
Proceedings of SIGDIAL 2009: the 10th Annual Meeting of the Special Interest Group in Discourse and Dialogue, pages 314–321,
Queen Mary University of London, September 2009. c©2009 Association for Computational Linguistics

Ranking Help Message Candidates Based on Robust Grammar
Verification Results and Utterance History in Spoken Dialogue Systems

Kazunori Komatani Satoshi Ikeda Yuichiro Fukubayashi

Tetsuya Ogata Hiroshi G. Okuno

Graduate School of Informatics

Kyoto University

Yoshida-Hommachi, Sakyo, Kyoto 606-8501, Japan

{komatani,sikeda,fukubaya,ogata,okuno}@kuis.kyoto-u.ac.jp

Abstract

We address an issue of out-of-grammar

(OOG) utterances in spoken dialogue sys-

tems by generating help messages for

novice users. Help generation for OOG

utterances is a challenging problem be-

cause language understanding (LU) re-

sults based on automatic speech recogni-

tion (ASR) results for such utterances are

always erroneous as important words are

often misrecognized or missed from such

utterances. We first develop grammar ver-

ification for OOG utterances on the ba-

sis of a Weighted Finite-State Transducer

(WFST). It robustly identifies a grammar

rule that a user intends to utter, even when

some important words are missed from the

ASR result. We then adopt a ranking algo-

rithm, RankBoost, whose features include

the grammar verification results and the

utterance history representing the user’s

experience.

1 Introduction

Studies on spoken dialogue systems have recently

proceeded from in-laboratory systems to ones de-

ployed to the open public (Raux et al., 2006; Ko-

matani et al., 2007; Nisimura et al., 2005). Ac-

cordingly, opportunities are increasing as general

citizens use the systems. This situation means

that novice users directly access the systems with

no instruction, which is quite different from in-

laboratory experiments where some instructions

can be given. In such cases, users often experi-

ence situations where their utterances are not cor-

rectly recognized. This is because of a gap be-

tween the actual system and a user’s mental model,

that is, a user’s expectation of the system. Ac-

tually, a user’s utterance often cannot be inter-

preted by the system because of the system’s lim-

ited grammar for language understanding (LU).

We call such an unacceptable utterance an “out-

of-grammar (OOG) utterance.” When users’ ut-

terances are OOG, they cannot change their ut-

terances into acceptable ones unless they are in-

formed what expressions are acceptable by the

system.

We aim to manage the problem of OOG utter-

ances by providing help messages showing an ex-

ample of acceptable language expressions when a

user utterance is not acceptable. We prepare help

messages corresponding to each grammar rule the

system has. We therefore assume that appropri-

ate help messages can be provided if a user’s in-

tention, i.e., a grammar rule the user originally

intends to use by his utterance, is correctly esti-

mated.

Issues for generating such help messages in-

clude:

1. Estimating a grammar rule corresponding to

user intention even from OOG utterances,

and

2. Complementing missing information in a sin-

gle utterance.

The first issue focuses on the fact that automatic

speech recognition (ASR) results, used as main in-

put data, are erroneous for OOG utterances. Es-

timating a grammar rule that the user intends to

use becomes accordingly difficult especially when

content words, which correspond to database en-

tries such as place names and their attributes, are

not correctly recognized. That is, any type of ASR

error in any position should be taken into consid-

eration in ASR results of OOG utterances. On the

314

other hand, the second issue focuses on the fact

that an ASR result for an OOG utterance does not

necessarily contain sufficient information to esti-

mate the user intention. This is because of ASR

errors or that users may omit some elements from

their utterances because they are in context.

We develop a grammar verification method

based on Weighted Finite-State Transducer

(WFST) as a solution to the first issue. The

grammar verification method robustly estimates

which a grammar rule is intended to use by a

user’s utterance. The WFST is automatically

generated to represent an ASR result in which any

possibility of error is taken into consideration. We

furthermore adopt a boosting algorithm, Rank-

Boost (Freund et al., 2003), to put help messages

in order of probability to address the second issue.

Because it is difficult even for human annotators

to uniquely determine which help message should

be provided for each case, we adopt an algorithm

that can be used for training on several data

examples that have a certain order of priority.

