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Abstract 

We describe a coding scheme for ma-
chine translation of spoken task-
oriented dialogue. The coding scheme 
covers two levels of speaker intention − 
domain independent speech acts and 
domain dependent domain actions. Our 
database contains over 14,000 tagged 
sentences in English, Italian, and Ger-
man. We argue that domain actions, and 
not speech acts, are the relevant dis-
course unit for improving translation 
quality. We also show that, although 
domain actions are domain specific, the 
approach scales up to large domains 
without an explosion of domain actions 
and can be coded with high inter-coder 
reliability across research sites. Fur-
thermore, although the number of do-
main actions is on the order of ten times 
the number of speech acts, sparseness is 
not a problem for the training of classi-
fiers for identifying the domain action. 
We describe our work on developing 
high accuracy speech act and domain 
action classifiers, which is the core of 
the source language analysis module of 
our NESPOLE machine translation sys-
tem. 

1 Introduction 

The NESPOLE and C-STAR machine translation 
projects use an interlingua representation based 
on speaker intention rather than literal meaning. 
The speaker's intention is represented as a 
domain independent speech act followed by do-
main dependent concepts. We use the term 
domain action to refer to the combination of a 
speech act with domain specific concepts. Exam-
ples of domain actions and speech acts are shown 
in Figure 1. 

 
c: gi ve- i nf or mat i on+par t y  
“ I  wi l l  be t r avel i ng wi t h my husband and 
our  t wo chi l dr en ages t wo and el even”  
 
c: r equest - i nf or mat i on+exi st ence+f aci l i t y   
“ Do t hey have par ki ng avai l abl e?"  
“ I s t her e somepl ace t o go i ce skat i ng?"  
 
c: gi ve- i nf or mat i on+vi ew+i nf or mat i on-
obj ect   
“ I  see t he bus i con”   

 
Figure 1: Examples of Speech Acts and Domain 

Actions. 
 

Domain actions are constructed compositionally 
from an inventory of speech acts and an inven-
tory of concepts. The allowable combinations of 
speech acts and concepts are formalized in a hu-
man- and machine-readable specification docu-
ment. The specification document is supported 
by a database of over 14,000 tagged sentences in 
English, German, and Italian. 

The discourse community has long recog-
nized the potential for improving NLP systems 
by identifying speaker intention. It has been hy-
pothesized that predicting speaker intention of 
the next utterance would improve speech recog-
nition (Reithinger et al., Stolcke et al.), or reduce 
ambiguity for machine translation (Qu et al., 
1996, Qu et al., 1997). Identifying speaker inten-
tion is also critical for sentence generation. 

We argue in this paper that the explicit repre-
sentation of speaker intention using domain ac-
tions can serve as the basis for an effective 
language-independent representation of meaning 
for speech-to-speech translation and that the 
relevant units of speaker intention are the domain 
specific domain action as well as the domain in-
dependent speech act. After a brief description of 
our database, we present linguistic motivation for 
domain actions. We go on to show that although 
domain actions are domain specific, there is not 
an explosion or exponential growth of domain 
actions when we scale up to a larger domain or 
port to a new domain. Finally we will show that, 
although the number of domain actions is on the 



order of ten times the number of speech acts, 
data sparseness is not a problem in training a 
domain action classifier. We present extensive 
work on developing a high-accuracy classifier 
for domain actions using a variety of classifica-
tion approaches and conclusions on the adequacy 
of these approaches to the task of domain action 
classification.  

2 Data Collection Scenario and Data-
base 

Our study is based on data that was collected for 
the NESPOLE and C-STAR speech-to-speech 
translation projects. Three domains are included. 
The NESPOLE travel domain covers inquiries 
about vacation packages. The C-STAR travel 
domain consists largely of reservation and pay-
ment dialogues and overlaps only about 50% in 
vocabulary with the NESPOLE travel domain. 
The medical assistance domain includes dia-
logues about chest pain and flu-like symptoms. 

