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Abstract

For a spoken dialog system to make good

use of a speech recognition N-Best list, it is

essential to know how much trust to place

in each entry. This paper presents a method

for assigning a probability of correctness to

each of the items on the N-Best list, and to

the hypothesis that the correct answer is not

on the list. We find that both multinomial lo-

gistic regression and support vector machine

models yields meaningful, useful probabili-

ties across different tasks and operating con-

ditions.

1 Introduction

For spoken dialog systems, speech recognition er-

rors are common, and so identifying and reducing

dialog understanding errors is an important problem.

One source of potentially useful information is the

N-Best list output by the automatic speech recog-

nition (ASR) engine. The N-Best list contains N
ranked hypotheses for the user’s speech, where the

top entry is the engine’s best hypothesis. When the

top entry is incorrect, the correct entry is often con-

tained lower down in the N-Best list. For a dialog

system to make use of the N-Best list, it is useful to

estimate the probability of correctness for each en-

try, and the probability that the correct entry is not

on the list. This paper describes a way of assigning

these probabilities.

2 Background and related work

To begin, we formalize the problem. The user takes

a communicative action u, saying a phrase such as

“Coffee shops in Madison New Jersey”. Using a lan-

guage model g, the speech recognition engine pro-

cesses this audio and outputs an ordered list of N
hypotheses for u, ũ = {ũ1, . . . ũN}, N ≥ 2. To

the N-Best list we add the entry ũ∗, where u = ũ∗

indicates that u does not appear on the N-Best list.

The ASR engine also generates a set of K recog-

nition features f = [f1, . . . , fK ]. These features

might include properties of the lattice, word confu-

sion network, garbage model, etc. The aim of this

paper is to estimate a model which accurately as-

signs the N + 1 probabilities P (u = ũn|ũ, f) for

n ∈ {∗, 1, . . . , N} given ũ and f . The model also

depends on the language model g, but we don’t in-

clude this conditioning in our notation for clarity.

In estimating these probabilities, we are most

concerned with the estimates being well-calibrated.

This means that the probability estimates we ob-

tain for events should accurately represent the em-

pirically observed proportions of those events. For

example, if 100 1-best recognitions are assigned a

probability of 60%, then approximately 60 of those

100 should in fact be the correct result.

Recent work proposed a generative model of the

N-Best list, P (ũ, f |u) (Williams, 2008). The main

motivation for computing a generative model is

that it is a component of the update equation used

by several statistical approaches to spoken dialog

(Williams and Young, 2007). However, the diffi-

culty with a generative model is that it must estimate

a joint probability over all the features, f ; thus, mak-

ing use of many features becomes problematic. As

a result, discriminative approaches often yield bet-

ter results. In our work, we propose a discrimina-

tive approach and focus on estimating the probabil-

ities conditioned on the features. Additionally, un-

der some further fairly mild assumptions, by apply-

ing Bayes Rule our model can be shown equivalent

to the generative model required in the dialog state

update. This is a desirable property because dialog

systems using this re-statement have been shown to

work in practice (Young et al., 2009).

Much past work has assigned meaningful proba-
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bilities to the top ASR hypothesis; the novelty here

is assigning probabilities to all the entries on the list.

Also, our task is different to N-Best list re-ranking,

which seeks to move more promising entries toward

the top of the list. Here we trust the ordering pro-

vided by the ASR engine, and only seek to assign

meaningful probabilities to the elements.

3 Model

Our task is to estimate P (u = ũn|ũ, f) for n ∈
{∗, 1, . . . , N}. Ideally we could view each element

on the N-Best list as its own class and train an

(N +1)-class regression model. However this is dif-

ficult for two reasons. First, the number of classes is

variable: ASR results can have different N-Best list

lengths for different utterances. Second, we found

that the distribution of items on the N-Best list has

a very long tail, so it would be difficult to obtain

enough data to accurately estimate late position class

probabilities.

As a result, we model the probability P in two

stages: first, we train a (discriminative) model Pa to

assign probabilities to just three classes: u = ũ∗,

u = ũ1, and u ∈ ũ2+, where ũ2+ = {ũ2, . . . , ũN}.