We also incorporate features representing the

user’s utterance history for preventing message

repetition.

2 Related Work

Various studies have been done on generating help

messages in spoken dialogue systems. Gorrell et

al. (2002) trained a decision tree to classify causes

of errors for OOG utterances. Hockey et al. (2003)

also classified OOG utterances into the three cate-

gories of endpointing errors, unknown vocabulary,

and subcategorization mistakes, by comparing two

kinds of ASR results. This was called Targeted

Help and provided a user with immediate feedback

tailored to what the user said. Lee et al. (2007) also

addressed error recovery by generating help mes-

sages in an example-based dialog modeling frame-

work. These studies, however, determined what

help messages should be provided mainly on the

basis of literal ASR results. Therefore, help mes-

sages would be degraded by ASR results in which

a lot of information was missing, especially for

OOG utterances. The same help messages would

be repeated when the same ASR results were ob-

tained.

An example dialogue enabled by our method,

especially the part of the method described in Sec-

tion 4, is shown in Figure 1. Here, user utter-

ances are transcriptions, and utterance numbers

U1: Tell me your recommending sites.
Underlined parts are not in-vocabulary and no
valid LU result is obtained. The estimated gram-
mar is [Obtaining info on a site] although the most
appropriate help message is that corresponding to
[Searching tourist sites].

S1: I did not understand. You can say “Tell me
the address of Kiyomizu Temple” for example,
if getting information on a site.
The help message corresponding to [Obtaining info
on a site] is provided.

U2: Tell me your recommending sites.
The user repeats the same utterance probably be-
cause the help message (S1) was not helpful. The
estimated grammar is [Obtaining info on a site]
again.

S2: I did not understand. You can say “Search
shrines or museums” for example, if searching
tourist sites.
Another help message corresponding to [Searching
tourist sites] is provided after ranking candidates
by also using the user’s utterance history.

[] denotes grammar rules.

Figure 1: Example dialogue enabled by our

method

start with “S” and “U” denote system and user

utterances, respectively. In this example, ASR

results for the user utterances (U1 and U2) do

not contain sufficient information because the ut-

terances are short and contain out-of-vocabulary

words. These two results are similar, and ac-

cordingly, the help message after U2 provided by

methods like Targeted Help (Gorrell et al., 2002;

Hockey et al., 2003) is the same as Utterance S1

because they are only based on ASR results. Our

method can provide different help messages as Ut-

terance S2 after ranking candidates by consider-

ing the utterance history and grammar verification

results. Because the candidates are arranged in

the order of probability, the most appropriate help

message can be provided in fewer attempts.

This ranking method for help message candi-

dates is also useful in multimodal interfaces with

speech input. Help messages are necessary when

ASR is used as its input modality, and such mes-

sages were actually implemented in City Browser

(Gruenstein and Seneff, 2007), for example. This

system lists template-based help messages on the

screen by using ASR results and internal states of

the system. The order of help messages is impor-

tant, especially in portable devices with a small

screen, on which the number of help messages dis-

315

played at one time is limited, as Hartmann and

Schreiber (2008) pointed out. Even in cases where

sufficiently large screens are available, too many

help messages without any order will distract the

user’s attention and thus spoil its usability.

3 Grammar Verification based on WFST

We estimate a user’s intention even from OOG ut-

terances as a grammar rule that the user intends

to use by his utterance. We call this estimation

grammar verification. This process is applied to

ASR outputs based on a statistical language model

(LM) in this paper. We use two transducers: a

finite-state transducer (FST) representing the task

grammar, and weighted FST (WFST) representing

an ASR result and its confidence score. Hereafter,

we denote these two as “grammar FST” and “input

WFST” and depict examples in Figure 2.

A strong point of our method is that it takes

all three types of ASR error into consideration.

The input WFST is designed to represent all cases

where any word in an ASR result is an inserted or

substituted error, or any word is deleted. Its weight

is designed to reflect confidence scores of ASR re-

sults. By composing this WFST and the gram-

mar FST, we can obtain all possible sequences

and their accumulated weights when arbitrary se-

quences represented by the input WFST are input

into the grammar FST. The optimal results having

the maximum accumulated weight consist of the

LU result and the grammar rule that is the nearest

to the ASR result. The result can be obtained even

when any element in it is misrecognized or absent

from the ASR result.

