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Abstract

The differences in decision making between
behavioural models of voice interfaces are
hard to capture using existing measures for the
absolute performance of such models. For in-
stance, two models may have a similar task
success rate, but very different ways of get-
ting there. In this paper, we propose a general
methodology to compute the similarity of two
dialogue behaviour models and investigate dif-
ferent ways of computing scores on both the
semantic and the textual level. Complement-
ing absolute measures of performance, we test
our scores on three different tasks and show
the practical usability of the measures.

1 Introduction and Related Work

Interacting with technical systems through voice
is prevalent in our every day lives and in the focus
of industry and research alike. For evaluating the
behaviour of voice interfaces, interaction-based or
corpus-based methods have been employed, both
aiming at producing absolute measures like dia-
logue success. While this is clearly an important
aspect of dialogue behaviour evaluation, it remains
superficial and does not touch on the actual differ-
ence of two behaviour models.

The goal of this paper is to propose a method to
quantify the similarity of two behaviour models—
the learned or hand-crafted dialogue system
decision—by means of a similarity score. The
core idea is to use well-defined dialogue contexts—
moments within a dialogue where the system needs
to make a decision of how to respond—and com-
pare the resulting system response of each be-
haviour model. We propose different similarity
measures and demonstrate their usefulness in dif-
ferent scenarios.

Being able to compare behaviour models on a
deeper level opens the door to a deeper understand-

ing of the learned behaviour. It aims to answer
questions like:

1. When does the behaviour, i.e., the resulting
response in a given context, of a reinforcement
learning behaviour model converge?

2. Which effect do modifications of the learning
parameters or learning set-up have, e.g, dif-
ferent random seeds (minor) or reward mod-
els (significant), on the resulting learned be-
haviour models? Do these modified behaviour
models still result in exhibiting the same be-
haviour? What difference in behaviour causes
the differences in absolute measures? Are
there sub-sets of dialogue contexts that are
fundamental for these differences?

3. How different are single responses of different
behaviour models for the same given dialogue
context?

These questions are of high relevance in cases
where not only the average absolute performance is
of interest but also the actual learned behaviour. On
an application level, the answers to those question
can help to decide which behaviour model to apply
for a concrete live application, as they can support
decision such as when to stop learning, or reveal the
properties of different random seeds. From a more
scientific point of view, the questions contribute to
the overall problem of what we can learn about the
interaction characteristics from the learned models.

The core task of a voice interface, also called
spoken dialogue systems (SDS), is the decision of
how to respond to a given user input and a dialogue
context. This task is either modelled explicitly or
implicitly. An explicit behaviour model usually
comprises a distinct dialogue system module called
dialogue policy taking in a dialogue state—a com-
bined and dense representation of the current user
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input interpretation and the dialogue context—and
producing an abstract system response. In a sub-
sequent step, this abstract system response is then
transferred into text by a natural language gener-
ator. An implicit behaviour model uses a neural
network to learn a text response directly based on
text input thus combining user input interpretation,
dialogue context integration, and dialogue response
selection in one model.

Absolute measures to evaluate the performance
of these behaviour models through the interaction
with real or simulated users are, for example, task
success or dialogue length (Gašić and Young, 2014;
Lemon and Pietquin, 2007; Daubigney et al., 2012;
Levin and Pieraccini, 1997; Young et al., 2013; Su
et al., 2016; Ultes et al., 2015; Wen et al., 2017).
Other measures are user satisfaction (Walker et al.,
1997; Chu-Carroll and Nickerson, 2000; Dzikovska
et al., 2011; Ultes et al., 2015; Wen et al., 2016;
Ultes et al., 2017a) or quality of interaction (Möller
et al., 2008; Schmitt and Ultes, 2015). All are often
acquired through interaction-based studies1.

