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Abstract

Research trends on SDS evaluation are
recently focusing on objective assess-
ment methods. Most existing methods,
which derive quality for each system-
user-exchange, do not consider tempo-
ral dependencies on the quality of pre-
vious exchanges. In this work, we in-
vestigate an approach for determining In-
teraction Quality for human-machine dia-
logue based on methods modeling the se-
quential characteristics using HMM mod-
eling. Our approach significantly outper-
forms conventional approaches by up to
4.5% relative improvement based on Un-
weighted Average Recall metrics.

1 Introduction

Spoken Dialogue Systems (SDSs) play a key role
in achieving natural human-machine interaction.
One reason is that speech is one major chan-
nel of natural human communication. Assess-
ing the quality of such SDSs has been discussed
frequently in recent years. The basic principles
which all approaches underlie have been analyzed
by Möller et al. (2009) creating a taxonomy for
quality of human-machine interaction, i.e., Qual-
ity of Service (QoS) and Quality of Experience
(QoE). Quality of Service describes objective cri-
teria like total number of turns. The recent shift of
interest in dialogue assessment methods towards
subjective criteria is described as Quality of Expe-
rience, putting the user in the spotlight of dialogue
assessment. For QoE, Möller et al. (2009) iden-
tified several aspects contributing to a good user
experience, e.g., usability or acceptability. These
aspects can be combined under the term user sat-
isfaction, describing the degree by which the user
is satisfied with the system’s performance. By as-
sessing QoE, the hope of the research community

is to better measure the human-like quality of an
SDS. While this information may be used during
the design process, enabling automatically derived
user satisfaction within the dialogue management
allows for adaption of the ongoing dialogue (Ultes
et al., 2012b).

First work on deriving subjective metrics au-
tomatically has been performed by Walker et
al. (1997) resulting in the PARADISE framework,
which is the current quasi-standard in this field.
Briefly explained, a linear dependency is assumed
between dialogue parameters and user satisfaction
to estimate qualitative performance on the dia-
logue level.

Measuring the performance of complete dia-
logues does not allow for adapting to the user dur-
ing the dialogue (Ultes et al., 2012b). Hence,
performance measures which provide a measure-
ment for each system-user-exchange1 are of inter-
est. Approaches based on Hidden Markov Models
(HMMs) are widely used for sequence modeling.
Therefore, Engelbrecht et al. (2009) used these
models for predicting the dialogue quality on the
exchange level. Similar to this, we presented work
on estimating Interaction Quality using HMMs
and Conditioned HMMs (Ultes et al., 2012a). In
this contribution, we investigate an approach for
recognizing the dialogue quality using a hybrid
Markovian model. Here, hybrid means combin-
ing statistical approaches such as Support Vector
Machines with Hidden Markov Models by model-
ing the observation probability of the HMMs us-
ing classification. While this is the first time hy-
brid approaches are used for estimating Interaction
Quality, they are well-known and have been used
before for other classification tasks (e.g. (Valstar
and Pantic, 2007; Onaran et al., 2011)).

This paper is outlined as follows: Related work
on subjective quality measurement on the ex-

1A system-user-exchange consists of a system dialogue
turn followed by a user dialogue turn
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change level is presented in Section 2. All experi-
ments in this work are based on the Interaction
Quality metric of the LEGO corpus described in
Section 3. We motivate for introducing time de-
pendency and present our own approach on rec-
ognizing Interaction Quality using a Markovian
model presented in Section 4 and briefly present
the classification algorithms used for the experi-
ments in Section 5. Experiments are presented in
Section 6 and their results discussion in Section 7.

2 Significant Related Work

Much research on predicting subjective quality
measures on an exchange level has been per-
formed hitherto. However, most of this body of
work lacks of either taking account of the sequen-
tial structure of the dialogue or resulting in insuf-
ficient performance.

Engelbrecht et al. (2009) presented an approach
using Hidden Markov Models (HMMs) to model
the SDS as a process evolving over time. Perfor-
mance ratings on a 5 point scale (“bad”, “poor”,
“fair”, “good”, “excellent”) have been applied by
the users of the SDS during the dialogue. The in-
teraction was halted while the user rated. A HMM
was created consisting of 5 states (one for each
rating) and a 6-dimensional input vector. While
Engelbrecht et al. (2009) relied on only 6 input
variables, we will pursue an approach with 29 in-
put variables. Moreover, we will investigate dia-
logues of a real world dialogue system annotated
with quality labels by expert annotators.

