
Proceedings of the SIGdial 2020 Conference, pages 339–351
1st virtual meeting, 01-03 July 2020. c©2020 Association for Computational Linguistics

339

Dialogue Policies for Learning Board Games through Multimodal
Communication

Maryam Zare, Ali Ayub, Aishan Liu, Sweekar Sudhakara, Alan Wagner, and Rebecca Passonneau
Pennsylvania State University, University Park

{muz50, aja5755, azl53, sks6492, azw78, rjp49}@psu.edu

Abstract

This paper presents MDP policy learning for
agents to learn strategic behavior–how to play
board games–during multimodal dialogues.
Policies are trained offline in simulation, with
dialogues carried out in a formal language.
The agent has a temporary belief state for the
dialogue, and a persistent knowledge store rep-
resented as an extensive-form game tree. How
well the agent learns a new game from a dia-
logue with a simulated partner is evaluated by
how well it plays the game, given its dialogue-
final knowledge state. During policy training,
we control for the simulated dialogue partner’s
level of informativeness in responding to ques-
tions. The agent learns best when its trained
policy matches the current dialogue partner’s
informativeness. We also present a novel data
collection for training natural language mod-
ules. Human subjects who engaged in dia-
logues with a baseline system rated the sys-
tem’s language skills as above average. Fur-
ther, results confirm that human dialogue part-
ners also vary in their informativeness.

1 Introduction

Agents that can learn by communicating with hu-
man have many potential benefits for human-agent
interaction in real world situations, including mak-
ing it easier for ordinary people to integrate agents
into their daily activities. Agents that can com-
municate to learn games could help us understand
how to design agents that can communicate to learn
how to make strategic decisions, meaning to pur-
sue a goal when the state of the world changes.
Games are a useful testbed, given our reliance on
extensive-form game trees, which supports gener-
alization across games. Games model a space of
interactions from very simple two-player settings
(e.g., tic-tac-toe) to highly complex multi-party in-
teractions (e.g., bridge). Our agent learns Markov
Decision Process (MDP) dialogue policies to learn
in-a-row board games by asking questions of dia-

(a) D3 Board

Question

– MRL: ContextSwitch(D3), Confirm(Color)
NL: Let’s step back to the third example for a
moment. Does this count because all four pieces
are green?

Answer

– MRL: Unknown()
NL: I’m not sure about that!

Figure 1: A turn exchange from our dialogue data collection.
The original dialogues were between an agent learning Quarto
and a simulated dialogue partner, using a meaning represen-
tation language (MRL). For 960 dialogues, experts translated
each MRL into English. (Best viewed in color.)

logue partners, with policy differences that derive
from differences in game complexity, and differ-
ences in dialogue partners.

Our MDP policies are trained offline through
simulation. Agent dialogues are carried out in a
general meaning representation language (MRL)
we developed for communicating about games.
The agent can request a visual demonstration, or
can formulate context-specific verbal questions, in-
cluding ”yes/no” questions, as illustrated in Figure
1, and open-ended ”wh-” questions. Because dif-
ferent humans can have different knowledge, or
different dispositions for how much information
to give when answering questions, we investigated
the impact of policy learning that is sensitive to
the informativeness of the dialogue partner. We
show that an agent acquires better game knowledge
from dialogues when its trained policy matches the
dialogue partner. We also add elementary natural
language capability, and show that human dialogue
partners vary in their informativeness.

Learning through communication (Chai et al.,
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2018) is related to learning from demonstration
(LfD) (Mulling et al., 2013; Rana et al., 2017),
where the goal is for agents to learn through im-
mediate and direct experience rather than through
offline processing of large datasets. Previous work
on learning through communication has focused
on joint grounding of perception and language in
task learning (Liu et al., 2016), complex concept
grounding (Matuszek, 2018), or collaborative ac-
tion (Galescu et al., 2018; Perera et al., 2018b),
rather than dialogue management. Our work in-
vestigates reinforcement learning of dialogue poli-
cies, which makes it easy to produce and compare
many policies. We exploit the ability to control
the behavior of simulated dialogue partners to in-
vestigate policy training when dialogue partners
vary in informativeness. We develop a policy with
hierarchical structure based on a global policy for
context-switching, and a local policy for formulat-
ing specific questions given a context.

We present two kinds of experiments. First, we
compare the MDP policies for different games and
different levels of informativeness of simulated di-
alogue partners. Results show how policies differ
across games, and for different dialogue partners.
For example, the agent asks more ”wh-” questions
when the dialogue partner is more forthcoming,
and more ”yes/no” questions when the dialogue
partner is withholding. Second, we conduct an ex-
periment with human dialogue partners to show
that the agent can have successful dialogues with
people, and that people vary in informativeness.