An LU result is a set of concepts that consist

of slots and their values corresponding to database

entries the system handles. For example, an LU

result “month=2, day=22” consists of two con-

cepts, such as the value of slotmonth is 2, and the

value of slot day is 22.

3.1 Design of input WFST and grammar FST

In input WFSTs and grammar FSTs, each arc rep-

resenting state transitions has a label in the form of

“a:b/c” denoting its input symbol, output symbol,
and weight, in this order. Input symbol ε means a
state transition without any input symbol, that is,

an epsilon transition. Output symbol ε means no

output in the state transition. For example, a state

transition “please:ε/1.0” is executed when an in-
put symbol is “please,” no output symbol is gen-

erated, and 1.0 is added to the accumulated weight.

Weights are omitted in the grammar FST because

no weight is given in it.

An input WFST is automatically constructed

from an ASR result. Sequential state transitions

are assigned to each word in the ASR result, and

each of them is paralleled by filler transitions, as

shown in Figure 2 where the ASR result was “Ev-

ery Monday please” for example. Filler transitions

such as INS, DEL, and SUB are assigned to each

state for representing every kind of error such as

insertion, deletion, and substitution errors. All in-

put symbols in the input WFST are ε, by which the
WFST represents all possible sequences contain-

ing arbitrary errors. For example, the input WFST

in Figure 2 represents all possible sequences such

as “Every Monday please,” “Every Monday F,” “F

Monday F,” and so on. Here, every word can be

replaced by the symbol F that represents an inser-

tion or substitution error. Moreover, the error sym-

bol DEL can be inserted into its output symbol se-

quence at any position, which corresponds to dele-

tion errors in ASR results. Each weight per state

transition is summed up and then the optimal re-

sult is determined. The weights will be explained

in Section 3.2.

A grammar FST is generated from a task gram-

mar, which is written by a system developer for

each task. It determines whether an input se-

quence conforms to the task grammar. We also

assign filler transitions to each state for handling

each type of error of ASR results considered in

the input WFST. A filler transition, either of INS,
DEL, or SUB, is added to each state in the FST

except for states within keyphrases, which are ex-

plicitly indicated by a system developer. In the

example shown in Figure 2, “SUB $ Monday

date-repeat=Mon please” is output for an input

sequence “SUB Monday please”. Here, date-

repeat=Mon denotes an LU result, and $ is a sym-

bol for marking words corresponding to a concept.

3.2 Weights assigned to input WFST

We defined two kinds of weights:

1. Rewards for accepted words (wacc), and

2. Penalties for each kind of error (wsub, wdel,

wins).

An accumulated weight for a single utterance is

defined as the sum of these weights as shown be-

316

Input WFST

Every:

Every

Monday:

Monday

please:

please

Grammar FST

input:output/weight

ASR result: “Every Monday please”

 !"

 !"#$:

 !"

 !"#$:

 !"

 !"#$:

 !"

 !"#$:

 !"

 !"#$:

 !"

 !"#$:

 !!

 !"#$%& :

 !!

 !"#$"%& :

 !!

 !"#$%&' :

 !"# !"

 !"# !"

 !"# !"

$:ε

repeat-date:ε

Mon=

 !"

 !"#$:

 !"

 !"#$:

 !"

 !"#$:

 !"

 !"#$:

 !"# !" !"# !"

 !"# !"

 !"# !"

 !"# !"

Figure 2: Example of input WFST and grammar FST

low.

w =
∑

Eaccepted

wacc +
∑

Eerror

(wsub + wdel + wins)

Here, Eaccepted denotes a set of accepted words

corresponding to elements of each grammar rule,

and Eerror denotes a set of words that are not ac-

cepted and that have either error symbol. Note that

the weights are not given beforehand but are cal-

culated and given to the input WFST in runtime

according to each ASR result.