Higashinaka et al. (2010) proposed a model for
predicting turn-wise ratings for human-human di-
alogues. Ratings ranging from 1 to 7 were applied
by two expert annotators labeling for smooth-
ness, closeness, and willingness. They achieved
an UAR2 of only 0.2-0.24 which is only slightly
above the random baseline of 0.14.

Hara et al. (2010) derived turn level ratings from
overall ratings of the dialogue which were applied
by the users after the interaction on a five point
scale within an online questionnaire. Using n-
grams to model the dialogue by calculating n-gram
occurrence frequencies for each satisfaction value
showed that results for distinguishing between six
classes at any point in the dialogue to be hardly
above chance.

A more robust measure for user satisfaction has
been presented by Schmitt et al. (2011) within

2Unweighted Average Recall, see Section 6
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Figure 1: A dialogue may be separated into a se-
quence of system-user-exchanges where each ex-
change ei consists of a system turn si followed by
a user turn ui.

their work about Interaction Quality (IQ) for Spo-
ken Dialogue Systems. In contrast to user satis-
faction, the labels were applied by expert annota-
tors after the dialogue at the exchange level. Auto-
matically derived parameters were used as features
for creating a statistical model using static fea-
ture vectors. Schmitt et al. (2011) performed IQ
recognition on the LEGO corpus (see Section 3)
using linear SVMs. They achieved an UAR2 of
0.58 based on 10-fold cross-validation which is
clearly above the random baseline of 0.2. Ultes
et al. (2012a) put an emphasis on the sequential
character of the IQ measure by applying a Hid-
den Markov Models (HMMs) and a Conditioned
Hidden Markov Models (CHMMs). Both have
been applied using 6-fold cross validation and a
reduced feature set of the LEGO corpus achieving
an UAR2 of 0.44 for HMMs and 0.39 for CHMMs.
While Ultes et al. (2012a) used generic Gaussian
Mixture Models to model the observation proba-
bilities, we use confidence distributions of static
classification algorithms.

3 The LEGO Corpus

For Interaction Quality (IQ) estimation, we use the
LEGO corpus published by Schmitt et al. (2012).
Interaction Quality is defined similarly to user sat-
isfaction: While the latter represents the true dis-
position of the user, IQ is the disposition of the
user assumed by an expert annotator. Here, ex-
pert annotators are people who listen to recorded
dialogues after the interactions and rate them by
assuming the point of view of the actual person
performing the dialogue. These experts are sup-
posed to have some experience with dialogue sys-
tems. In this work, expert annotators were “ad-
vanced students of computer science and engineer-
ing” (Schmitt et al., 2011), i.e., grad students.

The LEGO corpus is based on 200 calls to
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Figure 2: The three different modeling levels representing the interaction at exchange en: The most
detailed exchange level, comprising parameters of the current exchange; the window level, capturing
important parameters from the previous n dialog steps (here n = 3); the dialog level, measuring overall
performance values from the entire previous interaction.

the “Let’s Go Bus Information System” of the
Carnegie Mellon University in Pittsburgh (Raux et
al., 2006) recorded in 2006. Labels for IQ have
been assigned by three expert annotators to 200
calls consisting of 4,885 system-user-exchanges
(see Figure 1) in total with an inter-annotator
agreement of κ = 0.54. This may be considered
as a moderate agreement (cf. Landis and Koch’s
Kappa Benchmark Scale (1977)) which is quite
good considering the difficulty of the task that re-
quired to rate each exchange. For instance, if one
annotator reduces the IQ value only one exchange
earlier than another annotator, both already dis-
agree on two exchanges. The final label was as-
signed to each exchange by using the median of
all three individual ratings.

IQ was labeled on a scale from 1 (extremely un-
satisfied) to 5 (satisfied) considering the complete
dialogue up to the current exchange. Thus, each
exchange has been rated without regarding any up-
coming user utterance. As the users are expected
to be satisfied at the beginning, each dialogue’s
initial rating is 5. In order to ensure consistent la-
beling, the expert annotators had to follow labeling
guidelines (Schmitt et al., 2012).

An example of an annotated dialogue is shown
in Table 5. It starts off with a good IQ until the
system provides some results and then falls drasti-
cally as the user input does not correspond to what
the system expects. Thus, the system remains in a
loop until the user reacts appropriately.