Others have employed corpus-based evaluation
by comparing textual system responses with tran-
scriptions of actual interaction as absolute evalua-
tion criterion where the response in the corpus is
treated as ground truth (Serban et al., 2016; Sor-
doni et al., 2015; Li et al., 2016a; Lowe et al.,
2015). Text comparison metrics like BLEU (Pa-
pineni et al., 2002) have been adopted from ma-
chine translation to evaluate how well the system
response matches the one in the database, e.g., (Li
et al., 2016b; Sordoni et al., 2015). This way of
evaluating has been criticised widely as a system
response that is different from the one in the data
base can still be a valid system response simply
leading to a different subsequent dialogue. Further-
more, the BLEU score evaluation hardly correlates
with human judgements (Liu et al., 2016; Novikova
et al., 2017).

Dismissing text similarity measures as not useful
for dialogue evaluation, however, is overhasty and
shortsighted. While those measures may not help
with absolute comparison of policies, they may be
valuable to compare two policies with each other.
In other words, they can help to reveal the similar-
ity between two models without explicitly judging
their performance.

In this work, we propose a framework to com-

1For a good overview over absolute metrics including a
taxonomy, please refer to Hastie (2012).

pute the similarity of two dialogue behaviour mod-
els. This comprises the following contributions:

• a set-up to compare behaviour models on the
level of single decisions

• similarity scores to compare behaviour mod-
els on the level of single decisions

• applications of similarity scoring offering a
deeper understanding of the learned behaviour

The remainder of this paper is structured as fol-
lows: In Section 2, we introduce the general ap-
proach for quantifying the similarity of behaviour
models. We then investigate the usability of several
different ways of computing a similarity score in
Sec. 3, considering scores on the semantic and the
textual level. In Sec. 4 and 5, we describe our ex-
perimental setup, test our scores on three different
tasks, and show their correlation confirming their
practical usability.

2 Scoring Framework

To compare two dialogue behaviour models, this
paper explores the usage of similarity measures in-
stead of relying on absolute performance measures.
The main idea is—in addition to knowing about the
absolute performance—to learn about how similar
or different two behaviour models are. For this, a
defined set of dialogue contexts is applied to each
behaviour model to generate corresponding system
responses. These responses are then compared to
learn about the overall similarity of the models.
The general approach illustrated in Figure 1 is as
simple as effective:

1. Define a set of dialogue contexts C.

2. Evaluate each behaviour model m in a deter-
ministic way and collect the resulting system
responses amc for each context c ∈ C.

3. Calculate similarity scores σ(amc , a
m′
c ) for

each system response pair (amc , a
m′
c ), e.g., by

using one of the measures proposed in Sec-
tion 3.

Aside from finding suitable similarity measures,
one of the key challenges is to find good dialogue
contexts that may be used as basis for compari-
son. Here, a dialogue context is a sub-dialogue
either represented by a set of system utterances and
user utterances (which is necessary, e.g., for end-to-
end dialogue generators) or directly by the dense
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Figure 1: The three steps of the scoring framework.

representation of a dialogue state following the
Markovian idea (often only available in modular
dialogue systems). The proposed framework relies
on a well-defined set of dialogue contexts, avoiding
the evaluation of unrealistic situations which would
directly influence the similarity scores.

In this work, the focus lies on modular dialogue
systems where dialogue states are available to rep-
resent the dialogue context. Thus, there are two
natural options of finding a set of dialogue contexts:
collecting dialogues with corresponding dialogue
states from actual real dialogues noted as Ccol or
generating a set of dialogue states noted as Cgen.

3 Similarity Scores

A similarity score is computed for the comparison
of two behavioural models π and π′. Depending
on the nature of the behavioural model, for each
context ci ∈ C, each may produce an abstract
system response actions ai, and an text response
pi. Each abstract system action ai = acti(s

i
1 =

vi1, . . . , s
i
j = vij) consists of a dialogue act acti,

representing the communicative function like in-
form or request, and a set Si of j slot-value-pairs
Si = {(si1, vi1), . . . , (sij , vij)} representing the con-
cepts and their respective values2. To compute
each similarity score, |C| action/text response pairs
are compared using the following similarity score
measures.