To add natural language capability, we devel-
oped a novel data collection method and used it to
collect a dataset of 960 dialogues (12,885 turn ex-
changes) for Quarto, one of three in-a-row games
that our agent can learn. The <MRL, English>
pairs are then used to train NLU/NLG modules.
The MRL has communicative action types that are
functions from contexts to specific questions about
that context. Thus the MRL combines utterance
meaning with action type (similar to dialogue act
type). Figure 1 illustrates one turn exchange in
a graphical user interface developed for the data
collection. Trained annotators presented with dia-
logues in MRL translated the MRL to colloquial
English. We present initial results where we trained
baseline natural language understanding and gen-
eration modules from this dataset to show that the
agent can learn games in dialogues with people.

No other work we know of addresses the general

problem of agents learning through communica-
tion with respect to strategic knowledge, meaning
knowledge about how to act when the state of the
world can change through other agents’ actions or
natural events. Our first main contribution is de-
velopment of MDP dialogue policies for learning
games through communication, based on our char-
acterization of the learning goal in relative rather
than absolute terms: to learn more and better about
how to play a game. Specifically, policy training
addresses the tradeoff between quality of knowl-
edge acquired from the dialogue partner and length
of the dialogue, so that the agent learns how to for-
mulate advantageous questions. Our second main
contribution is experimental evidence of the bene-
fits of dialogue policies that are customized to the
informativeness of the dialogue partner. Sensitiv-
ity to the informativeness of the dialogue partner
is particularly important when the role of the dia-
logue partner is to provide knowledge, given that
different dialogue partners can have different levels
of expertise, and different communication skills.

2 Related Work

Recent work on deep reinforcement learning has
made great progress in developing systems capable
of learning Atari games and other games such as
Chess, poker, and even Go (Silver and Hassabis,
2017; Silver and Sutskever, 2016; Dobrovsky and
Hofmann, 2016). Although the agent does learn
how to play the game with considerable accuracy,
the process requires large amounts of data, time,
and accurate perception. In contrast to this prior
work, we seek an approach where an agent learns
as much as it can by engaging in short, situated
dialogues with human partners.

Most previous work that addresses agent learn-
ing through interaction with people, including
games, involves agents learning by observing the
world (learning from demonstration, or LfD). There
can be some verbal input, but without significant
knowledge of language or communication strate-
gies. Virtual agents have learned games like Con-
nect Four and Tic-Tac-Toe from demonstration
videos, mapping observations to a fragment of
first-order logic (Kaiser, 2012), or from sketches
combined with natural language (Hinrichs and For-
bus, 2013). The SOAR cognitive architecture has
been applied to learning Tic-Tac-Toe and Tower
of Hanoi (Kirk and Laird, 2014). In LfD, agents
can also learn actions, such as how to hit a ping
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pong ball (Mulling et al., 2013) or open a drawer
(Rana et al., 2017). Active learning has been used
for agents to ask clarification questions of a hu-
man who gives a fetching request (Whitney et al.,
2017), to use pre-defined queries while learning
task sequences (Racca and Kyrki, 2018), or to pose
a specific question to learn a particular skill (Cak-
mak and Thomaz, 2012).

Previous work on learning through communi-
cation has addressed concept grounding or task
learning, rather than learning how to act when the
state changes due to other agents’ actions. In (Ma-
tuszek, 2018), machine-learned classifiers ground
words and phrases provided by a human in an
agent’s perception of the world. Language can
also be grounded more directly in perception, by
machine learning the relevant perceptual categories
from data, rather than pre-specifying them in a for-
mal semantics (Pillai et al., 2019). In (Liu et al.,
2016), an agent learns cloth folding through rich
verbal communication, based on AND-OR graphs.
It can understand utterances with context depen-
dencies common to human language but challeng-
ing for machines (e.g., descriptions of objects that
evolve over several utterances). Language inter-
action via semantic parsing combined with deep
reasoning is used in agents that explain their ac-
tions (Kasenberg et al., 2019b,a), using existing
NLP tools for parsing into a logical form (Steed-
man and Baldridge, 2011), and a rule-based, broad-
coverage toolkit for generating English from struc-
tured input (Gatt and Reiter, 2009). Other work
that relies on rich, situated reasoning through multi-
modal communication is based on an architecture
for collaborative problem-solving (Galescu et al.,
2018), with plan-based dialogue management (Per-
era et al., 2018a). These works either do not
have distinct dialogue management modules, or
rely on manually-engineered dialogue management
rather than machine-learning. Our work presents
machine-learned MDP policies using a method that
generalizes across different games, and across dif-
ferences in dialogue partners’ informativeness.

3 Game-learning Dialogues: Overview

Three games our agent learns through communi-
cation, in order of complexity, are Connect Four,
Gobblet, and Quarto. In all three, players take
turns placing pieces on a grid game board. The first
player with four pieces in a row wins. There are
different sets of possible actions per game due to

Figure 2: System Architecture.

different board sizes, numbers of game pieces, and
properties that distinguish game pieces.

