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Abstract
In situated dialogue, because humans and
agents have mismatched capabilities of
perceiving the shared physical world, ref-
erential grounding becomes difficult. Hu-
mans and agents will need to make ex-
tra efforts by collaborating with each other
to mediate a shared perceptual basis and
to come to a mutual understanding of in-
tended referents in the environment. In
this paper, we have extended our previous
graph-matching based approach to explic-
itly incorporate collaborative referring be-
haviors into the referential grounding al-
gorithm. In addition, hypergraph-based
representations have been used to account
for group descriptions that are likely to oc-
cur in spatial communications. Our empir-
ical results have shown that incorporating
the most prevalent pattern of collaboration
with our hypergraph-based approach sig-
nificantly improves reference resolution in
situated dialogue by an absolute gain of
over 18%.

1 Introduction

As more and more applications require humans
to interact with robots, techniques to support sit-
uated dialogue have become increasingly impor-
tant. In situated dialogue, humans and artificial
agents (e.g., robots) are co-present in a shared
environment to achieve joint tasks. Their dia-
logues often involve making references to the en-
vironment. To ensure the conversation proceeds
smoothly, it is important to establish a mutual un-
derstanding of these references, a process called
referential grounding (Clark and Brennan, 1991):
the agent needs to identify what the human refers
to in the environment and the human needs to
know whether the agent’s understanding is correct;
and vice versa.

Although reference resolution (Heeman and
Hirst, 1995; Gorniak and Roy, 2004; Siebert
and Schlangen, 2008) and referential ground-
ing (Traum, 1994; DeVault et al., 2005) have been
studied in previous work, the unique characteris-
tics of situated dialogue post bigger challenges to
this problem. In situated dialogue, although hu-
mans and agents are co-present in a shared world,
they have different capabilities in perceiving the
environment (a human can perceive and reason
about the environment much better than an agent).
The shared perceptual basis, which plays an im-
portant role in facilitating referential grounding
between the human and the agent, thus is miss-
ing. Communication between the human and the
agent then becomes difficult, and they will need
to make extra efforts to jointly mediate a shared
basis and reach a mutual understanding (Clark,
1996). The goal of this paper is to investigate what
kinds of collaborative efforts may happen under
mismatched perceptual capabilities and how such
collaborations can be incorporated into our refer-
ential grounding algorithm.

Previous psycholinguistic studies have indi-
cated that grounding references is a collaborative
process (i.e., collaborative referring) (Clark and
Wilkes-Gibbs, 1986; Clark and Brennan, 1991):
The process begins with one participant present-
ing an initial referring expression. The other par-
ticipant would then either accept it, reject it, or
postpone the decision. If a presentation is not
accepted, then either one participant or the other
needs to refashion it. This new presentation (i.e.,
the refashioned expression) is then judged again,
and the process continues until the current pre-
sentation is accepted. To understand the implica-
tion of collaborative referring under the situation
of mismatched perceptual capabilities, we have
conducted experiments on human-human conver-
sation using a novel experimental setup. Our col-
lected data demonstrate an overwhelming use of
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collaborative referring to mediate a shared percep-
tual basis.

Motivated by these observations, we have de-
veloped an approach that explicitly incorporates
collaborative referring into a graph-matching al-
gorithm for referential grounding. As the conver-
sation unfolds, our approach incrementally builds
a dialogue graph by keeping track of the contri-
butions (i.e., presentation and acceptance) from
both the human and the robot. This dialogue
graph is then matched against the perceived en-
vironment (i.e., a vision graph representing what
are perceived by the robot from the environment)
in order to resolve referring expressions from the
human. In addition, in contrast to our previous
graph-based approach (Liu et al., 2012), the new
approach applies hypergraphs: a more general
and flexible representation that can capture group-
based (n-ary) relations (whereas a regular graph
can only model binary relations between two enti-
ties). Our empirical results have shown that, incor-
porating the most prevalent pattern of collabora-
tion (i.e., agent-present-human-accept, discussed
later) with the hypergraph-based approach signif-
icantly improves reference resolution in situated
dialogue by an absolute gain of over 18%.