Parameters used as input variables for the IQ
model have been derived from the dialogue system
modules automatically for each exchange. Fur-
thermore, parameters on three levels have been
created: the exchange level, the dialogue level,
and the window level (see Figure 2). As parame-
ters like ASRCONFIDENCE (confidence of speech
recognition) or UTTERANCE (word sequence rec-
ognized by speech recognition) can directly be

acquired from the dialogue modules they consti-
tute the exchange level. Counts, sums, means,
and frequencies of exchange level parameters from
multiple exchanges are computed to constitute the
dialogue level (all exchanges up to the current
one) and the window level (the three previous ex-
changes).

4 Hybrid-HMM

As Schmitt et al. (2011) model the sequential
character of the data only indirectly by design-
ing special features, our approach applies Marko-
vian modeling to directly model temporal de-
pendencies. Temporal dependencies on previous
system-user-exchanges are not taken into account
by Schmitt et al.; only parameters derived from
the current exchange are used. However, we found
out that Interaction Quality is highly dependent on
the IQ value of the previous exchange. Adding
the parameter IQprev describing the previous IQ
value to the input vector to the IQ model consist-
ing of several parameters results in an extended in-
put vector. Calculating the Information Gain Ra-
tio (IGR) of each parameter of the extended input
vector shows that IQprev achieves the highest IGR
value of 1.0. In other words, IQprev represents the
parameter which contains the most information for
the classification task.

While performing IQ recognition on the ex-
tended features set using the annotated IQ values
results in an UAR of 0.82, rather using the esti-
mated IQ value results in an UAR of only 0.43.
Consequently, other configurations have to be in-
vestigated. Here, Markovian approaches offer a
self-contained concept of using these temporal de-
pendencies. However, Ultes et al. (2012a) showed
that applying neither a classical HMM nor a con-
ditioned HMM yields results outperforming static
approaches.

Therefore, in this Section we present a Hybrid-
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HMM approach, which is based on the classical
HMM and takes advantage of good performing
existing static classification approaches. The clas-
sical HMM, specifically used for time-sequential
data, consists of a set of states S with transition
probability matrix A and initial probability vec-
tor π over a set of observations B (also called vo-
cabulary) and an observation function bqt depen-
dent on the state qt. For calculating the proba-
bility p(qt|Ot, λ) of seeing observation sequence
Ot = (o1, o2, . . . , ot) while being in state qt at
time t given the HMM λ, the Forward Algorithm
is used:

p(qt = sj |Ot, λ) = αt(j)

=
|S|∑
i=1

αt−1(i)aijbj(ot) . (1)

Here, aij describes the transition probability of
transitioning from state si to state sj . To find
a suitable model λ, the HMM must be trained,
for example, by using the Baum-Welch algorithm.
Usually, the observation function bqt is modeled
with Gaussian mixture models (GMMs). For more
information on general HMMs, please refer to Ra-
biner et al. (1989).

For determining the most likely class ω̂t at time
t, where each state j ∈ S is associated with one
class ω, the following equation is used:

ω̂t = arg max
j

αt(j) . (2)

For applying an HMM while exploiting exist-
ing statistical classification approaches, the obser-
vation function bj(ot) is modeled by using con-
fidence score distributions of statistical classifiers,
e.g., a Support Vector Machine in accordance with
Schmitt et al. (2011) (see Section 5). Furthermore,
the transition function aij is computed by taking
the frequencies of the state transitions contained
in the given corpus. Therefore, an ergodic HMM
is used comprising five states with each represent-
ing one of the five IQ scores.

Moreover, in SDSs, a system action act is per-
formed at the end of each system turn. This can
be utilized by adding an additional dependency on
this action to the state transition function aij . By
augmenting Equation 1, this results in

αt(j) =
|S|∑
i=1

αt−1(i)aij,actbj(ot) . (3)

This refinement models differences in state tran-
sitions evoked by different system actions, e.g.,
a different transition probability is expected if a
WAIT action is performed compared to a CONFIR-
MATION. Equation 3 is equal to the belief up-
date equation known from the Partially Observ-
able Markov Decision Process formalism (Kael-
bling et al., 1998).

Therefore, two versions of the Hybrid-HMM
are evaluated: an action-independent version as in
Equation 1 and an action-dependent version as in
Equation 3.

