
Proceedings of the SIGdial 2020 Conference, pages 49–52
1st virtual meeting, 01-03 July 2020. c©2020 Association for Computational Linguistics

49

RETICO: An incremental framework for spoken dialogue systems

Thilo Michael
Quality and Usability Lab

Technische Universität Berlin
thilo.michael@tu-berlin.de

Abstract

In this paper, we present the newest version of
retico - a python-based incremental dialogue
framework to create state-of-the-art spoken di-
alogue systems and simulations. Retico pro-
vides a range of incremental modules that are
based on services like Google ASR, Google
TTS, and Rasa NLU. Incremental networks
can be created either in code or with a graph-
ical user interface. In this demo, we present
three example systems that are implemented in
retico: a spoken translation tool that translates
speech in real-time, a conversation simulation
that models turn-taking, and a spoken dialogue
restaurant information service.

1 Introduction

Classical architectures of spoken dialogue sys-
tems rely on a pipeline approach, where data is
passed through and transformed by a set of mod-
ules. These modules perform a specific task on the
data, for example, convert speech signals into text
(ASR modules) or extracting domain-specific in-
formation from text (NLU modules). While this ar-
chitecture separates the concern between the mod-
ules and modularizes the development of spoken
dialogue systems, the resulting agents are slow to
process data and cannot react quickly to changes in
the input.

Incremental processing, an architecture where
modules work on small increments of data and
forward hypotheses based on those increments to
the next module, increases the processing speed
and reactiveness of dialogue systems while still re-
taining the modularized approach of the pipeline
architecture (Schlangen and Skantze, 2011). How-
ever, due to the overhead of creating and revoking
hypotheses and processing on incomplete data, the
complexity of each module in an incremental di-
alogue system increases. For researchers, it can

be a challenge to implement and evaluate incre-
mental modules, as they do not have the time and
knowledge to implement a complete incremental
dialogue system, just to evaluate the part they are
researching.

The incremental processing toolkit (InproTK) is
an open-source toolkit written in Java that provides
an interface for incremental modules and defines an
architecture for incremental units, hypothesis han-
dling, and connections between incremental mod-
ules (Baumann and Schlangen, 2012). However,
the toolkit does not provide an integrated frame-
work that allows for the design and evaluation of
networks.

In this paper, we present the current version of
retico, an incremental framework for spoken di-
alogue that was first published in (Michael and
Möller, 2019). Retico is a framework written in
python and published as an open-source project1.
We demonstrate three types of speech and dia-
logue systems that are implemented in this frame-
work. First, we showcase an incremental transla-
tion service that utilizes Google Translate to rec-
ognize, translate, and synthesize speech. Also, we
showcase a simulation of a conversation with turn-
taking, where two agents interact with each other.
Finally, we showcase a spoken dialogue system
in the restaurant information domain. All demo
systems are visualized in a graphical user interface,
and the networks can be adjusted live (e.g., speech
synthesis modules can be switched).

2 Related Work

The incremental model has been formalized
by Schlangen and Skantze in (Schlangen and
Skantze, 2009, 2011). The resulting framework
InproTK (Baumann and Schlangen, 2012) has been
used for incremental speech recognition and syn-

1Available at www.github.com/uhlo/retico

www.github.com/uhlo/retico


50

thesis and dialogue systems, among others. Based
on this, InproTKS extends the toolkit for the use of
situated dialogue(Kennington et al., 2014).

Recent work in modules of spoken dialogue sys-
tems like speech recognition (Selfridge et al., 2011)
and end-of-turn prediction (Skantze, 2017) focused
on incremental processing, and a state-of-the-art
natural language understanding module has been
incrementalized (Rafla and Kennington, 2019).

Incremental processing cannot only be used in
spoken dialogue system, but it also can be use-
ful for research regarding conversation simula-
tion (Michael and Möller, 2020).

3 Architecture

The architecture of retico is written in python based
on the conceptual model of incremental processing
described in (Schlangen and Skantze, 2009). Core
of this framework are the abstract definitions of
an incremental module (IM) and an incremental
unit (IU). Both definitions provide interfaces and
processing routines to handle concurrent process-
ing of modules and the flow of IUs between the
modules. Each IM has a left buffer, where IUs of
other modules are placed to be processed and a
right buffer where new hypotheses are placed and
sent to IMs further down the incremental pipeline.
Usually, an IM defines one or more types of IU that
it is able to process and one type of IU it produces
and produces or revokes hypotheses based on every
incoming unit.

Besides these modules, retico provides interfaces
for information exchange apart from IUs by chang-
ing meta-information of IMs and by calling “trig-
ger” modules, that produce IUs on-demand and
insert them to the buffers of modules.