A weight for an accepted word easr is defined

by using its confidence score CM(easr) (Lee et
al., 2004) and its word length. A word length in

mora is denoted as l(·), which is normalized by

that of the longest word in the vocabulary.

wacc = CM(easr)l(easr)

This weight wacc gives preference to sequences

containing longer words with higher confidence

scores.

Weights for each type of error have negative val-

ues because they are penalties:

wsub = −{CM(easr)l(easr) + l(egram)}/2

wdel = −{l(e) + l(egram)}/2

wins = −{CM(easr)l(easr) + l(e)}/2

where l(e) is the average word length in the vocab-
ulary and egram is a grammar element i.e., either a

word or a class. A deletion error is a case when a

grammar element does not correspond to any word

in the ASR result. A substitution error is a case

when an element is replaced by another word in

the ASR result. An insertion error is a case when

no grammar element corresponds to the ASR re-

sult. Every weight is defined as an average of a

word length of a grammar element and the corre-

sponding one in the ASR result multiplied by its

confidence score. When correspondences cannot

be defined in insertion and deletion errors, l(e) is
used instead. In the case when egram is a class in

the grammar, the average word length in that class

is used as l(egram).

3.3 Example of calculating the weights

We show how a weight is calculated by using the

example in Figure 3. In this example, the user ut-

terance was “Tell me a liaison of Koetsu-ji (a tem-

ple name).” The word “liaison” was not in the sys-

tem vocabulary. The ASR result accordingly con-

tained errors for that part; the result was “Tell me

all Sakyo-ward Koetsu-ji.”

Weights are calculated for each grammar rule

the system has. This example shows calcula-

tions for two grammar rules: [get info] accept-

ing “Tell me 〈item name〉 of 〈temple name〉,” and
[search ward] accepting “Tell me 〈facility name〉
of 〈ward name〉.” Here, [] and 〈〉 denote a gram-
mar rule and a class in grammars. Two alignment

results are also shown for grammar [get info] in

this example. Weights are calculated for any align-

ment as shown here, and the alignment result with

the largest weight is selected. In this example,

weight +0.16 for the grammar [get info] was the

largest.

We consequently obtained the result that gram-

mar rule [get info] had the highest score for this

OOG utterance and its accumulated weight was

317

User utterance: “Tell me a liaison of Koetsu-ji”. (Underlined parts denote OOG.)

ASR result tell me all Sakyo-ward Koetsu-ji
(ward) (temple)

grammar [get info] tell me 〈item name〉 of 〈temple name〉
WFST output tell me INS SUB DEL Koetsu-ji

weights +0.09 +0.06 −0.04 −0.11 −0.02 +0.18 +0.16

grammar [get info] tell me 〈item name 〉 of 〈temple name〉
WFST output tell me SUB SUB Koetsu-ji

weights +0.09 +0.06 −0.21 −0.10 +0.18 +0.02

grammar [search ward] tell me 〈facility type〉 in 〈ward name〉
WFST output tell me INS SUB DEL SUB

weights +0.09 +0.06 −0.04 −0.12 −0.02 −0.21 −0.24

Figure 3: Example of calculating weights in our grammar verification

+0.16. The result also indicated each type of er-

ror as a result of the alignment: 〈item name〉 was
substituted by “Sakyo-ward”, “of” in the grammar

[get info] was deleted, and “all” in the ASR result

was inserted.

4 Ranking Help Message Candidates by

Integrating Dialogue Context

We furthermore develop a method to rank help

message candidates per grammar rule by integrat-

ing the grammar verification result and the user’s

utterance history. This complements information

that is often absent from utterances or misrecog-

nized in ASR and prevents that the same help mes-

sages are repeated. An outline of the method is

depicted in Figure 4.

4.1 Features used in Ranking

Features used in our methods are listed in Table

1. These features are calculated for each help

message candidate corresponding to each gram-

mar rule. Features H1 to H5 represent how reli-

able a grammar verification result is. Feature H1 is

a grammar verification score, that is, the resulting

accumulated weight described in Section 3. Fea-

ture H2 is calculated by normalizing H1 by the

total score of all grammar rules. This represents

how reliable the grammar verification result is rel-

atively compared to others. Features H3 to H5

represent how partially the user utterance matches

with the grammar rule.