Total Match Rate The total match rate (TMR)
is based on a binary score that regards two actions
a, a′ as equal only if they completely match, i.e.,
δa,a′ = 1 iff a = a′, else 0. The TMR is then

2For the abstract system action a = inform(name=’Golden
House’, area=centre), act = inform and S = {(name,’Golden
House’),(area,centre)}.

defined by

TMR =
1

|C|

|C|∑
i=1

δai,a′i . (1)

Dialogue Act Match Rate The dialogue act
match rate (DMR) is based on a binary score com-
paring the actions a, a′ where both match if the cor-
responding dialogue acts are the same: δact ,act ′ =
1 iff act = act ′, else 0. The DMR is defined by

DMR =
1

|C|

|C|∑
i=1

δacti,act ′i . (2)

Concept Error Rate The concept error rate is
a measure usually used for evaluating natural lan-
guage understanding systems that translate text in-
put to a semantic representation. The concept error
rate then is computed by comparing the resulting se-
mantic representation with a ground truth. Instead
of comparing a semantic representation a with a
ground truth, it can also be used to compare it to
another representation a′ produced by a different
behaviour model.

Similar to the word error rate, it is based on
the Levensthein distance of two dialogue actions
having one as hypothesis h and one as reference r:

dist(h, r) = #ins +#del +#sub . (3)

#ins, #del, and #sub are the number of in-
sertions, deletions and substitutions, respectively,
when computing the Levensthein distance of the
concepts of the sets S1 and S2 where each slot sij
and each value vij are treated as individual items.

The concept error CE is then defined by

CE (h, r) =
|r| − dist(h, r)

|r|
(4)

normalising the error by the length of r. Clearly,
this is an asymmetric quantity. To make it symmet-
ric, it is calculated using a and a′ both as hypothesis
and reference:

C̃E (a, a′) =
CE (a, a′) + CE (a′, a)

2
. (5)

The concept error rate is then calculated with

CER =
1

|C|

|C|∑
i=1

δact ,act ′ · C̃E (a, a′) . (6)
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Concept Match Rate As an alternative to the
asymmetric CER, we propose the symmetric con-
cept match rate. Instead of basing it on an error
comparing a hypothesis with a reference, it counts
concepts γ that are present in both dialogue actions
where m̃(a, a′, γ) defines if a match occurred:

m̃(a, a′, γ) =

{
1, if γ ∈ S and γ ∈ S′

0, otherwise .
(7)

The concept match CM takes into account the
dialogue acts and the unified set of concepts S̃ =
S1 ∪ S2 of both dialogue actions treating slots s
and values v in S̃ as individual γ:

˜CM (a, a′) = δact ,act ′ +
∑
∈S̃

m̃(a, a′, γ) (8)

A concept match of two dialogue actions a and
a′ is thus defined by

CM (a, a′) =
˜CM (a, a′)

1 + |S̃|
(9)

and the concept match rate by

CMR =
1

|C|

|C|∑
i=1

CM (a, a′) . (10)

Cosine Similarity and angular similarity The
Universal Sentence Encoder (USE) (Cer et al.,
2018) is a generic sentence encoder which employs
two measures for the computation of the distances
between encoded sentences, namely cosine similar-
ity and angular similarity:

cosine-sim = USE(p) ·USE(p′) (11)

angular -sim = 1− arccos(cosine-sim)

π
(12)

BLEU The BLEU score (Papineni et al., 2002) is
a measure used for the evaluation of machine trans-
lation systems. It is based on an n-gram precision
ϕn, computed as the number of common n-grams
between reference p and candidate phrase p′ (and
vice versa) divided by the number of n-grams of
the candidate phrase. The score of a corpus is the
geometric mean of modified precision scores mul-
tiplied with a brevity penalty υ:

BLEU = υ · exp(
∑
n

wn logϕn) , (13)

where υ is 1 if |p| > |p′| and e
1−|p′|
|p| otherwise.