3.1 Incremental Units

Incremental units are mainly defined by their pay-
load, which differs widely depending on the type of
data the IU is carrying. For example, an AudioIU
stores chunks of audio data that is captured by a
microphone, while a TextIU stores text recog-
nized by an ASR module or generated by an NLG
module.

IUs also manage references to IUs they are based
on, as well as IUs that precede it. This information
is automatically collected and added to the IU when
it is created as part of the processing routine of an
Incremental Module.

Additionally, IUs retain information on their

hypothesis-status, that is, if they are committed
(no further changes to the hypothesis will be made)
or if they are revoked (the hypothesis is no longer
valid and may be replaced with a newer hypothe-
sis). Also, meta-data in the form of key-value-pairs
can be attached to an IU. In contrast to the payload
of an IU, the meta-data is not standardized for a
type of an IU and is not guaranteed to be present.
However, it is a useful tool for debugging or storing
information used for visualization.

3.2 Incremental Modules
Incremental modules represent the core function-
ality of retico. Their connectivity is defined
by one or more input IU types and one output
IU type. However, there are special producer
modules that do not accept any input IUs be-
cause they obtain information from other sources
(e.g., the MicrophoneModule) and consumer
modules that do not output any IUs (e.g., the
SpeakerModule). The primary processing
method of an incremental module is invoked ev-
ery time there is a new IU in the left buffer, and it
may return a new IU for the right buffer. Like IUs,
incremental modules are also able to hold meta-
data, which is used for debugging and visualization
purposes.

Retico already includes modules from various
fields of a spoken dialogue system. Most no-
tably, there exists modules that handle Audio in-
put and output, online and offline speech recogni-
tion (CMUSphinx, Google ASR), natural language
understanding (rasa NLU), dialogue management
(agenda-based, rasa RNN-based, n-gram-based),
speech synthesis (Mary TTS, Google TTS) as well
as translation services (Google Translate). Addi-
tional modules and integrations from other frame-
works are in planning.

3.3 Logging and Persistence
The IUs that are defined in retico generalize via
the python inheritance structure, so that standard
data types like audio, text, and dialogue acts are
supported. This allows retico to persist IUs of these
types with so-called “recorder” modules.

Retico modules are serializable so that networks
can be stored into a file to be loaded and initialized
again later.

3.4 Graphical User Interface
While modules can be created, connected, and run
purely in python code, it also provides a GUI that



51

Figure 1: Screenshot of the graphical user interface to
create, save and load incremental networks.

Microphone
Module

Google	ASR
Module

Google	Tranlsate
Module

Google	TTS
Module

Speaker	Module

Figure 2: The schema of the translation service.

visualized networks and the flow of IUs. Figure 1
shows the user interface that runs in a browser.
Available modules are shown in a tree list and can
added onto the canvas. Connections between mod-
ules can be made by clicking on the sockets, and
the interface highlights only modules that can pro-
cess the specific IU type. When a network is run
in the GUI, the modules show basic information
about the IU they are currently processing.

Networks created with the GUI can be saved to
a file and be loaded again with the GUI or with
python code. The position and size information
of the modules are stored in the module’s meta-
data, which allows retico to retain the layout of the
network when loading it from file.

4 Demonstrations

In this section, we present three different projects
that are created entirely in retico. Due to the modu-
lar approach of retico, these systems are not fixed
regarding the modules they use for a given task.
For example, rectico is able to use two different
speech synthesis modules that can be interchanged.

4.1 Spoken Translation Service
The translation service utilizes speech recognition,
a text translation service, and speech synthesis to
translate sentences spoken into the system. As can
be seen in Figure 2, the main components used in
this setup are the Google ASR, Google TTS, and
the Google Translate modules. While the ASR

ASR	Module

End	of	Turn
Prediction
Module

TTS	Module

Speech Output
Audio

Dispatching
Module

NLG	Module

NLU	Module

Turn-Taking
and

Dialogue
Management
Module

Speech Input

Figure 3: The schema of one agent in the turn-taking
conversation simulation network. The complete sim-
ulation includes two agents whose speech-input and -
output are connected, as well as a recording modules
that stores the conversation onto disk for further evalu-
ations.

module works on word and sub-word level, the
translation module collects multiple words so that
a potential translation stabilizes. The translated
sentences are synthesized with Google TTS and
transmitted to the speakers.

The languages that can be translated by this ser-
vice are only limited by the capabilities of Google
ASR, TTS, and translation services. However, we
tested the system with German-English, English-
French, and German-French translations.

Because there is no echo suppression imple-
mented in this version of the service, the loud-
speaker, and the microphone have to be acoustically
separated (e.g., via a headset).