In the following sections, we first give a brief
discussion about the related work. We then de-
scribe our experiment setting and the patterns of
collaboration observed in the collected data. We
then illustrate how to build a dialogue graph as
the conversation unfolds, followed by the formal
definition of the hypergraph representation and
the referential grounding procedure. Finally we
demonstrate the advantage of using hypergraphs
and incorporating a prevalent collaborative behav-
ior into the graph-matching approach for reference
resolution.

2 Related Work

In an early work, Mellish (Mellish, 1985) used a
constraint satisfaction approach to identify refer-
ents that could be only partially specified. This
work illustrated the theoretical idea of how to re-
solve referring expressions based on an internal
model of a world. Heeman and Hirst (Heeman
and Hirst, 1995) presented a planning-based ap-
proach to cast Clark’s collaborative referring idea
into a computational model. They used plan con-
struction and plan inference to capture the pro-
cesses of building referring expressions and identi-

fying their referents. Previous work in situated set-
tings (Dhande, 2003; Gorniak and Roy, 2004; Fu-
nakoshi et al., 2005; Siebert and Schlangen, 2008)
mainly focused on developing/learning computa-
tional models that map words to visual features of
objects in the environment. These “visual seman-
tics” of words were then integrated into seman-
tic composition procedures to resolve referring ex-
pressions.

These previous work has provided valuable in-
sights in computational approaches for reference
resolution. However, they mostly dealt with a sin-
gle expression or a single referent. In this pa-
per, our goal is to resolve complex referring di-
alogues that involve multiple objects in a shared
environment. In our previous work (Liu et al.,
2012), we developed a graph-matching based ap-
proach to address this problem. However, the pre-
vious approach can not handle group-based rela-
tions among multiple objects. Furthermore, it did
not look into incorporating collaborative behav-
iors, which is a particularly important characteris-
tic in situated dialogue. This paper aims to address
these limitations.

3 Experiments and Observations

To investigate collaborative referring under mis-
matched perceptual capabilities, we conducted ex-
periments on human-human interaction (details of
the experimental setup can be found in (Liu et al.,
2012)). In these experiments, we have two human
subjects play a set of naming games. One sub-
ject (referred to as the human-player) is provided
with an original image containing over ten objects
(Figure 1(a)). Several of these objects have se-
cret names. The other subject (referred to as the
robot-player) only has access to an impoverished
image of the same scene (Figure 1(b)) to mimic
the lower perceptual capability of a robot. The
human-player’s goal is to communicate the names
of target objects to the robot-player so that the
robot-player knows which object in his view has
what name. The impoverished image was auto-
matically created by applying standard computer
vision algorithms and thus may contain different
types of processing errors (e.g., mis-segmentation
and/or mis-recognition).

Using this setup, we have collected a set of dia-
logues. The following shows an example dialogue
segment (collected using the images shown in Fig-
ure 1):
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Figure 1: An example of different images used in
our experiments.

H1: there is basically a cluster of four objects in the upper
left, do you see that

R2 : yes
H: ok, so the one in the corner is a blue cup
R : I see there is a square, but fine, it is blue
H: alright, I will just go with that, so and then right under

that is a yellow pepper
R : ok, I see apple but orangish yellow
H: ok, so that yellow pepper is named Brittany
R : uh, the bottom left of those four? Because I do see a

yellow pepper in the upper right
H: the upper right of the four of them?
R : yes
H: ok, so that is basically the one to the right of the blue cup
R : yeah
H: that is actually an apple, it is green, I guess it has some

amount of yellow on it, but that is a green apple and it
is named Ashley

. . . . . .

This example demonstrates two important char-
acteristics regarding referential communication
under mismatched perceptual capabilities. First,
conversation partners rely on both object-specific
properties (e.g., object class, color) and spatial
relations to describe objects in the environment.
Spatial expressions include not only the binary re-
lations (e.g., “the one to the left of the blue cup”),
but also the group-based references (Tenbrink and
Moratz, 2003; Funakoshi et al., 2005) (e.g., “the
upper right of the four of them”).