BLEU is computed for multiple values of n ≤ 4
and geometrically averaged (called BLUE-4). The
final score is made symmetric in accordance with
Eq. 5.

Table 1: Absolute results of the simulated experiments
for RTS and RIQ after different number of training di-
alogues showing task success rate (TSR), average in-
teraction quality (AIQ), and average dialogue length
(ADL) in number of turns. Each value is computed af-
ter 100 evaluation dialogues averaged over three trials.

# Training
Dialogues

TSR AIQ ADL

RTS RIQ RTS RIQ RTS RIQ

1,000 0.98 0.99 3.78 3.85 4.46 4.44
5,000 0.99 0.98 3.78 3.81 4.41 4.51

10,000 1.00 0.98 3.81 3.80 4.32 4.47

15,000 1.00 0.99 3.79 3.81 4.36 4.43
20,000 1.00 0.97 3.86 3.73 4.15 4.62

25,000 1.00 0.98 3.77 3.85 4.37 4.30
30,000 1.00 0.96 3.71 3.87 4.49 4.41

35,000 0.99 0.96 3.73 3.84 4.42 4.46
40,000 1.00 0.94 3.77 3.77 4.35 4.75

BERTscore The BERTscore (Zhang* et al.,
2020) is an automatic evaluation metric used for
text generation that has shown a high correlation
with human ratings. Given a function β which re-
turns the BERT embedding (Devlin et al., 2018)
for a given token, recall and precision along with
the F1-score are computed for a reference p and a
candidate p′ as

RBERT =
1

|p|
∑
pi∈p

max
p′j∈p′

β(pi)
>β(p′j) , (14)

PBERT =
1

|p′|
∑
p′j∈p′

max
pi∈p

β(pi)
>β(p′j) , (15)

FBERT = 2
RBERT · PBERT

RBERT + PBERT
. (16)

FBERT has been selected as a symmetric similar-
ity score that also represents a reasonable balance
between RBERT and PBERT .

Examples scores are shown in Appendix A.

4 Application Scenarios of Similarity
Score Evaluation

We present three different scenarios addressing the
following questions: When does the behaviour of
a reinforcement learning policy converge? Which
effect do modifications of the random seeds have
on the resulting learned policies? Which effect do
modifications of the reward models have on the
resulting learned policies?

4.1 Evaluation Setup
To answer these question, we apply the following
evaluation setup.
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Table 2: Similarity measures for testing convergence of
each trial (random seed) forRTS empmloying task suc-
cess and RIQ employing interaction quality for Creal.
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0

10,000 0.978 0.978 0.978 0.980 0.863 0.868 0.470 0.905
20,000 0.989 0.989 0.989 0.989 0.863 0.877 0.481 0.910
30,000 0.984 0.995 0.991 0.990 0.874 0.888 0.518 0.916
40,000 1.000 1.000 1.000 1.000 0.871 0.891 0.493 0.918

1

10,000 0.945 0.978 0.962 0.953 0.855 0.843 0.507 0.907
20,000 0.962 0.978 0.970 0.966 0.860 0.858 0.529 0.917
30,000 0.995 0.995 0.995 0.995 0.874 0.885 0.517 0.922
40,000 0.978 0.989 0.986 0.985 0.875 0.885 0.532 0.925

2

10,000 0.885 0.940 0.917 0.907 0.837 0.815 0.462 0.893
20,000 0.995 0.995 0.995 0.995 0.872 0.876 0.519 0.913
30,000 0.984 0.989 0.988 0.988 0.868 0.880 0.485 0.911
40,000 0.978 0.984 0.981 0.982 0.876 0.885 0.525 0.918

