dialogue systems,
but also efficient development of complex dialogue
managers that tightly integrate pattern matching,
NLP models, and custom logic such as database
queries. (Section 5).

2 Related Work
A variety of dialogue development frameworks
have emerged to expedite the process of dialogue
system creation. These frameworks cater to various
use cases and levels of developer expertise. Popu-
lar commercial-oriented frameworks are primarily
intended for non-experts and have workflows sup-
porting rapid prototyping (Bocklisch et al., 2017).
They often allow developers to customize natural
language understanding (NLU) modules and per-
form dialogue management using state machines.

Some frameworks require more expertise, but of-
fer better developer control, by following the infor-
mation state formulation of dialogue management
(Ultes et al., 2017; Jang et al., 2019; Kiefer et al.,
2019). According to this formulation, dialogues are
driven by iterative application of logical implica-
tion rules (Larsson and Traum, 2000). This design
provides support for complex interactions, but sac-
rifices the intuitiveness and development speed of
dialogue management based on state machines.

Other frameworks (e.g., ChatScript, botml) rely
on custom programming languages to design con-
versation flow. The custom syntax they specify is
based on pattern matching. Although requiring ex-
pertise, rapid prototyping in these frameworks is
possible with a high degree of developer’s control.
However, dialogue management focuses primarily
on shallow pattern-response pairs, making complex
interactions more difficult to model.

262

ID Framework Type License SM IS PM IC EF ON ET CM
1 Emora STDM Library Apache 2.0 3 3 3 3 3 3 3 3
2 AIML Language GNU 3.0 3
3 RiveScript Language MIT 3 3 3
4 ChatScript Language MIT 3 3 3 3
5 botml Language MIT 3 3 3
6 OpenDial Tool MIT 3 3 3
7 PyDial Tool Apache 2.0 3 3 3 3
8 VOnDA Tool CC BY-NC 4.0 3 3 3 3
9 Botpress Tool Commercial 3 3 3 3

10 RASA Tool Commercial 3 3 3 3
11 DialogFlow API Commercial 3 3 3

Table 1: Comparison of features supported by various dialogue system development frameworks. SM: state ma-
chine, IS: information state, PM: pattern matching for natural language, IC: developer-trained intent classification,
EF: external function calls, ON: ontology, ET: error tracking, CM: combine independent dialogue systems.

Table 1 shows a comparison of E-STDM to existing
frameworks. E-STDM is most similar to PyOpen-
Dial and botml, which support pattern matching for
NLU and tight integration of external function calls.
Unlike any existing framework, however, E-STDM
explicitly supports both state machine and infor-
mation state paradigms for dialogue management,
and also provides NLU that seamlessly integrates
pattern matching and custom modules.1

3 NATEX: Natural Language Expression

To address the challenge of understanding user in-
put in natural language, we introduce the NATural
language EXpression, NATEX, that defines a com-
prehensive grammar to match patterns in user input
by dynamically compiling to regular expressions.
This dynamic compilation enables abstracting away
unnecessary verbosity of regular expression syn-
tax, and provides a mechanism to embed function
calls to arbitrary Python code. We highlight the
following key features of NATEX.

String Matching It offers an elegant syntax for
string matching. The following NATEX matches
user input such as ‘I watched avengers’ or ‘I saw
Star Wars’ and returns the variable $MOVIE with
the values ‘Avengers’ and ‘Star wars’, respectively:

[I {watched, saw}
$MOVIE={Avengers, Star Wars}]

The direct translation of this NATEX to a regular
expression would be as follows:
.*?\bI\b
.*?(?:\b(?:watched)\b|\b(?:saw)\b)
.*?(?P<MOVIE>(?:\b(?:avengers)\b|

\b(?:star wars)\b)).*?

As shown, NATEX is much more succinct and in-
terpretable than its counterpart regular expression.
1Emora STDM is available as an open source project at
github.com/emora-chat/emora_stdm.

Function Call It supports external function calls.
The following NATEX makes a call to the function
#MDB in Python that returns a set of movie titles:

[I {watched, saw} $MOVIE=#MDB()]

This function can be implemented in various ways
(e.g., database querying, named entity recognition),
and its NATEX call matches substrings in the user
input to any element of the returned set. Note that
not all elements are compiled into the resulting reg-
ular expression; only ones that are matched to the
user input are compiled so the regular expression
can be processed as efficiently as possible.