There were two data collection protocols for 
the NESPOLE travel domain − monolingual and 
bilingual. In the monolingual protocol, an Eng-
lish speaker in the United States had a conversa-
tion with an Italian travel agent speaking (non-
native) English in Italy. Monolingual data was 
also collected for German, French and Italian. 
Bilingual data was collected during user studies 
with, for example, an English speaker in the 
United States talking to an Italian-speaking travel 
agent in Italy, with the NESPOLE system pro-
viding the translation between the two parties. 
The C-STAR data consists of only monolingual 
role-playing dialogues with both speakers at the 
same site. The medical dialogues are monolin-
gual with doctors playing the parts of both doctor 
and patient. 

The dialogues were transcribed and multi-
sentence utterances were broken down into mul-
tiple Semantic Dialogue Units (SDUs) that each 
correspond to one domain action. Some SDUs 
have been translated into other NESPOLE or C-
STAR languages. Over 14,000 SDUs have been 
tagged with interlingua representations including 
domain actions as well as argument-value pairs. 
Table 1 summarizes the number of tagged SDUs 
in complete dialogues in the interlingua database. 
There are some additional tagged dialogue frag-
ments that are not counted. Figure 2 shows an 
excerpt from the database. 

 
 
 

English NESPOLE Travel 4691 
English C-STAR Travel 2025 
German NESPOLE Travel 1538 
Italian NESPOLE Travel 2248 
English Medical Assistance 2001 
German Medical Assistance 1152 
Italian Medical Assistance 935 

Table 1: Tagged SDUs in the Interlingua Data-
base. 

 
e709wa. 19. 0  comment s:  DATA f r om 
e709_1_0018_I TAGOR_00 
 
e709wa. 19. 1  ol ang I TA  l ang I TA Pr v CMU   
“ hai  i n ment e una l ocal i t a speci f i ca?"  
e709wa. 19. 1  ol ang I TA  l ang GER  Pr v CMU   
“ haben Si e ei nen best i mmt en Or t  i m Si nn?"  
e709wa. 19. 1  ol ang I TA  l ang FRE  Pr v 
CLI PS “ "  
e709wa. 19. 1  ol ang I TA  l ang ENG  Pr v CMU   
“ do you have a speci f i c pl ace i n mi nd"  
e709wa. 19. 1                   I F  Pr v CMU   
a: r equest - i nf or mat i on+di sposi t i on+obj ect   
( obj ect - spec=( pl ace,  modi f i er =speci f i c,  
i dent i f i abi l i t y=no) ,  di sposi -
t i on=( i nt ent i on,  who=you) )  
e709wa. 19. 1  comment s:  Tagged by dmg 

 
Figure 2: Excerpt from the Interlingua Database. 

3 Linguistic Argument for Domain Ac-
tions 

Proponents of Construction Grammar (Fillmore 
et. al. 1988, Goldberg 1995) have argued that 
human languages consist of constructional units 
that include a syntactic structure along with its 
associated semantics and pragmatics. Some con-
structions follow the typical syntactic rules of the 
language but have a semantic or pragmatic focus 
that is not compositionally predictable from the 
parts. Other constructions do not even follow the 
typical syntax of the language (e.g., Why not go? 
with no tensed verb). 

Our work with multilingual machine transla-
tion of spoken language shows that fixed expres-
sions cannot be translated literally. For example, 

Why not go to the meeting? can be translated 
into Japanese as Kaigi ni itte mitara doo? (meet-
ing to going see/try-if how), which differs from 
the English in several ways. It does not have a 
word corresponding to not; it has a word that 
means see/try that does not appear in the English 
sentence; and so on. In order to produce an ac-
ceptable translation, we must find a common 
ground between the English fixed expression 
Why not V-inf? and the Japanese fixed expression 
-te mittara doo?. The common ground is the 



speaker's intention (in this case, to make a sug-
gestion) rather than the syntax or literal meaning. 

Speaker intention is partially captured with a 
direct or indirect speech act. However, whereas 
speech acts are generally domain independent, 
task-oriented language abounds with fixed ex-
pressions that have domain specific functions. 
For example, the phrases We have… or There 
are… in the hotel reservation domain express 
availability of rooms in addition to their more 
literal meanings of possession and existence. In 
the past six years, we have been successful in 
using domain specific domain actions as the ba-
sis for translation of limited-domain task-
oriented spoken language (Levin et al., 1998, 
Levin et al. 2002; Langley and Lavie, 2003) 

4 Scalability and Portability of Domain 
Actions 

Domain actions, like speech acts, convey speaker 
intention. However, domain actions also repre-
sent components of meaning and are therefore 
more numerous than domain independent speech 
acts. 1168 unique domain actions are used in our 
NESPOLE database, in contrast to only 72 
speech acts. We show in this section that domain 
actions yield good coverage of task-oriented do-
mains, that domain actions can be coded effec-
tively by humans, and that scaling up to larger 
domains or porting to new domains is feasible 
without an explosion of domain actions.  