In
te

ra
ct

io
n

Q
ua

lit
y

0

10,000 0.944 0.944 0.944 0.950 0.860 0.856 0.484 0.901
20,000 0.972 0.972 0.972 0.972 0.859 0.863 0.441 0.897
30,000 0.994 0.994 0.994 0.997 0.859 0.870 0.422 0.897
40,000 0.978 0.983 0.980 0.984 0.867 0.880 0.461 0.901

1

10,000 0.972 0.972 0.972 0.972 0.875 0.884 0.551 0.928
20,000 0.966 0.978 0.974 0.973 0.837 0.827 0.463 0.899
30,000 0.994 0.994 0.994 0.995 0.845 0.833 0.474 0.903
40,000 0.994 0.994 0.994 0.996 0.849 0.846 0.491 0.907

2

10,000 0.961 0.961 0.961 0.965 0.848 0.830 0.498 0.901
20,000 0.978 0.978 0.978 0.978 0.837 0.820 0.458 0.895
30,000 0.983 0.983 0.983 0.984 0.848 0.841 0.502 0.903
40,000 0.989 0.989 0.989 0.990 0.846 0.837 0.495 0.902

4.1.1 Policy Training
For the evaluation, two policies are trained to re-
flect two different set-ups. One set-up uses the
conventional task success as main reward compo-
nent as heavily used within the literature (Gašić and
Young, 2014; Vandyke et al., 2015; Su et al., 2016,
e.g.) and the other set-up uses the interaction qual-
ity (IQ) (Schmitt and Ultes, 2015) representing user
satisfaction as described by Ultes et al. (Ultes et al.,
2017a; Ultes, 2019). IQ is defined on a five-point
scale from five (satisfied) down to one (extremely
unsatisfied). To derive a reward from this value,

RIQ = −T + (iq − 1) · 5 (17)

is used where RIQ describes the final reward. It is
applied to the final turn of the dialogue of length T
with a final IQ value of iq. Thus, a per-turn penalty
of −1 is added to the dialogue outcome. This re-
sults in a reward range of 19 down to −T which is
consistent with related work in which binary task
success (TS) was used to define the reward as:

RTS = −T + 1TS · 20 , (18)

where 1TS = 1 only if the dialogue was successful,
1TS = 0 otherwise.

For each set-up, three policies with different ran-
dom seeds were trained in a simulation environ-
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Figure 2: Convergence of each trial (random seed) for
RTS evaluated with the total match rate and on CTS

col .
The curves for RIQ as well as Cgen set are similar.

ment using the PyDial Statistical Spoken Dialogue
System Toolkit (Ultes et al., 2017b) with an agenda-
based user simulator (Schatzmann and Young,
2009). For each trial, a GP-SARSA (Gašić and
Young, 2014) policy model was trained—a learning
algorithm known for its high sample-efficiency—
with dialogues in the Cambridge restaurants do-
main about finding restaurants in Cambridge, UK.
The domain comprises three slots used as search
constraints (area, price range, food type). For be-
lief state tracking—updating the probability dis-
tribution over all possible dialogue states in each
turn—the focus belief tracker is used (Henderson
et al., 2014). Prompts were generated using the
SC-LSTM (Wen et al., 2015) natural language gen-
erator implementation of PyDial.

To ensure consistency, the standardised Environ-
ment 1 from Casanueva et al. (2017) is used. The
interaction quality is estimated using a BiLSTM
with self-attention as described by Ultes (2019).

For each trial of the task success and the inter-
action quality set-ups, a policy was trained with
40,000 dialogues and evaluated after each 1,000
training dialogues with 100 evaluation dialogues.
The absolute performance of each set-up in terms
of task success rate (TSR), average interaction qual-
ity (AIQ) as estimated at the end of each dialogue,
and the average dialogue length (ADL) is shown in
Table 1 averaged over all three trials.

4.1.2 Collected and Generated Context Sets

For computing the similarity scores described in
Section 3, two types of dialogue context sets are
used: collected dialogue contexts Ccol and gener-
ated dialogue contexts Cgen.