Second, because the shared perceptual basis
is missing here, the partners make extra efforts
to refer and ground references. For example,
the human-player go through step-by-step install-
ments (Clark and Wilkes-Gibbs, 1986) to come
to the targeted object. The robot-player often
proactively provides what he perceives from the
environment. The human-player and the robot-
player collaborate with each other through itera-
tive presentation-acceptance phases as described
in the Contribution Model proposed in (Clark and
Schaefer, 1989; Clark and Brennan, 1991).

1H stands for the human-player.
2R stands for the robot-player.

These observations indicate that, the approach
to referential grounding in situated dialogue
should capture not only binary relations but also
group-based relations. Furthermore, it should go
beyond traditional approaches that purely rely on
semantic constraints from single utterances. It
should incorporate the step-by-step collaborative
dynamics from the discourse as the conversation
proceeds.

4 Modeling Collaboration

In this section, we first give a brief description of
collaboration patterns observed in our data, and
then discuss one prevalent pattern and illustrate
how it may be taken into consideration by our
computational approach for referential grounding.

4.1 Patterns of Collaboration
Consistent with Clark’s Contribution Model, the
interactions between the human-player and the
robot-player in general fall into two phases: a pre-
sentation phase and an acceptance phase. In our
data, a presentation phase mainly consists of the
following three forms:
• A complete description: the speaker issues a

complete description in a single turn. For ex-
ample, “there is a red apple on the top right”.
• An installment: a description is divided

into several parts/installments, each of which
needs to be confirmed before continuing to
the rest. For example,

A: under the big green cup we just talked about,
B: yes
A: there are two apples,
B: OK
A: one is red and one is yellow.

• A trial: a description (either completed or in-
complete) with a try marker. For example, “Is
there a red apple on the top right?”

In an acceptance phase, the addressee can either
accept or reject the current presentation. Two ma-
jor forms of accepting a presentation are observed
in our data:
• Acknowledgement: the addressee explicitly

shows his/her understanding, using assertions
(e.g., “Yes”,“Right”, “I see”) or continuers
(e.g., “uh huh”, “ok”).
• Relevant next turn: the addressee proceeds

to the next contribution that is relevant to the
current presentation. For example: A says “I
see a red apple” and directly following that B
says “there is also a green apple to the right
of that red one”.
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In addition, there are also two forms of rejecting
a presentation:

• Rejection: the addressee explicitly rejects the
current presentation, for example, “I don’t
see any apple”.
• Alternative description: the addressee

presents an alternative description. For
example, A says “there is a red apple on the
top left,” and immediately following that B
says “I only see a red apple on the right”.

In general, referential grounding dialogues in
our data emerge as hierarchical structures of re-
cursive presentation-acceptance phases. The ac-
ceptance to a previous presentation often repre-
sents a new presentation itself, which triggers fur-
ther acceptance. In particular, our data shows
that when mediating their shared perceptual ba-
sis, the human-player often takes into considera-
tion what the robot-player sees and uses that to
gradually lead to his intended referents. This is
demonstrated in the following example3, where
the human-player accepts (Turn 3) the robot-
player’s presentation (Turn 2) through a relevant
next turn.

(Turn 1) H: There is a kiwi fruit.
(Turn 2) R: I don’t see any kiwi fruit. I see an apple.
(Turn 3) H: Do you see a mug to the right of that apple?
(Turn 4) R: Yes.
(Turn 5) H: OK, then the kiwi fruit is to the left of that apple.

As shown later in Section 5, this is one promi-
nent collaborative strategy observed in our data.
We give this pattern a special name: agent-
present-human-accept collaboration. Next we
continue to use this example to show how the
agent-present-human-accept pattern can be incor-
porated to potentially improve reference resolu-
tion.