This paper focuses mostly on Quarto. Quarto has
a 4×4 board and 16 game pieces, distinguished into
two colors, two heights, two shapes, and whether
they are solid or hollow. At each turn n of the game,
there are (42 − n)× (42 − n) possible moves. In
each turn, the opponent identifies a piece for the
current player to place on the board. Four in a row
wins if there is a property shared by all four pieces.

To engage in a game-learning dialogue, a
Markov Decision Process (MDP) policy π chooses
the agent’s dialogue actions, meaning an action at
at time t depends on the current state st, which is
fully observable. Reinforcement learning finds an
optimal policy π to choose communicative actions
that will maximize the expected total reward over
time, Rt = Eπ[

∑T
t=0 γ

t rt]. Here we give a brief
sketch of the hierarchical policy π, dialogue actions
at, states st, and reward rt.

The multi-modal dialogues are structured as se-
quences of sub-dialogues, where each sub-dialogue
starts with a visual demonstration of a game board
showing a new way to win. The use of demonstra-
tions of win conditions is based on observations
from our previous work of how people start asking
questions to learn a new game (Ayub and Wagner,
2018). As indicated below, each win condition
corresponds to a path to a win state in an extensive-
form game tree, where the opponent’s game actions
are left unspecified. A global policy πg chooses
whether to continue the current subdialogue con-
text, or initiate a new one, while a local policy πl
generates questions to prompt for additional win
conditions based on the current demonstration, or
additional information about what makes it a win.
For example, the agent can ask whether the current
configuration of pieces counts as a win due to the
color of the pieces (see Figure 1). The use of game
trees for knowledge representation is presented in
section 4. We developed a meaning representation
language (MRL) to represent specific communica-
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tive actions at that are grounded in the actions and
action properties of game trees (see section 5).

Game trees are a well-studied abstraction for rep-
resenting game knowledge, and for executing play
based on tree search. Game trees represent game
states as nodes, actions as edges, with payoffs at
relevant nodes (Kuhn, 1953). Each visual demon-
stration of a win condition presented to the agent
updates the agent’s belief state st, as described in
section 6. The belief state is also updated after a
simulated or human dialogue partner (DP) responds
to a question. In turn, the belief state is used to up-
date the agent’s knowledge, represented as a game
tree. For example, each visual demonstration of
a win condition is interpreted as a path in a game
tree from the game start to a finish in which the
agent wins, and where the other player’s actions
are unspecified. The agent receives a greater re-
ward rt when the questions it asks lead to more
and better game knowledge, and receives a small
penalty on each next turn to encourage efficiency.
Dialogues vary in length, depending on the game
and the informativeness of the DP, but most dia-
logues are around a dozen turn exchanges. The
reward function and policy training are presented
in section 7. An excerpt of a Quarto dialogue from
our data collection appears in appendix A.

4 Game Trees as Knowledge

Game theory has been used to represent, reason
about, and implement games (Goeree and Holt,
1999; Berlekamp et al., 1982; Ling et al., 2018).
Our innovation is to use the game tree abstraction
as a vehicle for 1) storing the agent’s persistent
knowledge about a game, 2) reasoning about that
knowledge for dialogue, and 3) providing a mea-
surement of the quality of the game knowledge that
the agent acquires in the dialogue.

We developed a game knowledge reasoner
(GKR) shown in Figure 2 as an interface between
the agent’s belief state during a dialogue, and its
long-term knowledge store. The GKR assesses the
strategic value of new win conditions that a DP has
confirmed, and draws inferences about new ways
to win that are added to the agent’s belief state as
unconfirmed beliefs, as discussed further below.

After a dialogue, the agent’s final game tree,
can be used to engage in play. In an extensive
form game tree, each next depth in the tree rep-
resents action choices of alternate players. The
well-known minimax algorithm (Osborne and Ru-

binstein, 1994) computes a player’s optimal action
from a given node at depth di, on the assumption
that at depth di+1 the opponent always chooses its
best action. The challenge of learning a new ex-
tensive form game is thereby reduced to learning
enough of a game tree to engage in play. The qual-
ity of what the agent learned is reflected in how
often it can win.

At the start of a dialogue, an empty extensive
form game tree is initialized, and incrementally
extended based on answers to the agent’s questions.
Game-specific constraints specify how the game
tree can grow, e.g. how many actions are available
at each node. We use mapping functions from
abstract actions in a game tree to physical actions,
based on pre-defined information about the game-
board and pieces.