The contexts of Ccol are collected from the eval-
uation cycles of the 40,000 training batch of RTS

and RIQ. From each trial, 10 evaluation dialogues
are taken to constitute CTS

col and CIQ
col . This results
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Figure 3: All similarity scores for CTS
col for comparing the different trials / random seeds with each other (trial 0 vs.

trial 1, trial 0 vs. trial 2, trial 1 vs. trial 2) of theRTS policies evaluated after each training cycle of 1,000 dialogues.

in a total of 30 dialogues each with 183 dialogue
contexts in CTS

col and 178 collected dialogue con-
texts in CIQ

col .
To generate dialogue contexts Cgen, the most

relevant parts of a dialogue state are considered.
For the Cambridge Restaurants domain, these are
the three main search constraints area, pricerange,
foodtype as well as the method of how to look for
information. In the belief state used by PyDial,
the joint probability of the dialogue state P (s) is
divided based on independence assumptions so
that each slot probability is modelled separately.
Hence, dialogue contexts are generated with prob-
abilities for each slot in 0.1 steps, e.g., for a value
of slot area3, dialogue contexts with a probability
of 0.0, 0.1, 0.2, . . . , 1.0, respectively, are created.
With four slots and taking into account all possible
slot and probability combinations, this results in
a total of 1,296 generated dialogue contexts Cgen

used for both RTS and RIQ.

4.2 Experiments and Results
The experimental results of applying above setup
are described in the following.

4.2.1 Computing Similarity Scores to Test for
Policy Convergence

The first scenario addresses the question if and
when each single policy converges in its behaviour.

3The actual value to pick is not important due to the way
the dialogue state is used by the GP-SARSA algorithm.

Thus, a similarity score is computed comparing
each policy before and after each training iteration,
i.e., the additional training of 1,000 dialogues4. If
the policy converges, the similarity score should
be close to 1.0 for all similarity measures. The
resulting similarity scores for CTS

col and CIQ
col for

each reward and each trial are shown in Table 2.
For convergence testing, the total match rate is used
as the main criterion as two behaviour models are
the same if they result in the exact same action for
each dialogue context. The resulting learning curve
for RTS is shown in Figure 2 which is similar to
the curve of RIQ. Results for Cgen are omitted as
they are almost identical to Ccol. Notably, even
though the differences are very small, all policies
might still change after 40,000 training dialogues.

4.2.2 Computing Similarity Scores to Test for
Seed Convergence

The second scenario addresses the question if
and when policies trained with different random
seeds.For this, each policy trained with RTS and
each policy trained with RIQ are compared with
the other policies trained with the same reward at
each training iteration. As there are three trials /
random seeds for each set-up, this results in three

4A policy after 2,000 training dialogues is compared with
the same policy after 1,000 training dialogues, then again
the policy after 3,000 training dialogues with the policy after
2,000 training dialogues, and so on.
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Figure 4: Turn-based results for total match rate (top row) and dialogue act match rate (bottom row) for all three
trials using the TS-based reward.

comparisons for both RTS and RIQ
5. If the trials

converge to the same policy, the similarity score is
close to 1.0 for all similarity measures. The result-
ing similarity scores for the respective CTS

col /CIQ
col

andCgen for each reward are shown in Table 4 with
a visualisation for RTS on CTS

col for all metrics and
training iterations in Figure 3.

Evidently, neither the policies of RTS nor the
policies of RIQ converge to the same behaviour.
Instead, they only reach a maximal TMR of 0.896
for RTS and 0.68 for RIQ for only one pair in
each case using Ccol. Even though the policies do
not converge to the identical behaviour, the conver-
gence in terms of DMR is much better and all pol-
icy models tend to learn the same basic behaviour—
the respective dialogue acts—independent of the
random seed that is used.