Ontology It supports ontology editing and query-
ing as the built-in NATEX function called #ONT.
An ontology can be easily built and loaded in JSON.
#ONT(movie) in the example below searches for
the movie node in a customizable ontology repre-
sented by a directed acyclic graph and returns a set
of movie titles from the subgraph of movie:
[I {watched, saw} $MOVIE=#ONT(movie)]

Response Generation It can be used to generate
system responses by randomly selecting one pro-
duction of each disjunction (surrounded by {}) in a
top-down fashion. The following NATEX can gen-
erate “I watched lots of action movies lately” or “I
watched lots of drama movies recently”, and assign
the values of ‘action’ and ‘drama’ to the variable
$GENRE respectively:
I watched lots of $GENRE={action,
horror, drama} movies {recently, lately}

Error Checking Our NATEX compiler uses the
Lark parser to automatically detect syntax errors.2

Additionally, several types of error checking are
performed before runtime such as:
2https://github.com/lark-parser/lark

github.com/emora-chat/emora_stdm
https://github.com/lark-parser/lark

263

8��>,���(17 �217
�HQWHUWDLQPHQW�@

6��+DYH�\RX�VHHQ�
DQ\�PRYLHV�ODWHO\"

8��>�029,(�0'%��@

6��6RUU\��,�GLGQµW�FDWFK�
WKDW��+DYH�\RX�VHHQ�DQ\�
JRRG�PRYLHV"

8��(5525

6��,µYH�EHHQ�ZDWFKLQJ�D�ORW�RI�
�*(15(^DFWLRQ��KRUURU��GUDPD`�
PRYLHV�^ODWHO\��UHFHQWO\`

8���6(17,0(17�SRVLWLYH�
>�*(15(@

8��(5525

8��>^KDYH��GLG`�
\RX�^VHHQ��ZDWFK`�
�029,(�0'%��@�

6���029,(�LV�RQH�
RI�P\�IDYRULWHV�

6��:KDWµV�\RXU�
IDYRULWH��(17"

6��:KDW�LV�\RXU�
IDYRULWH�PRYLH"

D

FE

H I

G

J K
6��:K\�GR�\RX
OLNH��*(15("

Figure 1: A dialogue graph using a state machine approach with NATEX to dialogue management.

• Call to a non-existing function.

• Exceptions raised by any function.

• Function returning mismatched type.

• Reference to a non-existing variable.

4 Dialogue Management

4.1 Dialogue State Machine

The primary component responsible for dialogue
management within E-STDM is a state machine. In
our framework, state transitions alternate between
the user and the system to track turn taking, and are
defined by NATEX (Figure 1). Any transition per-
formed with a variable-capturing NATEX will store
a variable-value pair in a dedicated table in mem-
ory, which persists globally for future reference.

User turns are modeled by transitions according
to which NATEX matches the user input. To resolve
cases where multiple NATEX yield matches, transi-
tions can be defined with priority values. Similarly,
developers can specify a catch-all “error transition”
(ERROR in Figure 1) to handle cases where no tran-
sition’s NATEX returns a match. The user input re-
sulting in an error transition is automatically logged
to improve the ultimate design of the state machine.

System turns are modeled by randomly selecting
an outgoing system transition. Random selection
promotes uniqueness among dialogue pathways,
but can be restricted by specifying explicit priority
values. To avoid redundancy when returning to a
previously visited state, E-STDM prefers system
transitions that have not been taken recently.

The simplicity of this dialogue management formu-
lation allows for rapid development of contextually
aware interactions. The following demonstrates the
streamlined JSON syntax for specifying transitions
S1, S3, U1, U2, and U3 in Figure 1.

{
"Have you seen any movies lately?": {
"state": "c",
"[I, $ENT=#ONT(entertainment)]": {

"What’s your favorite $ENT?": {..}
},
"[$MOVIE=#MDB()]": {

"$MOVIE is one of my ...": {..}
}
"error": {

"Sorry, I didn’t catch ...": "c"
} } }

4.2 Information State Update Rules

Despite its simplicity, state machine-based dia-
logue management often produces sparsely con-
nected state graphs that are overly rigid for complex
interactions (Larsson and Traum, 2000). E-STDM
thus allows developers to specify information state
update rules to take advantage of the power of in-
formation state-based dialogue management.

Information state update rules contain two parts,
a precondition and a postcondition. Each user turn
before E-STDM’s state machine takes a transition,
the entire set of update rules is iteratively evaluated
with the user input until either a candidate system
response is generated or no rule’s precondition is
satisfied. In the following example, satisfying pre-
condition [I have $USER PET=#PET()] triggers
postcondition #ASSIGN($USER LIKE=$USER PET)

264

to assign $USER PET to $USER LIKE, allowing rule
#IF(..) I like $USER LIKE .. to trigger in turn:

{
"[I have $USER_PET=#PET()]"
: "#ASSIGN($USER_LIKE=$USER_PET)",
"[$USER_FAVOR=#PET() is my favorite]"
: "#ASSIGN($USER_LIKE=$USER_FAVOR)",
"#IF($USER_LIKE != None)"
: "I like $USER_LIKE too! (0.5)"

}

When a precondition is satisfied, the postcondition
is applied through the language generation (Sec. 3).
If a real-number priority is provided in parenthe-
ses at the end of any NATEX, the generated string
becomes a candidate system response. A priority
value higher than any outgoing system transition in
the dialogue state machine results in the candidate
becoming the chosen one; thus, no dialogue state
machine transition is taken. Often however, a de-
veloper can choose to omit the priority value to use
NATEX purely as a state updating mechanism.