4.2 An Illustrating Example

In this example, the human and the robot face
a shared physical environment. The robot per-
ceives the environment through computer vision
(CV) algorithms and generates a graph represen-
tation (i.e., a vision graph), which captures the
perceived objects and their spatial relations4. As
shown in Figure 2(a), the kiwi is represented as
an unknown object in the vision graph due to in-
sufficient object recognition. Besides the vision

3This is a clean-up version of the original example to
demonstrate the key ideas.

4The spatial relations between objects are represented as
their relative coordinates in the vision graph.

graph, the robot also maintains a dialogue graph
that captures the linguistic discourse between the
human and the robot.

At Turn 1 in Figure 2(b), the human says “there
is a kiwi fruit”. Upon receiving this utterance,
through semantic processing, a node representing
“a kiwi” is generated (i.e., x1). The dialogue graph
at this point only contains this single node. Iden-
tifying the referent of the expression “a kiwi fruit”
is essentially a process that matches the dialogue
graph to the vision graph. Because the vision
graph does not have a node representing a kiwi ob-
ject, no high confidence match is returned at this
point. Therefore, the robot responds with a rejec-
tion as in Turn 2 (Figure 2(c)) “I don’t see any
kiwi fruit” 5. In addition, the robot takes an extra
effort to proactively describe what is being con-
fidently perceived (i.e., “I see an apple”). Now
an additional node y1 is added to the dialogue
graph to represent the term “an apple” 6. Note that
when the robot generates the term “an apple”, it
knows precisely which object in the vision graph
this term refers to. Therefore, as shown in Fig-
ure 2(c), y1 is mapped to v2 in the vision graph.

In Turn 3 (Figure 2(d)), through semantic pro-
cessing on the human’s utterance “a mug to the
right of that apple”, two new nodes (x2 and x3)
and their relation (RightOf ) are added to the di-
alogue graph. In addition, since “that apple”(i.e.,
x2) corefers with “an apple” (i.e., y1) presented by
the robot in the previous turn, a coreference link
is created from x2 to y1. Importantly, in this turn
human displays his acceptance of the robot’s pre-
vious presentation (“an apple”) by coreferring to it
and building further reference based on it. This is
exactly the agent-present-human-accept strategy
described earlier. Since y1 maps to object v2 and
x2 now links to y1, it becomes equivalent to con-
sider x2 also maps to v2. We name a node such
as x2 a grounded node, since from the robot’s
point of view this node has been “grounded” to a
perceived object (i.e., a vision graph node) via the
agent-present-human-accept pattern.

At this point, the robot matches the updated di-
alogue graph with the vision graph again and can

5Note that, since in this paper we are working with a
dataset of human-human (i.e., the human-player and the
robot-player) dialogues, decisions from the robot-player are
assumed known. We leave robot’s decision making (i.e., re-
sponse generation) into our future work.

6We use xi to denote nodes that represent expressions
from the human’s utterances and yi to represent nodes from
the robot’s utterances.
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Figure 2: An example of incorporating collaborative efforts in an unfolding dialogue into graph representations.

successfully match x3 to v3. Note that, the match-
ing occurs here is considered constrained graph-
matching in the sense that some nodes in the dia-
logue graph (i.e., x2) are already grounded, and
the only node needs to be matched against the
vision graph is x3. Different from previous ap-
proaches that do not take dialogue dynamics into
consideration, the constrained matching utilizes
additional constraints from the collaboration pat-
terns in a dialogue and thus can improve both the
efficiency and accuracy of the matching algorithm.
This is one innovation of our approach here.

Based on such matching result, the robot re-
sponds with a confirmation as in Turn 4 Fig-
ure 2(e)). The human further elaborates in Turn
5 “the kiwi is to the left of the apple”. Again se-
mantic processing and linguistic coreference reso-
lution will allow the robot to update the dialogue
graph as shown in Figure 2(f). Given this dialogue
graph, based on the context of the larger dialogue
graph and through constrained matching, it will

be possible to match x1 to v1 although the object
class of v1 is unknown.