5 Classifier Types

For modeling the observation probability bj(ot)of
the hybrid HMM, multiple classification schemes
have been applied to investigate the influence of
observation distributions with different character-
istics on the overall performance.

In general, classification means estimating a
class ω̂ to the given observation o by comparing
the class-wise probabilities p(ω|o). In this work,
this probability may be used to model the observa-
tion probability bj(o) of the HMM by the posterior
probability

p(ω|o) = bj(o) (4)

for j = ω.
As not all classification algorithms provide a

posterior probability, it may be replaced by the
confidence distribution. A general description of
the classification algorithms used in this work are
described in the following Section along with a
motivation for the feature subset of the LEGO cor-
pus used for estimating the Interaction Quality in
this work.

5.1 Support Vector Machine

For a two class problem, a Support Vector Ma-
chine (SVM) (Vapnik, 1995) is based on the con-
cept of linear discrimination with maximum mar-
gin by defining a hyperplane separating the two
classes. The estimated class ω̂ for observation vec-
tor ~o is based on the sign of the decision function

k(~o) =
N∑

i=1

αiziK(~mi, ~o) + b , (5)

where ~mi represent support vectors defining the
hyper plane (together with b), zi the known class
~mi belongs to, αi the weight of ~mi, and K(·, ·) a
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kernel function. The kernel function is defined as

K(~m, ~m′) = 〈ϕ(~m), ϕ(~m′)〉 , (6)

where ϕ(~m) represents a transformation function
mapping ~m into a space Φ of different dimension-
ality and 〈·, ·〉 defines a scalar product in Φ. By
using the kernel function, the linear discrimina-
tion may happen in a space of high dimensional-
ity without explicitly transforming the observation
vectors into said space.

The SVM implementation which is used in this
contribution is libSVM (Chang and Lin, 2011). As
this algorithm does not provide class probabilities
directly, the respective confidence scores are used.

5.2 Naive Bayes

For deriving the posterior probability, the Naive
Bayes classifier may be used. It calculates the pos-
terior probability P (ω|o) of having class ω when
seeing the n-dimensional observation vector ~o by
applying Bayes rule (Duda et al., 2001):

P (ω|~o) =
p(~o|ω) · P (ω)

p(~o)
. (7)

In general, observations, i.e., elements of the
observation vector, may be correlated with each
other and introducing independence assumptions
between these elements does usually not reflect
the true state of the world. However, correlations
are often not very high thus simplifying the Bayes
problem has proved to result in reasonable perfor-
mance. This is utilized by the Naive Bayes classi-
fier by assuming said independence thus calculat-
ing

p(~o|ω) =
n∏

i=1

p(oi|ω) . (8)

5.3 Rule Induction

The classification algorithm Rule Induction or
Rule Learner is based on the idea of defining rules
to assign classes ω̂ to observation vectors ~o. In this
work, the algorithm RIPPER (Repeated Incremen-
tal Pruning to Produce Error Reduction) (Cohen,
1995) is used where each rule consists of conjunc-
tions of An = v, where An is a nominal attribute,
or Ac ≥ θ,Ac ≤ θ, where Ac is a continuous at-
tribute. Each part of the observation vector ~o is re-
flected by one of the attributes. The basic process
of the algorithm for generating rules is divided into

three steps: First, rules are grown by adding at-
tributes to the rule. Second, the rules are pruned.
If the resulting rule set is not of sufficient perfor-
mance, all training examples which are covered by
the generated rules are removed from the example
set and a new rule is created.

5.4 Feature selection
As stated previously, all experiments are based on
the LEGO corpus presented in Section 3. In order
to keep the presented results comparable to pre-
vious work based on HMM and CHMM (Ultes et
al., 2012a), a reduced parameter set is used. Pa-
rameters with constant values for most exchanges
have been excluded. These would result in rows
of zeros during computation of the covariance ma-
trices of the feature vectors, which are needed for
HMM and CHMM classification. A row of ze-
ros in the covariance matrix will make it non-
invertible, which will cause errors during the com-
putation of the emission probabilities.