 
Coverage of Task-Oriented Domains: Our 
NESPOLE domain action database contains dia-
logues from two task-oriented domains: medical 
assistance and travel. Table 2 shows the number 
of speech acts and concepts that are used in the 
travel and medical domains.  The 1168 unique 
domain actions that appear in our database are 
composed of the 72 speech acts and 125 con-
cepts. 
 

 Travel Medical Combined 
DAs 880 459 1168 
SAs 67 44 72 

Concepts 91 74 125 
Table 2: DA component counts in NESPOLE 

data. 
 

Our domain action based interlingua has quite 
high coverage of the travel and medical dia-
logues we have collected. To measure how well 
the interlingua covers a domain, we define the 

no-tag rate as the percent of sentences that are 
not covered by the interlingua, according to a 
human expert. The no-tag rate for the English 
NESPOLE travel dialogues is 4.3% for dialogues 
that have been used for system development.  

We have also estimated the domain action no-
tag rate for unseen data using the NESPOLE 
travel database (English, German, and Italian 
combined). We randomly selected 100 SDUs as 
seen data and extracted their domain actions. We 
then randomly selected 100 additional SDUs 
from the remaining data and estimated the no-tag 
rate by counting the number of SDUs not cov-
ered by the domain actions in the seen data. We 
then added the unseen data to the seen data set 
and randomly selected 100 new SDUs. We re-
peated this process until the entire database had 
been seen, and we repeated the entire sampling 
process 10 times. Although the number of do-
main actions increases steadily with the database 
size (Figure 4), the no-tag rate for unseen data 
stabilizes at less than 10%.  

We also randomly selected half of the SDUs 
(4200) from the database as seen data and ex-
tracted the domain actions. Holding the seen data 
set fixed, we then estimated the no-tag rates in 
increasing amounts of unseen data from the re-
maining half of the database. We repeated this 
process 10 times. With a fixed amount of seen 
data, the no-tag rate remains stable for increasing 
amounts of unseen data. We observed similar no-
tag rate results for the medical assistance domain 
and for the combination of travel and medical 
domains. 

It is also important to note that although there 
is a large set of uncommon domain actions, the 
top 105 domain actions cover 80% of the sen-
tences in the travel domain database. Thus do-
main actions are practical for covering task-
oriented domains. 
 
Intercoder Agreement: Intercoder agreement is 
another indicator of manageability of the domain 
action based interlingua. We calculate intercoder 
agreement as percent agreement. Three interlin-
gua experts at one NESPOLE site achieved 94% 
agreement (average pairwise agreement) on 
speech acts and 88% agreement on domain ac-
tions. Across sites, expert agreement on speech 
acts is still quite high (89%), although agreement 
on domain actions is lower (62%). Since many 
domain actions are similar in meaning, some dis-
agreement can be tolerated without affecting 
translation quality. 
 



Figure 3: DAs to cover data (English). 

Figure 4: DAs to cover data (All languages). 
 
Scalability and Portability: The graphs in Figure 
3 and Figure 4 illustrate growth in the number of 
domain actions as the database size increases and 
as new domains are added. The x-axis represents 
the sample size randomly selected from the data-
base. The y-axis shows the number of unique 
domain actions (types) averaged over 10 samples 
of each size. Figure 3 shows the growth in do-
main actions for three English databases 
(NESPOLE travel, C-STAR travel, and medical 
assistance) as well as the growth in domain ac-
tions for a database consisting of equal amounts 
of data from each domain. Figure 4 shows the 
growth in domain actions for combined English, 
German, and Italian data in the NESPOLE travel 
and medical domains.  