This example demonstrates how the dialogue
graph can be created to incorporate the collabo-
rative referring behaviors as the conversation un-
folds and how such accumulated dialogue graph
can help referential resolution through constrained
matching. Next, we give a detailed account on
how to create a dialogue graph and briefly discuss
graph-matching for reference resolution.

4.3 Dialogue Graph
To account for different types of referring expres-
sions (i.e., object-properties, binary relations and
group-based relations), we use hypergraphs to rep-
resent dialogue graphs.

4.3.1 Hypergraph Representation
A directed hypergraph (Gallo et al., 1993) is a 2-
tuple in the form of G = (X, A), in which

X = {xm}
A = {ai = (ti, hi) | ti ⊆ X, hi ⊆ X}
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(a) Dialogue Graph (b) Vision Graph

Figure 3: Example hypergraph representations

X is a set of nodes, and A is a set of “hyperarcs”.
Similar to an arc in a regular directed graph, each
hyperarc ai in a hypergraph also has two “ends”,
i.e., a tail (ti) and a head (hi). The tail and head
of a hyperarc are both subsets of X , thus they can
contain any number of nodes in X . Hypergraph is
a more general representation than regular graph.
It can represent not only binary relations between
two nodes, but also group-based relations among
multiple nodes.

For example, suppose the language input issued
by the human includes the following utterances:

1. There is a cluster of four objects in the upper left.
2. The one in the corner is a blue cup.
3. Under the blue cup is a yellow pepper.
4. To the right of the blue cup, which is also in the upper

right of the four objects, is a green apple.

The corresponding dialogue graph Gd =
(Xd, Ad) is shown in Figure 3(a), where Xd =
{x1, x2, x3, x4} and Ad = {a1, a2, a3}. In Ad,
for example, a1 = ({x1}, {x3}) represents the
relation “right of” between the tail {x3} and the
head {x1}, and a3 = ({x3}, {x1, x2, x3, x4}) rep-
resents the group-based relation “upper right” be-
tween one node and a group of nodes.

As also illustrated in Figure 3(a), we can at-
tach a set of labels (or attributes) {attrk} to a
node/hyperarc, and use them to store specific in-
formation about this node/hyperarc. The per-
ceived visual world can be represented by a
hypergraph in a similar way (i.e., a vision graph),
as shown in Figure 3(b) 7.

4.3.2 Building Dialogue Graphs
Given the hypergraph representation, a set of op-
erations can be applied to build a dialogue graph
as the conversation unfolds. It mainly consists of
three components:

7Hyperarcs of the vision graph are not shown in the figure.
A hyperarc may exist between any two subsets of objects.

Semantic Constraints. Apply a semantic parser to
extract information from human utterances. For
example, the utterance “The kiwi is to the left of
the apple” can be parsed into a formal meaning
representation as

[x1, x2] , [Kiwi(x1), Apple(x2), LeftOf(x1, x2)]

This representation contains a list of discourse
entities introduced by the utterance, and a list of
FOL predicates specifying the properties and rela-
tions of these entities. For each discourse entity, a
node is added to the graph. Unary predicates be-
come the labels for nodes, and binary predicates
become arcs in the graph. Group-based relations
are incorporated into the graphs as hyperarcs.
Discourse Coreference. For each discourse entity
in a referring expression, identify whether it is a
new discourse entity or it corefers to a discourse
entity mentioned earlier. In our previous example
in Figure 2(d), x2 corefers with y1, thus a coref-
erence link is added to link the coreferring nodes.
Coreferring nodes are merged before matching.
Dialogue Dynamics. Different types of dialogue
dynamics can be modeled. In this paper, we only
focus on a particularly prevalent type of dynamics
as observed from our data, i.e. the agent-present-
human-accept pattern as we described in Section
4.1. When such a pattern is identified, the associ-
ated nodes (e.g., x2 in the previous example) will
be marked as grounded nodes and the mappings
to their grounded visual entities (i.e., vision graph
nodes) will be added into the dialogue graph.