Therefore, a feature set consisting of 29 inter-
action parameters is used for both defining a base-
line and for evaluating the Hybrid-HMM. The set
consists of the following parameters (for an expla-
nation of the features, please refer to (Schmitt et
al., 2012)):

Exchange Level ASRRECOGNITIONSTATUS, ACTIVITY-
TYPE, ASRCONFIDENCE, ROLEINDEX, ROLENAME,
UTD, REPROMPT?, BARGED-IN?, DD, WPST,
WPUT

Dialogue Level MEANASRCONFIDENCE, #ASRREJEC-
TIONS, #TIMEOUTS ASRREJ, #BARGEINS, %ASR-
REJECTIONS, %TIMEOUTS ASRREJ, %BARGEINS,
#REPROMPTS,
%REPROMPTS, #SYSTEMQUESTIONS

Window Level #TIMEOUTS ASRREJ, #ASRREJEC-
TIONS, #BARGEINS, %BARGEINS, #SYSTEMQUES-
TIONS, MEANASRCONFIDENCE, #ASRSUCCESS,
#RE-PROMPT

For act in Equation 3, the exchange level pa-
rameter ACTIVITYTYPE is used which may take
one out of the four values “Announcement”, “Con-
firmation”, “Question”, or “wait”. Their distribu-
tion within the LEGO corpus is depicted in Fig-
ure 3.

6 Experiments and Results

All experiments are conducted using 6-fold cross-
validation3. This includes the baseline approach

3Six folds have been selected as a reasonable trade-off be-
tween validity and computation time.
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Figure 3: Distribution of the four values for act
in Equation 3 in the LEGO corpus. While “wait”
occurs rarely, the other three main actions occur at
roughly the same frequency.

(also producing the observation probabilities of
the Hybrid-HMM approach) and the evaluation of
the Hybrid-HMM. For the latter, two phases of
cross-validation were applied.

Interaction Quality estimation is done by
using three commonly used evaluation met-
rics: Unweighted Average Recall (UAR), Co-
hen’s Kappa (Cohen, 1960) and Spearman’s
Rho (Spearman, 1904). These are also selected
as the same metrics have been used in Schmitt et
al. (2011) as well.

Recall in general is defined as the rate of cor-
rectly classified samples belonging to one class.
The recall in UAR for multi-class classification
problems with N classes recalli is computed for
each class i and then averaged over all class-wise
recalls:

UAR =
1
N

N∑
i=1

recalli . (9)

Cohen’s Kappa measures the relative agree-
ment between two corresponding sets of ratings.
In our case, we compute the number of label
agreements corrected by the chance level of agree-
ment divided by the maximum proportion of times
the labelers could agree. However, Cohen’s
weighted Kappa is applied as ordinal scores are
compared (Cohen, 1968). A weighting factor w is
introduced reducing the discount of disagreements
the smaller the difference is between two ratings:

w =
|r1 − r2|

|rmax − rmin| . (10)

Here, r1 and r2 denote the rating pair and rmax

and rmin the maximum and minimum ratings pos-
sible.

Table 1: Results for IQ recognition of the statis-
tical classifiers: UAR, κ and ρ for linear SVM,
Bayes classification and Rule Induction. σ2 repre-
sents the variances of the confidence scores.

UAR κ ρ σ2

SVM (linear) .495 .611 .774 .020
Bayes .467 .541 .716 .127
Rule Induction .596 .678 .790 .131

Correlation between two variables describes the
degree by which one variable can be expressed by
the other. Spearman’s Rho is a non-parametric
method assuming a monotonic function between
the two variables (Spearman, 1904).

6.1 Baseline

As baseline, we adapted the approach of Schmitt
et al. (2011). While they focused only on an SVM
with linear kernel, we investigate three different
static classification approaches. Different clas-
sifiers will produce different confidence distribu-
tions. These distributions will have different char-
acteristics which is of special interest for evaluat-
ing the Hybrid-HMM as will be discussed in Sec-
tion 7. The confidence characteristics are repre-
sented by the variance of the confidence scores
σ2. This variance is used as indicator for how cer-
tain the classifier is about its results. If one IQ
value has a high confidence while all others have
low confidence, the classifier is considered to be
very certain. This also results in a high variance.
Vice versa, if all IQ values have almost equal con-
fidence indicates high uncertainty. This will result
in a low variance.

The classification algorithms, which have been
selected arbitrarily, are SVM with linear kernel,
Naive Bayes, and Rule Induction (see Section 5).
The results in Table 1 show that an SVM with lin-
ear kernel (as used by Schmitt et al. (2011)) per-
forms second best with an UAR of 0.495 after
Rule Induction with an UAR of 0.596. The re-
sults of the SVM differ from the results obtained
by Schmitt et al. (UAR of 0.58) as we used a re-
duced feature set while they used all available fea-
tures.