4.2 Conversation Simulation
The conversation simulation consists of two spo-
ken dialogue systems that are connected and can
communicate through an audio channel. Because
of the incremental implementation, the agents can
predict the end-of-turn of their interlocutors and
perform rudimentary turn-taking. As can be seen in
Figure 3, an Audio Dispatching Module
is used to control when an agent speaks and when
it is silent, and it also provides feedback of the sta-
tus of the current utterance back to the dialogue
manager. The simulated conversation itself models
a short conversation test as standardized by (ITU-T
Recommendation P.805, 2007). Concretely, the sce-
nario describes a telephone conversation between a
worker at a pizzeria and a customer. The customer
inquires about available dishes and their toppings,
selects an item from the menu, and the pizzeria
worker requests information like telephone number
and address.

The modules in this network (ASR, TTS, NLG,
NLU, end-of-turn) are based on recorded data
from real conversations performed in laboratory
conditions that were transcribed and annotated



52

with dialogue acts and turn markers. The incre-
mental modules in the simulation make use of
meta-information transmitted through retico’s side-
channel to perform their tasks. The utterances pro-
duced by the agents are sliced from the empirical
conversations. However, other synthesis methods
can be used.

4.3 Restaurant Information System

The restaurant information system is a spoken dia-
logue system that finds restaurants based on user-
given criteria like location of the restaurant, as well
as the type and price of food. Once every slot
is filled, the dialogue system queries a database
and recommends restaurants that match the crite-
ria. Depending on the complexity of the query, the
request to the database can be slow. The incremen-
tal processing, together with a caching-mechanism
implemented into the database connector, allows
for faster response times of the dialogue system.

The speech recognition and synthesis are real-
ized with Google ASR, and TTS modules, and rasa
NLU is used for the natural language understand-
ing. The dialogue manager used in this system is
rule-based and uses slot-filling to query restaurants.

5 Conclusion

In this paper, we presented the newest version of
retico, a framework for incremental dialogue pro-
cessing. We described the incremental architecture
and highlighted the logging and persistence fea-
tures as well as the graphical user interface. We
also showcased three application ideas created with
the framework, that span a wide range of possible
speech dialogue systems. We described a service
that translates speech in increments, a conversa-
tion simulation that is able to perform turn-taking,
and a dialogue system that processes increments to
decrease the time used to query a database.

While we focus on applications in the area of
spoken dialogue, the incremental approach of this
framework can be applied to other areas of research
as well. For example, modules for video input and
object detection can be used to reference positions
of objects in the dialogue, and robotics features
may be integrated so that a dialogue system can
interact with its environment.

The framework is published as open source and
available online at
https://www.github.com/uhlo/retico.

Acknowledgements

This work was financially supported by the Ger-
man Research Foundation DFG (grant number MO
1038/23-1).

References
Timo Baumann and David Schlangen. 2012. The in-

protk 2012 release. In NAACL-HLT Workshop on
Future Directions and Needs in the Spoken Dialog
Community: Tools and Data, pages 29–32. Associa-
tion for Computational Linguistics.

ITU-T Recommendation P.805. 2007. Subjective Eval-
uation of Conversational Quality. International
Telecommunication Union, Geneva.

Casey Kennington, Spyros Kousidis, and David
Schlangen. 2014. Inprotks: A toolkit for incre-
mental situated processing. Proceedings of SIGdial
2014: Short Papers.

Thilo Michael and Sebastian Möller. 2019. Retico:
An open-source framework for modeling real-time
conversations in spoken dialogue systems. In 30th
Konferenz Elektronische Sprachsignalverarbeitung
(ESSV), pages 238–245, Dresden. TUDpress.

Thilo Michael and Sebastian Möller. 2020. Simulat-
ing turn-taking in conversations with varying inter-
activity. In 31th Konferenz Elektronische Sprachsig-
nalverarbeitung (ESSV), pages 208–215, Dresden.
TUDpress.

Andrew Rafla and Casey Kennington. 2019. In-
crementalizing rasa’s open-source natural lan-
guage understanding pipeline. arXiv preprint
arXiv:1907.05403.

David Schlangen and Gabriel Skantze. 2009. A gen-
eral, abstract model of incremental dialogue process-
ing. In Proceedings of the 12th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, pages 710–718. Association for
Computational Linguistics.

David Schlangen and Gabriel Skantze. 2011. A gen-
eral, abstract model of incremental dialogue process-
ing. Dialogue and Discourse, 2(1):83–111.

Ethan O Selfridge, Iker Arizmendi, Peter A Heeman,
and Jason D Williams. 2011. Stability and accuracy
in incremental speech recognition. In Proceedings
of the SIGDIAL 2011 Conference, pages 110–119.
Association for Computational Linguistics.

Gabriel Skantze. 2017. Towards a general, continu-
ous model of turn-taking in spoken dialogue using
lstm recurrent neural networks. In Proceedings of
the 18th Annual SIGdial Meeting on Discourse and
Dialogue, pages 220–230.

https://www.github.com/uhlo/retico