This formalism allows flexible interoperability
between state machine-based and information state-
based dialogue management. Given E-STDM, de-
velopers have the latitude to develop a system en-
tirely within one of the two approaches, although
we believe a mixed approach lends the best balance
of development speed and dialogue sophistication.

4.3 Combining Dialogue Modules

E-STDM has explicit support for a team-oriented
workflow, where independent dialogue modules
can be easily combined into one composite system.
Combining multiple modules requires specifica-
tion of a unique namespace per module to enforce
encapsulation of both errors and identifiers. The
following is an example Python script combining
dialogue systems df1 and df2 under namespaces
DF1 and DF2, respectively:

df1 = DialogueFlow(’start_1’)
df1.add_transitions(’df1.json’)
df2 = DialogueFlow(’start_2’)
df2.add_transitions(’df2.json’)

cdf = CompositeDialogueFlow(’start’)
cdf.add_module(df1, ’DF1’)
cdf.add_module(df2, ’DF2’)
cdf.add_user_transition(

’DF1.stateX’, ’DF2.stateY’,
"[{film, movie}]")

Moreover, inter-component transitions can be made
between any two dialogue states to seamlessly com-
bine modules together and allow smooth topic tran-
sitions for better user experience.

5 Educational Use of Emora STDM

As an application case study, we present the use of
E-STDM in an educational setting. E-STDM is de-
ployed in an interdisciplinary undergraduate course
called Computational Linguistics,3 where dialogue
system development within E-STDM is a part of
the requirements. Students in this course come with
varying levels of programming ability; many with
little to no imperative programming experience.

Students are tasked with the development of chat-
based dialogue systems that can engage a user in
10+ turn conversations. At the time of writing, stu-
dents have completed two assignments involving
dialogue system creation. Students are grouped in
teams, with at least one student with prior coding
experience per team. Teams are free to select a do-
main, such as video games, sports, or technology,
and are given two weeks for development.

We make the unmodified version of dialogue sys-
tems from these students publicly available.4 The
successful use of E-STDM by novice programmers
demonstrates the utility of this framework, in terms
of its usability and potential as an educational tool.

Acknowledgments

We gratefully acknowledge Sarah E. Finch for her
support in developing E-STDM as well as assessing
the course assignments (Section 5).

References
T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol.

2017. Rasa: Open source language understanding
and dialogue management. arXiv:1712.05181.

Y. Jang, J. Lee, J. Park, K. Lee, P. Lison, and K. Kim.
2019. PyOpenDial: A Python-based Domain-
Independent Toolkit for Developing Spoken Dia-
logue Systems with Probabilistic Rules. In Proceed-
ings of EMNLP System Demonstrations.

B. Kiefer, A. Welker, and C. Biwer. 2019. Vonda:
A framework for ontology-based dialogue manage-
ment. arXiv:1910.00340.

S. Larsson and D. R. Traum. 2000. Information state
and dialogue management in the TRINDI dialogue
move engine toolkit. NLE, 6(3 & 4):323–340.

S. Ultes, Rojas B., Lina M., P. Su, D. Vandyke, D. Kim,
I. Casanueva, P. Budzianowski, N. Mrkšić, T. Wen,
M. Gašić, and S. Young. 2017. Pydial: A multi-
domain statistical dialogue system toolkit. In Pro-
ceedings of ACL System Demonstrations.

3github.com/emory-courses/cs329
4github.com/emora-chat/emora_stdm_zoo

http://arxiv.org/abs/1712.05181
http://arxiv.org/abs/1712.05181
https://doi.org/10.18653/v1/D19-3032
https://doi.org/10.18653/v1/D19-3032
https://doi.org/10.18653/v1/D19-3032
http://arxiv.org/abs/1910.00340
http://arxiv.org/abs/1910.00340
http://arxiv.org/abs/1910.00340
https://doi.org/10.1017/S1351324900002539
https://doi.org/10.1017/S1351324900002539
https://doi.org/10.1017/S1351324900002539
https://doi.org/10.18653/v1/P17-4013
https://doi.org/10.18653/v1/P17-4013
github.com/emory-courses/cs329
github.com/emora-chat/emora_stdm_zoo