The GKR computes a strategic value for a new
win condition at a given dialog state as a function
of the number of overlapping actions with existing
win paths in the tree. Given a game tree with N
win paths {W1,W2, ...,Wn} of length m (Wi =
{ai1, ai2, ..., aim}), the Strategic Value (SV) for a
new win path Wj = {aj1, aj2, ..., ajm}, j > n is
a conditional summation:

SV (Wj) =

n∑
i=1

m∑
k=1

1[ajk ∈Wi] (1)

At a given depth in the game tree, sibling nodes
represent the actions available to the correspond-
ing player. In an incomplete game tree, some of
these siblings are part of a set of win paths and
some of them are not. If some of the actions at a
given depth lead to win conditions, the agent infers
that siblings of these actions might lead to simi-
lar win conditions. The GKR thus infers unseen
board configurations based on the current game
tree, and passes them to the dialogue manager as
hypothesized win conditions. Formally, given a
known win pathWi = {ai1, ai2, ..., aim} and a sib-
ling list of an action ail of the win condition Wi

(sibling(ail) = {a′1, a′2, ..., a′k}) the GKR infers a
maximum of k new win branches, for k remaining
actions in the game, based on a sibling distance met-
ric SiblingDistance(ail, a′j) = d , j ∈ {1, ..., k}:

Wj = {ai1 + d, ai2 + d, ..., a′j , ..., aim + d} (2)

For Connect Four and Gobblet we use a depth
two game tree to make inferences about possible
win conditions. For Quarto, we don’t set a depth
limit. We also use the board positions of inferred



343

Communicative Actions of agent
Action Type Meaning
Conf(ChangeDisk) Is D still a win after ChangeDisks?
Conf(ShiftBoard) Is D still a win after ShiftBoard?
Conf(Property) Is Property what makes D a win?
Req(ShiftBoard) What ShiftBoard operations on D are

also a win?
RequestOth() Can the other player undo D?
WinC(i) Resume discussion of the i-th D.
NewWinC() Request an unknown D.

Communicative Actions of Interlocutor
Action Type Meaning
Inform() Provide some/all of the requested in-

formation
Affirm() Positive answer to a yes/no question.
Negate() Negative answer to a yes/no question.
Unknown() Non-answer to a question.

Table 1: Communicative Action Types, apart from Conven-
tional, for starting or ending dialogues.

win condition Wj to find any known win condi-
tion Wi at the same board positions, so as to infer
that any feature f shared by all actions in Wj is
the game piece feature that contributes to this win
condition. The GKR returns this information to
the dialog manager. In sum, if the agent sees a
new win condition in a row where it has previously
seen a win condition, and the color is what distin-
guishes this new win, it infers that the color is a
win feature.

5 Meaning Representation

The communicative action generator takes as input
the current context and the communicative action
type selected by the dialogue policy, and gener-
ates a specific communicative action for the agent
in an MRL we describe here. The meaning rep-
resentation language is described in detail in our
previous work (Zare et al., 2019). Here we ex-
plain the communicative action types of the agent
and dialogue partner. The Action Types at the
top of Table 1 show that the agent can ask yes/no
questions (Confirm, ConfirmOtherPlayer), ask wh-
questions (Request), resume a previous context
(WinC()), or prompt the DP for a new demonstra-
tion (NewWinC()). These Action Types can be
viewed as functions that return a complete MRL as
a value. If no argument is shown, the current board
Di is the implicit argument. Confirm and Request
can be used to ask questions about actions that
can be taken on the current board (ChangeDisks,
ShiftBoard) or about properties of the game pieces
(Property).

The turn exchange in Figure 1 references a
demonstrated win condition D3. It shows the MRL

for a yes/no- question asking about the contribution
of color of the pieces in D3. Given an informative
DP, a yes/no- question elicits a yes or no answer
to an agent’s question. Here, however, the DP did
not provide an answer. The kinds of answers that
the agent currently understands are shown at the
bottom of Table 1. A wh- question elicits an In-
form() act, and a yes/no question elicits a positive
(Affirm()) or negative (Negate()) answer, or Un-
known(). Here we assume dialogue partners will be
truthful, but may not always know the answers to
questions, and may provide incomplete answers.

6 Belief State

The global belief space is a set of belief vectors B
that represent beliefs acquired during a dialogue
(see Figure 2). Each new demonstration Di in-
stantiates a new local belief vector Bi to represent
confirmed information observed in Di or acquired
from responses to questions about Di. Inferences
the GKR makes about possible win conditions are
also represented. A game board is represented as a
vector representing each board position (e.g., 0 to
15 for Quarto), with a belief value in [0,1] for each
vector position. Confirmed beliefs (BC) and in-
ferred beliefs (BI ) about ways to reconfigure a win
condition are similar vectors with an additional po-
sition None. Formally, the game belief vector B is
defined as concatenated vectors that each pertain to
an observed property of game pieces (e.g., color) or
a type of physical rearrangement of a configuration
of pieces (e.g., rotate):

BC = bColorc ⊕ ...⊕ bSizec ⊕ bRotatec
⊕ bTranslatec ⊕ bOtherP layerc ⊕ bBoardc

BI = bTranslatei ⊕ bColori ⊕ ...⊕ bQuantityi
B = BC ⊕BI (3)

Figure 1 illustrates a board demonstration D3 for
Quarto with a vertical sequence of four game pieces
starting in position 2. The board D3 is the implicit
argument in the question. BI is updated at the end
of each turn with inferences derived by the GKR.
For updating BC , we rely on the baseline belief
tracking method proposed in (Wang and Lemon,
2013). Given a response to a particular question,
the component belief vector vectt gets updated if
the turn exchange is a question and answer about
a function (e.g. translate) or a property (e.g. game
piece shape). When the response from the DP is
positive or contains new information, the corre-
sponding belief vectors get updated according to
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equation (4). When the DP response is negative, the
relevant sub-belief vectors are updated according
to equation (5).