Based on the above three types of operations,
the dialogue graph is updated at each turn of the
conversation.

4.3.3 Constrained Matching
Given a dialogue graph G = (X, A) and a vi-
sion graph G′ = (X ′, A′), reference resolution
becomes a graph matching problem which is to
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find a one-to-one mapping between the nodes in
X and in X ′. Due to the insufficiencies of the
NLP and the CV components, both the dialogue
graph and the vision graph are likely to contain er-
rors. Therefore, we do not require every node in
the dialog graph to be mapped to a node in the vi-
sion graph, but follow the inexact graph matching
criterion (Conte et al., 2004) to find the best match
even if they are only partial.

The matching algorithm is similar to the one
used in our previous work for regular graphs (Liu
et al., 2012), which uses a state-space search ap-
proach (Zhang, 1999). The key difference here
is to incorporate the agent-present-human-accept
collaboration pattern. The search procedure can
now start from the state that already represents
the known matching of grounded nodes (as il-
lustrated in Section 4.2), instead of starting from
the root. Thus it is constrained in a smaller and
more promising subspace to improve both effi-
ciency and accuracy.

5 Evaluation

A total of 32 dialogues collected from our ex-
periments (as described in Section 3) are used in
the evaluation. For each of these dialogues, we
have manually annotated (turn-by-turn) the formal
semantics, discourse coreferences and grounded
nodes as described in Section 4.3.2. Since the fo-
cus of this paper is on incorporating collaboration
into graph matching for referential grounding, we
use these annotations to build the dialogue graphs
in our evaluation. Vision graphs are automatically
generated by CV algorithms from the original im-
ages used in the experiments. The CV algorithms’
object recognition performance is rather low: only
5% of the objects in those images are correctly rec-
ognized. Thus reference resolution will need to
rely on relations and collaborative strategies.

The 32 dialogue graphs have a total of 384
nodes8 that are generated from human-players’ ut-
terances (12 per dialogue on average), and a to-
tal of 307 nodes generated from robot-players’ ut-
terances (10 per dialogue on average). Among
the 307 robot-player generated nodes, 187 (61%)
are initially presented by the robot-player and
then coreferred by human-players’ following ut-
terances (i.e., relevant next turns). This indicates

8As mentioned in Section 4.3.2, multiple expressions that
are coreferential with each other and describing the same en-
tity are merged into a single node.

that the agent-present-human-accept strategy is a
prevalent way to collaborate in our experiment. As
mentioned earlier, those human-player generated
nodes which corefer to nodes initiated by robot-
players are marked as grounded nodes. In total,
187 out of the 384 human-player generated nodes
are in fact grounded nodes.

To evaluate our approach, we apply the graph-
matching algorithm on each pair of dialogue graph
and vision graph. The matching results are com-
pared with the annotated ground-truth to calcu-
late the accuracy of our approach in ground-
ing human-players’ referring descriptions to vi-
sual objects. For each dialogue, we have pro-
duced matching results under four different set-
tings: with/without modeling collaborative re-
ferring (i.e., the agent-present-human-accept col-
laboration) and with/without using hypergraphs.
When collaborative referring is modeled, the
graph-matching algorithm uses the grounded
nodes to constrain its search space to match the
remaining ungrounded nodes. When collabora-
tive referring is not modeled, all the human-player
generated nodes need to be matched.

The results of four different settings (averaged
accuracies on the 32 dialogues) are shown in Ta-
ble 1. Modeling collaborative referring improves
the matching accuracies for both regular graphs
and hypergraphs. When regular graphs are used,
it improves overall matching accuracy by 11.6%
(p = 0.05, paired Wilcoxon T-test). The improve-
ment is even higher as 18.3% when hypergraphs
are used (p = 0.012, paired Wilcoxon T-test). The
results indicate that proactively describing what
the robot sees to the human to facilitate com-
munication is an important collaborative strategy
in referential grounding dialogues. Humans can
often ground the robot presented object via the
agent-present-human-accept strategy and use the
grounded object as a reference point to further
describe other intended object(s), and our graph-
matching approach is able to capture and utilize
such collaboration pattern to improve the referen-
tial grounding accuracy.