In the second stage, we use a separate probability

model Pb to distribute mass over the items in ũ2+:

P (ũn = u|ũ, f) = (1)










Pa(u = ũ1|f) if n = 1,

Pa(u ∈ ũ2+|f)Pb(u = ũn|f) if n > 1,

Pa(u = ũ∗|f) if n = ∗

To model Pa, multinomial logistic regression

(MLR) is a natural choice as it yields a well-

calibrated estimator for multi-class problems. Stan-

dard MLR can over-fit when there are many features

in comparison to the number of training examples;

to address this we use ridge regularized MLR in our

experiments below (Genkin et al., 2005).

An alternative to MLR is support vector machines

(SVMs). SVMs are typically formulated including

regularization; however, their output scores are gen-

erally not interpretable as probabilities. Thus for Pa,

we use an extension which re-scales SVM scores to

yield well-calibrated probabilities (Platt, 1999).

Our second stage model Pb, distributes mass

over the items in the tail of the N-best list (n ∈
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Figure 1: Empirical cumulative distribution of cor-

rect recognitions for N-Best lists, and the Beta dis-

tribution model for Pb on 1, 000 business search ut-

terances (Corpus 1 training set, from Section 4.)

{2, . . . , N}). In our exploratory analysis of N-Best

lists, we noticed a trend that facilitates modeling this

distribution. We observed that the distribution of the

fraction of the correction position n/N was rela-

tively invariant to N . For example, for both short

(N < 100) and long (N ≥ 100) lists, the proba-

bility that the answer was in the top half of the list

was very similar (see Figure 1). Thus, we chose a

continuous distribution in terms of the fractional po-

sition n/N as the underlying distribution in our sec-

ond stage model. Given the domain of the fractional

position [0, 1], we chose a Beta distribution. Our fi-

nal second stage model is then an appropriately dis-

cretized version of the underlying Beta, namely, Pb:

Pb(u = ũn|f) = Pb(u = ũn|N) =

Pbeta(
n− 1

N − 1
;α, β) − Pbeta(

n− 2

N − 1
;α, β)

where Pbeta(x;α, β) is the standard Beta cumula-

tive distribution function parametrized by α and β.

Figure 1 shows an illustration. In summary, our

method requires training the three-class regression

model Pa, and estimating the Beta distribution pa-

rameters α and β.

4 Data and experiments

We tested the method by applying it to three cor-

pora of utterances from dialog systems in the busi-

ness search domain. All utterances were from
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Corpus WCN SVM MLR

1 -0.714 -0.697 -0.703

2 -0.251 -0.264 -0.222

3 -0.636 -0.605 -0.581

Table 1: Mean log-likelihoods on the portion of the

test set with the correct answer on the N-Best list.

None of the MLR nor SVM results differ signifi-

cantly from the WCN baseline at p < 0.02.2

users with real information needs. Corpus 1 con-

tained 2, 000 high-quality-audio utterances spoken

by customers using the Speak4It application, a

business search application which operates on mo-

bile devices, supporting queries containing a listing

name and optionally a location.1 Corpus 2 and 3

contained telephone-quality-audio utterances from

14, 000 calls to AT&T’s “411” business directory

listing service. Corpus 2 contained locations (re-

sponses to “Say a city and state”); corpus 3 con-

tained listing names (responses to “OK what list-

ing?”). Corpus 1 was split in half for training and

testing; corpora 2 and 3 were split into 10, 000 train-

ing and 4, 000 testing utterances.

We performed recognition using the Watson

speech recognition engine (Goffin et al., 2005), in

two configurations. Configuration A uses a sta-

tistical language model trained to recognize busi-

ness listings and optionally locations, and acous-

tic models for high-quality audio. Configuration B

uses a rule-based language model consisting of all

city/state pairs in the USA, and acoustic models for

telephone-quality audio. Configuration A was ap-

plied to corpora 1 and 3, and Configuration B was

applied to corpus 2. This experimental design is in-

tended to test our method on both rule-based and

statistical language models, as well as matched and

mis-matched acoustic and language model condi-

tions.