Features H6 and H7 correspond to a dialogue

context. Feature H6 reflects the case in which

users tend to repeat similar utterances when their

utterances were not understood by the system.

Feature H7 represents whether and how the user

knows about the language expression of the gram-

mar rule. This feature corresponds to the known

degree we previously proposed (Fukubayashi et

Table 1: Features of each instance (help message

candidate)

H1: accumulated weight of GV (GV score)

H2: GV score normalized by the total GV score of other
instances

H3: ratio of # of accepted words in GV result to # of all
words

H4: maximum number of successively accepted words
in GV result

H5: number of accepted slots in GV result

H6: how before the grammar rule was selected as GV
result (in # of utterances)

H7: maximum GV score for the grammar rule until then

H8: whether it belongs to the “command” class

H9: whether it belongs to the “query” class

H10: whether it belongs to the “request-info” class

H11-H17: products of H8 and each of H1 to H7

H18-H24: products of H9 and each of H1 to H7

H25-H31: products of H10 and each of H1 to H7

GV: grammar verification

al., 2006), and prevents a help message the user

already knows from being provided repeatedly.

Features H8 to H10 represent properties of

utterances corresponding to the grammar rules,

which are categorized into three classes such as

“command,” “query,” and “request-info.” In the

sightseeing task, the numbers of grammar rules for

the three classes were 8, 4, and 11, respectively.

More specifically, utterances in either “query” or

“request-info” class tend to appear successively

because they are used when users try and com-

pare several query conditions; on the other hand,

utterances in “command” class tend to appear in-

dependently of the context. Features H11 to H31

are the products of features H8, H9, and H10 and

each feature from H1 to H7. These were defined to

consider combinations of properties of utterances

represented by H8, H9, and H10 and their reliabil-

ity represented by H1 to H7, because RankBoost

318

Help candidate

Help candidate

Ranking

(RankBoost)

∑

=

T

t

tt

xhxH)()(α

1

x

LL)()(

111

xfxf

i

LL)()(

1 nin

xfxf

n

x

User

utterance

Context

deft

qi,,,θα

Parameters

Training

data

p

x

q

x

Grammar

verification

Calculating features

Sorted by H(x)

Statistical LM-based

ASR outputs

Figure 4: Outline of our ranking method for help message candidates

does not consider them.

4.2 Ranking Algorithm

We adopt RankBoost (Freund et al., 2003), a

boosting algorithm based on machine learning, to

rank help message candidates. This algorithm can

be used for training on several data examples hav-

ing a certain order of priority. This attribute fits

for the problem in this paper; it is difficult even

for human annotators to determine the unique ap-

propriate help message to be provided. Target in-

stances x of the algorithm are help message can-

didates corresponding to grammar rules in this pa-

per.

RankBoost trains a score function H(x) and ar-
ranges instances x in the order. Here, H(x′) <
H(x′′) means x′′ is ranked higher than x′. This

score function is defined as a linear combination

of weak rankers giving partial information regard-

ing the order:

H(x) =
T

∑

t

αtht(x)

where T , ht(), and αt denote the number of boost-

ing iterations, a weak ranker, and its associated

weight, respectively. The weak ranker ht is de-

fined by comparing the value of a feature fi of an
instance x with a threshold θ. That is,

ht(x) =

1 if fi(x) > θ
0 if fi(x) ≤ θ
qdef if fi(x) = ⊥

(1)

where qdef ∈ {0, 1}. Here, fi(x) denotes the

value of the i-th feature of instance x, and ⊥ de-

notes that no value is given in fi(x).