Pvectt = 1−
(
1− Pvectt−1

)(
1− Put

)
(4)

Pvectt =
(
1− Pvectt−1

)(
1− Put

)
(5)

Currently, the confidence score Put over the DP
utterance is always 1.0, because there is no uncer-
tainty in the interpretation of the MRL. (In future
work, we plan to train Partially Observable MDP
policies to accommodate the uncertainty in natural
language interactions with humans.)

7 Policy Learning and Reward

Through simulation, we can control the informa-
tiveness of the DP’s responses, and thus investigate
the impact of informativeness on policy learning.
We train multiple policies, setting the DP informa-
tiveness to a value between 0 and 1. A 100% in-
formative DP responds to all questions completely.
For lower informativeness, we keep a list of all the
possible winning conditions sorted by the number
of times they have been presented by the DP in as-
cending order. When the agent asks a NewWinC()
question, a DP with x% informativeness randomly
chooses a win condition from the top (100−x)% of
the sorted list. A x% informative DP responds with
Unknown() to Confirm() queries with 100 − x%
probability, and provides only x% of a complete
answer to Request() queries.

Gašić and Young (2014) achieved good results
with less training for a Gaussian process approach
to policy learning. The model has few hyper-
parameters and converges quickly to a local op-
timum (< 20k epochs). We adopted their model
and trained dialogue polices for 10k epochs. The
policy gets updated at the end of each interaction.

The reward is designed to encourage the agent
to acquire as many new win condition paths as pos-
sible, to prefer paths with higher strategic value,
and to end the dialogue when the turn costs out-
weigh the gains in knowledge. Equation 6 shows
the reward R for a turn exchange t as a function
of the number of new win conditions in the DP’s
response to a question, the strategic value SV of
the response, and a turn cost C (through tuning,
we found good performance from α = 0.2, β = 3,
and C = 2.):

R = d#WaystoWin

β
e × α+ SV − C (6)

Quarto Policies with Six Dialogue Partner Levels
Commun Act 100% 80% 60% 50% 40% 20%
NewWinC() 0.46 0.44 0.39 0.40 0.33 0.31
WinC() 0.45 0.49 0.52 0.51 0.56 0.60
Req(ShiftBoard) 0.17 0.22 0.23 0.21 0.16 0.20
Conf(ShiftBoard) 0.33 0.15 0.06 0.04 0.12 0.09
Conf(ChangeDisk) 0.01 0.01 0.03 0.04 0.09 0.15
Conf(Property) 0.47 0.62 0.65 0.68 0.58 0.47
RequestOth() 0.02 0.00 0.03 0.03 0.05 0.09
Dialogue Length 10.6 10.3 10.3 9.8 10.2 10.1

Table 2: Dialogue length and action type frequencies.

We progress here through five questions to inves-
tigate how considerations of DP informativeness
can affect learning through communication.

Our first question is how dialogue policy learn-
ing differs across levels of DP informativeness. Fig-
ure 3 shows a sensitivity analysis of the training pro-
cess over 10k epochs, using change in total reward,
for six informativeness levels ranging from 100%
to 20%. The informativeness conditions clearly
differ, with lower reward for lower informativeness.
We achieved similar results for Connect Four and
Gobblet with much faster convergence for Connect
Four, the simplest game.

Using the fully trained policies from Figure 3,
we ask how communicative actions differ during
learning dialogues. In each informativeness level,
the agent engages in 100 dialogues. Table 2 reports
the average frequencies of each communicative act
type (except Conventional, which is always 9%,
since every dialogue has an opening and a closing),
and the average dialogue length in turn exchanges.
NewWinC() and WinC() are equiprobable only for
the 100% condition; in the other conditions, the lat-
ter is somewhat more frequent. More interestingly,
the dialogue length is invariant as the agent can still
learn from a low informative DP. The frequency
of Confirm(Property) is highest for the 50% condi-
tion, the DP who is neither very informative, nor
very uninformative. Similar trends were observed
for Gobblet as well. However, for Connect Four,
dialogues get shorter as informativeness decreases.

Figure 3: Total reward for six levels of DP informativeness.
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Policy-Dialogue Partner Condition
Type 100-100 100-50 50-50 50-100 20-20
Row 40% 25% 40% 20% 10%
Col 50% 25% 45% 50% 0%
Diag 50% 0% 25% 20% 0%
AntiD 75% 25% 50% 0% 25%

Table 3: Final game knowledge under 5 dialogue conditions.