6.2 Hybrid-HMM

For evaluating the Hybrid-HMM on Interaction
Quality recognition, three aspects are of inter-
est. Most prominent is whether the presented ap-
proaches outperform the baseline, i.e., the clas-
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Figure 4: Relative difference of UAR in percent between the baseline performance and the Hybrid-
HMM for the action-independent (AI), action-dependent (AD) and handcrafted (HC) transition matrix.
Differences marked with an * are significant (Wilcoxon test (Wilcoxon, 1945), α < 0.05).

Table 2: Results for the Hybrid-HMM approach:
UAR, κ and ρ for the action-independent (AI) and
action-dependent (AD) versions.

UAR κ ρ
AI AD AI AD AI AD

SVM (linear) .477 .484 .599 .598 .770 .771
Bayes .486 .489 .563 .564 .737 .741
Rule Induction .608 .609 .712 .714 .826 .824

sifier which produces the observation probabili-
ties. Moreover, performance values of action-
dependent approaches and action-independent ap-
proaches are compared. In addition, the results are
analyzed with respect to the characteristic of the
confidence distribution.

For producing the confidence scores represent-
ing the observation probabilities, the statistical
classification algorithms presented in Section 6.1
are used. The initial distribution π for each HMM
was chosen in accordance with the annotation
guidelines of the LEGO corpus starting each di-
alogue with an IQ score of 5 resulting in

π5 = P (IQ = 5) = 1.0
π4 = π3 = π2 = π1 = P (IQ 6= 5) = 0.0 .

Results of the experiments with action-dependent
(AD) and action-independent (AI) transition func-
tion may be seen in Table 2. Again, Rule Induction
performed best with Naive Bayes on the second
and SVM on the third place.

7 Discussion

While previous work on applying the HMM and
CHMM for IQ recognition could not outperform
the baseline (Ultes et al., 2012a), Hybrid-HMM
experiments show a significant improvement in
UAR, Cohen’s κ and Spearman’s ρ for Naive
Bayes and Rule Induction. While performance
declines for the linear SVM, this difference has
shown to be not significant.

The relative difference of the Hybrid-HMM
compared to the respective baseline approaches
using an action-dependent and an action-
independent transition matrix is depicted in
Figure 4. Improvement for the Bayes method was
the highest significantly increasing UAR by up to
4.5% relative to the baseline. However, adding
action-dependency to the Hybrid-HMM does not
show any effect. This may be a result of using
ACTIVITYTYPE instead of the actual action.
However, using the actual action would result in
the need for more data as it contains 45 different
values. Significance for all results has been
calculated using the Wilcoxon test (Wilcoxon,
1945) by pair-wise comparison of the estimated
IQ values of all exchanges. All results except for
the decline in SVM performance are significant
with α < 0.05.

Correlating the confidence variances shown in
Table 1 with the improvements of the Hybrid-
HMM reveals that for methods with a high
variance—and therefore with a greater certainty
about the classification result—, an improvement
could be accomplished. However, the perfor-
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Table 3: Results of Hybrid-HMM with hand-
crafted transition matrix of the action-independent
version.

UAR κ ρ

SVM (linear) .506 .642 .797
Bayes .487 .563 .734
Rule Induction .608 .712 .825

Table 4: Handcrafted transition matrix based on
empirical data.

PPPPPPfrom
to

1 2 3 4 5
1 0.7 0.3 0 0 0
2 0.25 0.5 0.25 0 0
3 0 0.25 0.5 0.25 0
4 0 0 0.25 0.5 0.25
5 0 0 0 0.3 0.7

mance declined for classification approaches with
a low confidence variance, which can be seen as a
sign for uncertain classification results.

While the results for Hybrid-HMM are encour-
aging, creating a simple handcrafted transition
matrix for the action-independent version shown
in Table 4 achieved even more promising results
as performance for all classifier types could be im-
proved significantly compared to the baseline (see
Table 3). The handcrafted matrix was created in a
way to smooth the resulting estimates as only tran-
sitions from one IQ rating to its neighbors have a
probability greater than zero. Drastic changes in
the estimated IQ value compared to the previous
exchange are thus less likely. The exact values
have been derived empirically. By applying this
handcrafted transition matrix, even SVM perfor-
mance with linear kernel could be improved sig-
nificantly by 2.2% in UAR (see Figure 4) com-
pared to the baseline.