5 Experimental Evaluation

5.1 Target Data

Data were collected by 30 subjects in total by us-

ing a multi-domain spoken dialogue system that

handles five domains such as restaurant, hotel,

sightseeing, bus, and weather (Komatani et al.,

2008). The data consisted of 180 dialogues and

11,733 utterances. Data from five subjects were

used to determine the number of boosting iter-

ations and to improve LMs for ASR. We used

utterances in the restaurant, hotel, and sightsee-

ing domains because the remaining two, bus and

weather, did not have many grammar rules. We

then extracted OOG utterances on the basis of the

grammar verification results to evaluate the per-

formance of our method for such utterances. We

regarded an utterance whose accumulated weight

was negative as OOG. As a result, 1,349 OOG ut-

terances by 25 subjects were used for evaluation,

hereafter. These consisted of 363 utterances in the

restaurant domain, 563 in the hotel domain, and

423 in the sightseeing domain. These data were

collected under the following conditions: subjects

were given no instructions on concrete language

expressions the system accepts. System responses

were made only by speech, and no screen for dis-

playing outputs was used. Subjects were given six

scenarios describing tasks to be completed.

We used Julius1 that is a statistical-LM-based

ASR engine. We constructed class 3-gram LMs

for ASR by using 10,000 sentences generated

from the task grammars and the 600 utterances

collected by the five subjects. The vocabulary

sizes for the restaurant, hotel, and sightseeing do-

mains were 3,456, 2,625, and 3,593, and ASR ac-

curacies for them were 45.8%, 57.1%, and 43.5%,

respectively. These ASR accuracies were not very

high because the target utterances were all OOG.

A set of possible thresholds in the weak rankers

described in Section 4.2 consisted of all feature

values that appeared in the training data. The num-

bers of boosting iterations were determined on the

basis of accuracies for the data by the five sub-

1http://julius.sourceforge.jp/

319

!"#

$"#

%"#

&"#

'"#

("#

)"#

*""#

*+,-./ 0+,-./ !+,-./ $+,-./ %+,-./

1+,-./

!
"
"
#
$
%
"
&

!"#$%&'$ ()*+,$-.(/

Figure 5: Accuracy when N candidates were pro-

vided in sightseeing domain (1 ≤ N ≤ 5)

jects. The numbers were 400, 100, and 500 for the

restaurant, hotel, and sightseeing domains.

5.2 Evaluation Criterion

We manually gave five help messages correspond-

ing to grammar rules as reference labels per ut-

terance in the order of having a strong relation to

the utterance. The numbers of candidate help mes-

sages were 28, 27, and 23 for the restaurant, hotel

and sightseeing domains, respectively.

We evaluated our ranking method as the accu-

racy where at least one of the reference labels was

contained in its top N candidates. This corre-

sponds to a probability where at least one appro-

priate help message was contained in a list of N
candidates. The accuracy was calculated by 5-fold

cross validation. In the baseline method we set,

help messages were provided only by using the

grammar verification scores.

5.3 Results

Results in the sightseeing domain are plotted in

Figure 5. We can see that our method outper-

formed the baseline in the accuracies for all N
values. All these differences were statistically sig-

nificant (p < 0.05) by the McNemar test. The ac-

curacies were also better in the other two domains

for all N values, and the average differences for

the three domains were 11.7 points for N=1, 9.7

points for N=2, and 6.7 points for N=3. The dif-

ferences were large especially for small N values.

This result indicates that we can successfully re-

duce the number of help messages when providing

several ones for users. The improvements were

derived from the features we incorporated such as

the estimated user knowledge in addition to gram-

mar verification results. The baseline method was

only based on grammar verification results for sin-

gle utterances, which contained insufficient infor-

mation because OOG utterances were often mis-

recognized or misunderstood.

Table 2: Sum of absolute values of weight α for

each feature
H7 H17 H19 H2 H6

(H7*H8) (H2*H9)

9.58 6.91 6.61 6.02 6.01

We also investigated dominant features by cal-

culating the sum of absolute values of final weight

α for each feature in RankBoost. Five dominant

features based on the sums are shown in Table

2. These five features include a feature obtained

from grammar verification result (H2), a feature

about the user’s utterance history (H6), a feature

representing estimated user knowledge (H7), and

features representing properties of the utterances.

The most dominant feature was H7, which ap-

peared twice in this table. This was because user

utterances were not likely to be OOG utterances

again after the user had already known an expres-

sion corresponding to the grammar rule, which can

be detected when user utterances for it were cor-

rectly accepted, that is, its grammar verification

score was high. The second dominant feature was

H2, which showed that grammar verification re-

sults worked effectively.