We used the following recognition features in f :

f1 is the posterior probability from the best path

through the word confusion network, f2 is the num-

ber of segments in the word confusion network,

f3 is the length of the N-Best list, f4 is the aver-

age per-frame difference in likelihood between the

1http://speak4it.com
22-tailed Wilcoxon Signed-Rank Test; 10-way partitioning.

Corpus WCN SVM MLR

1 -1.12 -0.882 -0.890

2 -0.821 -0.753 -0.734

3 -1.00 -0.820 -0.824

Table 2: Mean log-likelihoods on the complete test

set. All MLR and SVM results are significantly bet-

ter than the WCN baseline (p < 0.0054).2

highest-likelihood lattice path and a garbage model,

and f5 is the average per-frame difference in likeli-

hood between the highest-likelihood lattice path and

the maximum likelihood of that frame on any path

through the lattice. Features are standardized to the

range [−1, 1] and MLR and SVM hyperparameters

were fit by cross-validation on the training set. The

α and β parameters were fit by maximum likelihood

on the training set.

We used the BMR toolkit for regularized multi-

nomial logistic regression (Genkin et al., 2005), and

the LIB-SVM toolkit for calibrated SVMs (Chang

and Lin, 2001).

We first measure average log-likelihood the mod-

els assign to the test sets. As a baseline, we use the

posterior probability estimated by the word confu-

sion network (WCN), which has been used in past

work for estimating likelihood of N-Best list entries

(Young et al., 2009). However, the WCN does not

assign probability to the u = ũ∗ case – indeed, this

is a limitation of using WCN posteriors. So we re-

ported two sets of results. In Table 1, we report the

average log-likelihood given that the correct result

is on the N-Best list (higher values, i.e., closer to

zero are better). This table includes only the items

in the test set for which the correct result appeared

on the N-Best list (that is, excluding the u = ũ∗

cases). This table compares our models to WCNs

on the task for which the WCN is designed. On this

task, the MLR and SVM methods are competitive

with WCNs, but not significantly better.

In Table 2, we report average log-likelihood for

the entire test set. Here the WCNs use a fixed

prior for the u = ũ∗ case, estimated on the training

sets (u = ũ∗ class is always assigned 0.284; other

classes are assigned 1 − 0.284 = 0.716 times the

WCN posterior). This table compares our models

to WCNs on the task for which our model is de-

signed. Here, the MLR and SVM models yielded
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Figure 2: Calibration and histogram of probabilities

assigned by MLR on corpus 1 (test set).

significantly better results than the WCN baseline.

We next investigated the calibration properties of

the models. Results for the MLR model on the

u = ũ1 class from corpus 1 test set are shown in

Figure 2. This illustrates that the MLR model is rel-

atively well-calibrated and yields broadly distributed

probabilities. Results for the SVM were similar, and

are omitted for space.

Finally we investigated whether the models

yielded better accept/reject decisions than their in-

dividual features. Figure 3 shows the MLR model

a receiver operating characteristic (ROC) curve for

corpus 1 test set for the u = ũ1 class. This con-

firms that the MLR model produces more accurate

accept/reject decisions than the individual features

alone. Results for the SVM were similar.

5 Conclusions

This paper has presented a method for assigning

useful, meaningful probabilities to elements on an

ASR N-Best list. Multinomial logistic regression

(MLR) and support vector machines (SVMs) have

been tested, and both produce significantly better

models than a word confusion network baseline, as

measured by average log likelihood. Further, the

models appear to be well-calibrated and yield a bet-

ter indication of correctness than any of its input fea-

tures individually.

In dialog systems, we are often more interested in

the concepts than specific words, so in future work,

we hope to assign probabilities to concepts. In the
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Figure 3: ROC curve for MLR and the 3 most infor-

mative input features on corpus 1 (test set).

meantime, we are applying the method to our dialog

systems, to verify their usefulness in practice.
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