We next ask how the policy affects what is
learned in a given dialogue from a given DP type,
and what happens if the agent’s learned policy for
a DP level X is used when interacting with a DP
of level Y . Table 3 shows five policy-DP (X-Y )
conditions we tested. Under each condition, one
dialogue from a set of ten dialogues was randomly
selected where we inspected the final game tree
knowledge. Quarto has four win condition loca-
tions, labeling the table rows. The most interesting
result common among all three games is that if the
DP is neither informative nor uninformative (50%),
the agent gains the most game knowledge from us-
ing a matching policy (50-50). Note that the agent
learns less from a 100% DP using the wrong policy
than from a 50% DP using the right policy.

We next ask how well can the agent play after a
learning dialogue. For Connect Four and Gobblet,
we recruited 16 students to play with the agent,
using the same conditions and knowledge states
from Table 3. Because the slow movements of
our Baxter robot (Rethink robotics) resulted in te-
dious 20-minute games, we used a simulated agent
at a terminal. Prior to data collection, each sub-
ject played a few practice games to become famil-
iar with the game and the interface. Each subject
played 10 games, randomly ordered among the 5
conditions. We set a time limit of 2.5 minutes for
each game and used a Minimax algorithm with 2
step look-ahead. We observed that the quantity dif-
ferences in knowledge acquired by the agent show
up directly as quality differences for Connect Four.
For Gobblet the proportion of outcomes for the
agent were more or less the same across the con-
ditions involving a 50% policy and/or a 50% DP.
We attributed the uniform Gobblet results to the
time limit for the play and to the need for greater
look-ahead, given the many action choices.

Policy-Dialogue Partner Condition
Result 100-100 100-50 50-50 50-100 20-20
Wins 0.94 0.19 0.50 0.18 0.12
Losses 0.00 0.81 0.47 0.78 0.82
Draws 0.06 0.00 0.03 0.04 0.06

Table 4: Percentage of agent wins/losses/draws.

For Quarto, we altered the experiment by remov-
ing the restriction on length of play and depth of
search. We also developed a graphical user inter-
face to display game pieces in a more realistic way.
We recruited 18 students to play Quarto. The game
results in Table 4 show that the agent won games
more often when it had learned the game from a
more informative DP, as long as it used the corre-
sponding policy.

Our final question was whether the agent could
use the same policy to continue learning over a
sequence of dialogues. Here we looked at three
conditions: where the learned policy matched the
DP informativeness of 100%, 50% and 20%. In
each condition, the agent had four dialogues, start-
ing with no knowledge. The agent began each next
dialogue with the knowledge it had gained from its
previous dialogue. We averaged the final reward
at the end of each dialogue. Results show that the
agent continues to learn more and more about the
game, especially from the 100% informative DP.
Results for Gobblet were very similar to Quarto.
However for Connect Four, there is usually little
reward (knowledge) left to gain after the first or
second dialogue in higher informativeness levels,
so the reward plateaus after two or three dialogues.

8 Dialogue Data Collection

To add natural language capability for the agent,
we developed a novel data collection method
to produce a corpus consisting of <Game-
board,MRL,NL> tuples for each utterance in 960
dialogues between an agent and simulated dialogue
partner. The Quarto Dialogue corpus is distinctive
in that it is agent-agent situated, multi-modal dia-
logue where agents’ utterances are in an MRL, then
all dialogues translated by experts into English.

To our knowledge, this is the first corpus of its
kind. Most previous dialogue corpora we know
of fall into one of three other categories: human-
Wizard-of-Oz, human-agent, or human-human. Cor-
pora for human-Wizard-of-Oz are used either to in-

Figure 4: Consecutive dialogues reward trend.
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form manually engineered dialogue management or
as training data for machine learned dialogue man-
agers. These corpora are collected for the purpose
of restaurant reservation (Henderson et al., 2013),
finding available vacation accommodations (Asri
et al., 2017), or even open-domain information re-
trieval systems (Rosset and Petel, 2006). Human-
agent corpora are often annotated with dialogue
acts for applications such as travel booking systems
(Bennett and Rudnicky, 2002). Human-human cor-
pora are either collected under constrained settings
where humans are instructed to follow a series of in-
structions (Brennan et al., 2013; Heeman and Allen,
1995), or are naturally occurring conversations be-
tween humans (Asher et al., 2016; Afantenos et al.,
2012; Passonneau and Sachar, 2014). Distinctive
characteristics of the Quarto corpus are that every
utterance has an MRL and a natural language ver-
sion where the MRL is a communicative act. The
dialogues involve a shared multi-modal context,
leading to deictic reference to the game board and
with a known structure into sub-dialogues.