6 Conclusion

We addressed an issue of OOG utterances in spo-

ken dialogue systems by generating help mes-

sages. To manage situations when a user utter-

ance could not be accepted, we robustly estimated

a user’s intention as a grammar rule that the user

intends to use. We furthermore integrated various

information as well as the grammar verification

results for complementing missing information in

single utterances, and then ranked help message

candidates corresponding to the grammar rules for

efficiently providing them.

Our future work includes the following. The

evaluation in this paper was taken place only on

the basis of utterances collected beforehand. Pro-

viding help messages itself should be evaluated by

another experiment through dialogues. Further-

more, we assumed that language expressions of

help messages to show an example language ex-

pression were fixed. We also need to investigate

what kind of expression is more helpful to novice

users.

320

References

Yoav Freund, Raj D. Iyer, Robert E. Schapire, and
Yoram Singer. 2003. An efficient boosting algo-
rithm for combining preferences. Journal of Ma-
chine Learning Research, 4:933–969.

Yuichiro Fukubayashi, Kazunori Komatani, Tetsuya
Ogata, and Hiroshi G. Okuno. 2006. Dynamic
help generation by estimating user’s mental model in
spoken dialogue systems. In Proc. Int’l Conf. Spo-
ken Language Processing (INTERSPEECH), pages
1946–1949.

Genevieve Gorrell, Ian Lewin, and Manny Rayner.
2002. Adding intelligent help to mixed-initiative
spoken dialogue systems. In Proc. Int’l Conf. Spo-
ken Language Processing (ICSLP), pages 2065–
2068.

Alexander Gruenstein and Stephanie Seneff. 2007.
Releasing a multimodal dialogue system into the
wild: User support mechanisms. In Proc. 8th SIG-
dial Workshop on Discourse and Dialogue, pages
111–119.

Melanie Hartmann and Daniel Schreiber. 2008. Proac-
tively adapting interfaces to individual users for mo-
bile devices. In Adaptive Hypermedia and Adap-
tive Web-Based Systems, 5th International Confer-
ence (AH 2008), volume 5149 of Lecture Notes in
Computer Science, pages 300–303. Springer.

Beth A. Hockey, Oliver Lemon, Ellen Campana, Laura
Hiatt, Gregory Aist, James Hieronymus, Alexander
Gruenstein, and John Dowding. 2003. Targeted
help for spoken dialogue systems: intelligent feed-
back improves naive users’ performance. In Proc.
10th Conf. of the European Chapter of the ACL
(EACL2003), pages 147–154.

Kazunori Komatani, Tatsuya Kawahara, and Hiroshi G.
Okuno. 2007. Analyzing temporal transition of real
user’s behaviors in a spoken dialogue system. In
Proc. INTERSPEECH, pages 142–145.

Kazunori Komatani, Satoshi Ikeda, Tetsuya Ogata,
and Hiroshi G. Okuno. 2008. Managing out-of-
grammar utterances by topic estimation with domain
extensibility in multi-domain spoken dialogue sys-
tems. Speech Communication, 50(10):863–870.

Akinobu Lee, Kiyohiro Shikano, and Tatsuya Kawa-
hara. 2004. Real-time word confidence scoring us-
ing local posterior probabilities on tree trellis search.
In IEEE Int’l Conf. Acoust., Speech & Signal Pro-
cessing (ICASSP), volume 1, pages 793–796.

Cheongjae Lee, Sangkeun Jung, Donghyeon Lee, and
Gary Guenbae Lee. 2007. Example-based error re-
covery strategy for spoken dialog system. In Proc.
of IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU), pages 538–543.

Ryuichi Nisimura, Akinobu Lee, Masashi Yamada, and
Kiyohiro Shikano. 2005. Operating a public spo-
ken guidance system in real environment. In Proc.
European Conf. Speech Commun. & Tech. (EU-
ROSPEECH), pages 845–848.

Antoine Raux, Dan Bohus, Brian Langner, Alan W.
Black, and Maxine Eskenazi. 2006. Doing research
on a deployed spoken dialogue system: One year of
Let’s Go! experience. In Proc. INTERSPEECH.

321