Comparing the scores of CTS
col /CIQ

col with Cgen

shows that for the latter, the scores are much lower
but the overall tendencies of the similarity scores
are the same. This shows that the basis that is used
is important when looking at absolute scores but
not relevant when only the tendency is of inter-
est. One explanation for this difference in absolute
scores is that Ccol may contain more dialogue con-
texts that are very similar to each other where the
policies rather agree. Cgen contains each dialogue
context only once. Additionally, Cgen may also
contain dialogue contexts that have not been visited
during training or evaluation and thus it is harder
for the policy model to learn consistent behaviour.

5For example, the policy of trial 1 after 3,000 training
dialogues is compared with the policy of trial 2 after 3,000
training dialogues, the policy of trial 1 after 4,000 training
dialogues is compared with the policy of trial 2 after 4,000
training dialogues, and so on.

Analysing all used similarity scores generally,
Figure 3 shows that for all similarity scores expect
DMR, the curves are similar in terms of shape but
different in terms of scores and differences between
trials. Each of the text-based scores angular simi-
larity, BLEU-4 and BERTscore seems to produce
values in the same range within one set-up. Thus,
the scores are not very suitable for comparison.

For RTS on CTS
col , a more detailed analysis has

been conducted on the similarities of the dialogue
behaviour models with respect to the progression
through the dialogue, i.e., what are the similarity
scores when only looking at the first turn, the sec-
ond turn, etc. Figure 4 shows that, for the first
system turn, behaviour is learned where both mod-
els either always agree or always disagree in terms
of TMR but always agree in terms of DMR. Again,
the agreement on the communicative function is
evident. This is not surprising as in the beginning,
the system needs to acquire information from the
user with the request dialogue act.

4.2.3 Computing Similarity Scores to
Compare Policies from Different
Reward Models

The final scenario addresses the question of how
similar the dialogue behaviour of two models is
that are trained with the different rewards RTS and
RIQ. As common base, both collected contexts are
combined to CTS+IQ

col = CTS
col ∪ C

IQ
col . The results

are shown in Table 3 with the TMR and DMR
compared to the results of scenario 2 in Figure 5.

The cross-comparison of RTS and RIQ shows
that the TMR and DMR are a bit lower than for the
comparison of policies within RTS and RIQ, re-
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Table 3: All similarity scores for comparing the respec-
tive policies trained withRTS andRIQ with each other
using CTS+IQ

gen after 40,000 training dialogues each.
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Figure 5: Total match rates and dialogue act match
rates for tho cross compare experiments computing the
similarity scores for each policy of RTS with each pol-
icy of RIQ after 40,000 training dialogues. Along with
that, the results of the internal policy similarity scores
of RTS and RIQ shown for comparison.

spectively, but generally, the differences are similar.
This means that, generally, the differences of poli-
cies trained with RTS compared to policies trained
with RIQ are not much bigger than just using a
different random seed.

5 Correlation of Scores

To analyse how complementary the different scores
are, all system behaviour pairs of all experiments
have been used to compute correlation and mean
squared error for each score pair. The results are
shown in Figure 6. An interesting finding is that
the CER and CMR have a very high correlation
and a very low error. Thus, both seem to capture
the same similarities. In contrast to that, the DMR
has a very low correlation with other scores and
thus does provide additional information. BLEU-4
also does not have a high correlation with other
metrics but does also not provide a huge variety,
as shown in the example in Figure 3. Comparing
semantic-based similarity scores with text-based
similarity scores shows that CER and USE-based
cosine distance have a quite high correlation and a

relatively small mean squared error. Thus, the sim-
ilarity of two systems that provide semantic output
and the similarity of two other systems that only
provide text output can be comparably quantified
with the CER and the USE-based cosine distance.

The overall total match rate of the samples used
for calculating the correlation and mean squared
error is 63.3%. Thus, the matches govern the cor-
relation scores. Computing the correlation only on
the samples that do not match reveals slightly differ-
ent numbers that still match the overall impression.
The main difference is that the correlation between
CER and CMR drops down to 0.466.