To collect our corpus, we developed two graph-
ical user interfaces (GUIs) to display a schematic
representation of the current board demontration
(cf. Figure 1), and to allow annotators to page
through each turn exchange. One GUI was for
the translation task, and a second was to collect
ratings on the translations. Thirteen undergradu-
ate students from a course in Artificial Intelligence
participated as part of their course work. Students
were first trained in the MRL, including compar-
isons with the first order logic translations of En-
glish that students had learned in class. Their in-
structions were to translate into colloquial English.
Meetings were held where students discussed ex-
amples and asked questions. All translations were
rated for correctness and naturalness on a five-point
scale where 5 was the top. On average, correctness
was 4.79 and naturalness was 4.72.

The 960 dialogues contain 12,885 turn ex-
changes. The English translations contain 229,641
word tokens, and 1,498 word types. The NLG data
has 146,055 tokens and 1,102 types. The NLU data
is somewhat less rich, with 83,586 tokens and 952
types. The 960 dialogues consist of 535 from a
60% informative simulator, 255 from a 100% infor-
mative simulator, and 170 from a 50% simulator.
We are currently augmenting the data to synthe-
size new examples for Quarto, and to synthesize
Connect Four and Gobblet data.

Because all turn exchanges are tied to a physi-
cal board, the corpus is rich in spatial references.
The students referred to the pieces by specific at-
tributes (e.g. next to that green circular piece),
exact location on the board (e.g. top corner piece),
relation with other pieces (e.g. to the right of the
square piece), or deictic reference (e.g. this piece
here). There are also many anaphoric references
(e.g. about that win you showed, the second win).

9 Human-Agent Dialogues

The dataset described above provides training data
for NLU and NLG modules to enable the agent
to engage in dialogue with humans. Two other
changes needed to support future human-agent di-
alogues are clarification sub-dialogues to handle
misunderstandings or confusions, and modifica-
tion of the policy training and belief updates to ad-
dress uncertainty in the NLU. To preview our future
challenges, we developed baseline NLU and NLG
modules, and asked the 18 subjects who played
Quarto with our agent to engage in text-based di-
alogues. Here we describe the dialogue interface,
the baseline NLU and NLG modules, the dialogue
outcomes, and the subjects’ informativeness.

We developed a text-based GUI for subjects
to engage in dialogues with an agent, similar to
the GUI used for translating MRL into English.
For NLG and NLU, we trained two sequence-to-
sequence RNN models with two hidden layers and
a Bahdanau attention layer (Bahdanau et al., 2015).
The Adam optimizer was used for training (Kingma
and Ba, 2014) (20 epochs for NLG, and 15 for
NLU). The MDP policy for 100% informativeness
was used, and belief updating remained the same.

Each subject engaged in two dialogues. Average
dialogue length was 10.96 turn exchanges (min 9,
max 15, std 2.15), which is similar to dialogues
with the simulator. Subjects also completed a ques-
tionnaire. The questionnaire1 asked subjects 1)
whether they understood the agent’s questions, 2)
to list the confusing questions by turn number, 3) to
rate the dialogues on a 5-point scale for the agent’s
command of English, and 4) to tell us how will-
ing they would be to have another dialog with this
agent. Fourteen of the subjects said they under-
stood the agent most of the time. Inspection of the
questions listed as confusing indicated they all had
incomplete or incorrect NLG output. The average
fluency rating was 2.93. Eleven subjects said they

1See Appendix B for the complete list of questions.
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Win Type Mean Min Max SDev
Row 20% 0% 35% 7.8
Col 20% 0% 40% 8.3
Diag 15% 0% 50% 13.3
Anti-Diag 5% 0% 10% 1.2

Table 5: Average final knowledge states for the 36 dialogues

would be willing to have more dialogues, one was
neutral, and six were somewhat dissatisfied.

The overall quality of the NLG was good; two
thirds of the agent questions were fluent and cor-
rect. Of 197 total turn exchanges, 58 were less than
perfect. One of the co-authors rated all the gener-
ated questions on a five-point scale for correctness
and intelligibility, yielding an average score of 4.19
(min 1, max 5, std 1.23). The NLU quality was
less good. Subjects’ answers were translated to
a gold-standard MRL by one of the co-authors,
and compared with the NLU output; only 60% of
the answers were interpreted correctly. Despite
the agent’s frequent failure to understand subjects’
responses, the average total reward of 12.45 was
comparable to the reward for an 80% informative
simulator with a matching policy (cf. Figure 3).
Table 5 gives the average final knowledge states
for the 36 dialogues, which is in the same range
as for dialogues with a 50% informative DP and
matching policy (see Table 3). To assess the sub-
jects’ informativeness, we examined the 139 turn
exchanges that subjects understood well, compar-
ing the subjects’ answers to 100% informative an-
swers. Subjects’ answers were 100% informative
only 41% of the time.