For creating the Interaction Quality scores, an-
notation guidelines were used resulting in certain
characteristics of IQ. Therefore, it may be as-
sumed that the effect of exploiting the dependency
on previous states is just a reflection of the guide-
lines. While this might be true, applying a Hy-
brid HMM for IQ recognition is reasonable as, de-
spite the guidelines, the IQ metric itself is strongly
related to user satisfaction, i.e., ratings applied
by users (without guidelines), achieving a Spear-
man’s ρ of 0.66 (α < 0.01) (Ultes et al., 2013).

8 Conclusions

As previously published, approaches for recogniz-
ing the Interaction Quality of Spoken Dialogue

Systems are based on static classification without
temporal dependency on previous values, a Hy-
brid Hidden Markov Model approach has been in-
vestigated based on three static classifiers. The
Hybrid-HMM achieved a relative improvement up
to 4.5% and a maximum of 0.61 UAR. Analyz-
ing the experiments revealed that, while an im-
provement could be achieved with the Hybrid-
HMM approach, handcrafting a transition model
achieved even better results as performance for all
analyzed classifier types could be improved signif-
icantly. Furthermore, applying the Hybrid-HMM
approach only yields improved performance if the
basic classifier itself has a high confidence about
its results.

Further research should be conducted investi-
gating the question how the presented approach as
well as the Interaction Quality paradigm in general
will generalize for different dialogue domains. As
IQ is designed to be domain independent, it may
be expected that the Hybrid-HMM will be appli-
cable for different dialogue domains as well.

Finally, it is notable that rule induction outper-
formed SVM approaches in the baseline by 10 per-
centage points. While this contribution does not
focus on this, analyzing the model may help in un-
derstanding the problem of estimating Interaction
Quality better, especially since rule-based recog-
nition methods allow easy interpretation.
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Appendix

Table 5: Example of a dialogue annotated with Interaction Quality for each system-user-exchange. As
the system fails to interact properly with the user in the end, the IQ value drops down to one. Utterance
represents either the system utterance or the recognized user utterance. (CallID 2061123000 of the
LEGO corpus.)

Utterance IQ
S: Welcome to the CMU Let’s Go bus information system.
U: 5
S: To get help at any time, just say Help or press zero.
U: 5
S: What can I do for you?
U: PENN AT BUTLER TIME IS IT IS THE CENTRE AT HIGHLAND FROM RUNS THE 61A EIGHT THIRTY 61B CAN’T OAKLAND 5
S: Leaving from OAKLAND . Is this correct?
U: OAKLAND 4
S: Leaving from OAKLAND . Is this correct?
U: YES 4
S: Right
U: - 4
S: Where do you want to go?
U: SQUIRREL HILL OF FIFTH AVENUE 4
S: Going to FIFTH AVENUE . Is this correct?
U: YES 5
S: Alright
U: - 5
S: When do you wanna travel?
U: SUNDAY 4
S: At what time do you wanna travel?
U: AT FIVE FOUR VERY ABOUT ELEVEN O’CLOCK 4
S: Leaving at 11 a.m. . Is this correct?
U: YES 5
S: Right
U: - 5
S: Hold on. Let me check that for you.
U: - 5
S: OAKLAND and FIFTH AVENUE are both the same stop. Please provide a different start or end point.
U: - 3
S: To ask about a different trip, you can say, start a new query. If you are finished, you can say goodbye.
U: 61A 2
S: You can say start a new query, or goodbye.
U: FIVE DUQUESNE 1
S: To ask about a different trip, you can say, start a new query. If you are finished, you can say goodbye.
U: LAST THE NEXT 1
S: You can say start a new query, or goodbye.
U: START WH 1
S: To ask about a different trip, you can say, start a new query. If you are finished, you can say goodbye.
U: THE 1
S: You can say start a new query, or goodbye.
U: THANK YOU QUERY ELEVEN BACK 1
S: To ask about a different trip, you can say, start a new query. If you are finished, you can say goodbye.
U: GOODBYE 1
S: Thank you for using the cmu Let’s Go Bus Information System. Goodbye.
U: - 1
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