The improvement is more significant when
hypergraphs are used. A potential explanation
is that those group-based relations captured by
hypergraphs always involve multiple (more than
2) objects (nodes). If one node in a group-based
relation is grounded, all other involved nodes can
have a better chance to be correctly matched.
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Regular graph Hypergraph
Not modeling 44.1% 47.9%collaborative referring

Modeling 55.7% 66.2%collaborative referring
Improvement 11.6% 18.3%

Table 1: Averaged matching accuracies under four
different settings.

Group 1 Group 2 Group 3
Number of dialogues 9 11 12
% of grounded nodes <30% 30%˜60% >60%
Average number of 20 21 12object properties a

Average number of 11 13 8
relations b

Not modeling 49.7% 49.4% 45.3%collaborative referring
Modeling 57.0% 76.6% 63.6%collaborative referring

Improvement 7.3% 27.2% 18.3%

aSpecified by human-players.
bSpecified by human-players. The number includes both

binary and group-based relations.

Table 2: Matching accuracies of three groups of
dialogues (all the matching results here are pro-
duced using hypergraphs).

Whereas in regular graphs one grounded node can
only improve the chance of one other node, since
only one-to-one (binary) relations are captured by
regular graphs.

To further investigate the effect of modeling
collaborative referring, we divide the 32 dia-
logues into three groups according to how often
the agent-present-human-accept collaboration pat-
tern happens (measured by the percentage of the
grounded nodes among all the human-player gen-
erated nodes in a dialogue). As shown at the top
part of Table 2, the agent-present-human-accept
pattern happened less often in the dialogues in
group 1 (i.e., less than 30% of human-player gen-
erated nodes are grounded nodes). In the dia-
logues in group 2, robot-players more frequently
provided proactive descriptions which led to more
grounded nodes. Robot-players were the most
proactive in the dialogues in group 3, thus this
group contains the highest percentage of grounded
nodes. Note that, although the dialogues in group
3 contain more proactive contributions from robot-
players, human-players tend to specify less num-
ber of properties and relations describing intended
objects (as shown in the middle part of Table 2).

The matching accuracies for each of the three
groups are shown at the bottom part of Table 2.

Since the agent-present-human-accept pattern ap-
pears less often in group 1, modeling collabora-
tive referring only improves matching accuracy
by 7.3%. The improvements for group 2 and
group 3 are more significant compared to group
1. However, group 3’s improvement is less than
group 2, although the dialogues in group 3 contain
more proactive contributions from robot-players.
This indicates that in some cases even with mod-
eling collaborative referring, underspecified in-
formation from human speakers (human-players
in our case) may still be insufficient to identify
the intended referents. Therefore, incorporating a
broader range of dialogue strategies to elicit ade-
quate information from humans is also important
for successful human-robot communication.

6 Conclusion
In situated dialogue, conversation partners make
extra collaborative efforts to mediate a shared per-
ceptual basis for referential grounding. It is impor-
tant to model such collaborations in order to build
situated conversational agents. As a first step, we
developed an approach for referential grounding
that takes a particular type of collaborative refer-
ring behavior, i.e. agent-present-human-accept,
into account. By incorporating this pattern into the
graph-matching process, our approach has shown
an absolute gain of over 18% in subsequent refer-
ence resolution. Extending the results in this pa-
per, our future work will address explicitly model-
ing the collaborative dynamics with a richer repre-
sentation. The dialogue graph presented in this pa-
per represents all the mentioned entities and their
relations that are currently available at any given
dialogue status. But we have not modeled the col-
laborative dynamics at the illocutionary level. Our
next step is to explicitly represent those dynam-
ics, not only for grounding human references to
the physical world, but also generating the collab-
orative behaviors for the agent.
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