The comparison of baseline human-agent learn-
ing dialogues with those between an agent and sim-
ulated DP shows promise for reinforcement learn-
ing of policies that are trained offline in simulation.
Subjects provided less than 100% informative an-
swers, and the agent’s final knowledge states were
similar to those where the agent interacted with a
50% informative simulator, using a matching pol-
icy. Even without the ability to engage in clari-
fication sub-dialogues with a human to clear up
confusions, the dialogues were all completed. The
agent was completely understandable two thirds of
the time. The agent learned as much about Quarto
as in the 50%-50% simulator condition.

A question raised by these results is how an agent
could benefit from having access to multiple dia-
logue policies. In robotics, a very similar ques-
tion has been addressed for agents learning motor
skills through simulation and deploying the learned

policies in real-world environments with unknown
dynamics. Approaches include learning to linearly
combine a family of policies (Zhang et al., 2018),
learning a classifier for environment parameters
to choose the correct policy (Yu et al., 2017), or
searching directly within a family of policies using
the current accumulated reward (Yu et al., 2019).
Similar methods could be applied to exploit a fam-
ily of dialogue policies to adapt questioning strate-
gies in different ways, depending on the observed
behavior of the dialogue partner.

10 Conclusion

Our results show that agents can learn MDP poli-
cies to learn board games through multi-modal dia-
logues using a relative knowledge goal, namely to
increase the agent’s game knowledge as much as
possible during a short dialogue. We also show that
the agent learns different dialogue policies depend-
ing on the dialogue partner’s informativeness. This
work exploits the benefits of a knowledge domain
that has a very abstract representation in the form of
game trees, where a novel meaning representation
language is grounded in the game tree abstraction.
This approach can generalize to a wide range of
two-person board games, and provides a founda-
tion for communication learning about other strate-
gic activities. In addition, an agent that can learn
new games and then engage in play has potential
benefits in Socially Assistive Robotics (Feil-Seifer
and Mataric, 2005). Board games have been used
to delay the onset of dementia (Dartigues et al.,
2013), and have been shown to help children learn
computational concepts (Berland and Lee, 2011).

Additionally, we have demonstrated that MDP
policies trained offline in simulation can lead to
fairly effective human-robot learning dialogues,
based on training data for natural language modules
we collected through a novel procedure. Our future
work will expand the communicative actions to
include clarifications, will train POMDP policies,
and will borrow ideas from reinforcement learn-
ing of robotic motor skills to close the reality gap
between offline training of dialogue policies and
engaging in real-world dialogues with humans.
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A Appendix A: Excerpt of a Quarto
Dialogue

Here is a sample Quarto dialog from the data col-
lection, showing the MRL,NL pairs, and images of
the relevant board contexts.

– Q1) Start()
NL: Hi there! Can you teach me how to play Quarto?
A1) Start()
NL: Sure thing, let’s get started.

– Q2) RequestNewWinCondition()
NL: Can you show me an example of a win?
A2)

Figure 5: First Win Condition (D1)

– Q3)RequestNewWinCondition()
NL: Alright, how about another?
A3)

Figure 6: Second Win Condition (D2)

– Q4) ContextSwitch (D1), Confirm(translate(col0))
NL: In the first example you showed me, would it still
count if the pieces were placed down the first column
instead of down the fourth?
A4) Affirm()
NL: Yeah, it would.

– Q5) Same, Request(rotate())
NL: Say I keep the blue triangle in the bottom-right
corner, but try placing the remaining pieces along some
other direction upward, to the left, or a combination of
both. Could I still get a win?
A5) Inform([135, 180)
NL: You could get a win so long as you placed the
remaining pieces along the anti-diagonal, or leftward
along the bottom row.

– Q6) Same, Confirm(shape)
NL: Does this count because of the shape of the pieces?
A6) Negate()
NL: No, this win is not based on the shapes.

– Q7) Same, Confirm(quantity)
NL: Well, does this count because there are four and
only four pieces?
A7) Affirm()
NL: Yes, it wouldn’t count for any other number of
pieces.

– Q8) ContextSwitch(D2), Confirm(removepiece((0,1)
NL: Okay, in the second example you showed me, what
would happen if I removed the green triangle?
A8) Negate()
NL: Then you would no longer have a win.

– Q9) RequestNewWinCondition()
NL: Can you show me another example of a win?
A9)

Figure 7: Third Win Condition (D3)

– Q10) Finish
NL: Great, thanks for helping me get started!
A10) Finish
NL: I’m happy I could help!

B Appendix B: Questionnaire

Here we present the complete list of questions
asked from students.

1. Were you able to understand what the agent
was asking you even when it was not com-
pletely fluent English.

2. If there were questions you could not under-
stand, please list them below by turn number.

3. For questions you could not understand please
try to explain to us your confusion for each
of the turns you listed above. (Please use the
turn number again)

4. On a scale of 1 to 5 (5 is the best) how likely
you would be think that this dialog was typed
in by an English speaker?

5. What aspects of this dialog did you find inter-
esting, if any?

6. How likely you would come back and have
another dialog about a game with this agent?

7. What aspects of the GUI do you think can be
improved?