6 Conclusion

This work proposes a first step towards a more
detailed analysis of dialogue behaviour models
by proposing a framework to compute similarity
scores. A similarity score is meant to quantify
how similar the decisions made by one dialogue be-
haviour model are compared to a second dialogue
behaviour model. Using a fixed set of dialogue
contexts, each model is evaluated and the result-
ing system responses—as semantic representations
and/or as text utterances—are captured and used
for the similarity score. We proposed eight sim-
ilarity scores and applied them to three different
scenarios.

By doing that, we were able to validate supposed
certainties about reinforcement-based policy learn-
ing. We could observe that in the used set-ups, all
policy models converged towards a fixed behaviour
while still showing minor behavioural changes even
after a very large number of training iterations.

Modifications of the random seeds, however, al-
ready result in a noticeable differences in the con-
verged behaviour in the applied evaluation setup.
The quantified differences are even similar in mag-
nitude to a modification of the reward model, i.e.,
changing a random seed has a similar effect on the
learned policy as switching from task success to
interaction quality as the principal reward compo-
nent.

Out of the eight proposed similarity scores, many
seem to capture different aspects of similarity, so
it remains to the application to decide which score
is more useful. Only text-based scores coming
from the language translation field like BLEU and
BERTscore seem not to be too useful. One reason
for this might be the dependency of the absolute
score on the prompt length: quantifying textual
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Table 4: All similarity measures for comparing the trials (random seeds) with each other for RTS employing task
success and for RIQ employing interaction quality as main reward component. Results for the respective Ccol are
on the left and Cgen are on the right.
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Figure 6: Correlation coefficients (left) and mean squared error (right) when comparing all similarity scores for all
experiments.

difference in this way does not necessarily capture
the relevant semantic differences.

Moreover, the set of dialogue contexts has a high
impact on the absolute score for all similarity met-
rics but not on the trend when comparing two dia-
log behaviour models with each other.

For future work, the analysis must be more fine-
grained, e.g., by sub-dividing the set of dialogue
contexts into meaningful sub-sets. Furthermore,
the proposed evaluation method is also suitable for
directly looking at the actual behaviour of models
by identifying crucial dialogue contexts and com-
paring the actual system reaction.
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A Example Similarity Scores

Action a / Prompt p Action a′ / Prompt p′ TM D
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co
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0
request(pricerange) request(food)

0 1 0.5 0.2 0.68 0.54 0.07 0.82what price range are you
interested in

what kind of food are you
looking for

1
request(food) request(pricerange)

0 1 0.5 0.2 0.67 0.52 0.07 0.83what type of food are you
looking for

what price range are you
interested in

2

inform(food=”mediterranean”,
pricerange=”expensive”,
name=”la mimosa”,
area=”centre”)

inform(food=”mediterranean”,
pricerange=”expensive”,
name=”la mimosa”,
area=”centre”) 1 1 1 1 1.00 1.00 1.00 1.00

la mimosa is a expensive
mediterranean restaurant in the
centre area

la mimosa is a expensive
mediterranean restaurant in the
centre area

3

inform(food=”mediterranean”,
pricerange=”expensive”,
name=”shiraz restaurant”,
area=”centre”)

inform(food=”mediterranean”,
pricerange=”expensive”,
name=”shiraz restaurant”,
area=”centre”) 1 1 1 1 0.95 0.99 0.80 0.98

shiraz restaurant is in the centre
area and is expensively priced
and serves mediterranean food

shiraz restaurant is in the centre
area and serves mediterranean
food and is expensively priced

4

inform(food=”mediterranean”,
pricerange=”expensive”,
name=”la mimosa”,
area=”centre”)

request(pricerange)

0 0 0 0.1 0.53 0.09 0.00 0.61
la mimosa is in the centre area
that is expensively priced and
serves mediterranean food

what price range would you like