Figure 3 and Figure 4 show that the number 
of domain actions increases steadily as the data-
base grows. However, closer examination reveals 
that scalability to larger domains and portability 
to new domains are in fact feasible.  The curves 
representing combined domains (travel plus 
medical in Figure 4 and NESPOLE travel, C-
STAR travel, and medical in Figure 3) show only 
a small increase in the number of domain actions 

when two domains are combined. In fact, there is 
a large overlap between domains.  In Table 3 the 
Overlap columns show the number of DA types 
and tokens that are shared between the travel and 
medical domains. We can see around 70% of DA 
tokens are covered by DA types that occur in 
both domains. 

 

 
DA 

Types 
Type 

Overlap 
DA 

Tokens 
Token 

Overlap 
NESPOLE 

Travel 
880 171 8477 

6004 
(70.8%) 

NESPOLE 
Medical 

459 171 4088 
2743 

(67.1%) 
Table 3: DA Overlap (All languages). 

5 A Hybrid Analysis Approach for Pars-
ing Domain Actions 

Langley et al. (2002; Langley and Lavie, 2003) 
describe the hybrid analysis approach that is used 
in the NESPOLE! system (Lavie et al., 2002). 
The hybrid analysis approach combines gram-
mar-based phrasal parsing and machine learning 
techniques to transform utterances into our inter-
lingua representation. Our analyzer operates in 
three stages to identify the domain action and 
arguments. 

First, an input utterance is parsed into a se-
quence of arguments using phrase-level semantic 
grammars and the SOUP parser (Gavaldà, 2000). 
Four grammars are defined for argument parsing: 
an argument grammar, a pseudo-argument gram-
mar, a cross-domain grammar, and a shared 
grammar. The argument grammar contains 
phrase-level rules for parsing arguments defined 
in the interlingua. The pseudo-argument gram-
mar contains rules for parsing common phrases 
that are not covered by interlingua arguments. 
For example, all booked up, full, and sold out 
might be grouped into a class of phrases that in-
dicate unavailability. The cross-domain grammar 
contains rules for parsing complete DAs that are 
domain independent. For example, this grammar 
contains rules for greetings (Hello, Good bye, 
Nice to meet you, etc.). Finally, the shared 
grammar contains low-level rules that can be 
used by all other subgrammars. 

After argument parsing, the utterance is seg-
mented into SDUs using memory-based learning 
(k-nearest neighbor) techniques. Spoken utter-
ances often consist of several SDUs. Since DAs 
are assigned at the SDU level, it is necessary to 
segment utterances before assigning DAs. 
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The final stage in the hybrid analysis ap-
proach is domain action classification.  

6 Domain Action Classification 

Identifying the domain action is a critical step in 
the analysis process for our interlingua-based 
translation systems. One possible approach 
would be to manually develop grammars de-
signed to parse input utterances all the way to the 
domain action level. However, while grammar-
based parsing may provide very accurate analy-
ses, it is generally not feasible to develop a 
grammar that completely covers a domain. This 
problem is exacerbated with spoken input, where 
disfluencies and deviations from the grammar are 
very common. Furthermore, a great deal of effort 
by human experts is generally required to de-
velop a wide-coverage grammar. 

An alternative to writing full domain action 
grammars is to train classifiers to identify the 
DA. Machine learning approaches allow the ana-
lyzer to generalize beyond training data and tend 
to degrade gracefully in the face of noisy input. 
Machine learning methods may, however, be less 
accurate than grammars, especially on common 
in-domain input, and may require a large amount 
of training data in order to achieve adequate lev-
els of performance. In the hybrid analyzer de-
scribed above, classifiers are used to identify the 
DA for domain specific portions of utterances 
that are not covered by the cross-domain gram-
mar. 

We tested classifiers trained to classify com-
plete DAs. We also split the DA classification 
task into two subtasks: speech act classification 
and concept sequence classification. This simpli-
fies the task of each classifier, allows for the use 
of different approaches and/or feature sets for 
each task, and reduces data sparseness. Our hy-
brid analyzer uses the output of each classifier 
along with the interlingua specification to iden-
tify the DA (Langley et al., 2002; Langley and 
Lavie, 2003). 

7 Experimental Setup 

We conducted experiments to assess the per-
formance of several machine-learning ap-
proaches on the DA classification tasks. We 
evaluated all of the classifiers on English and 
German input in the NESPOLE travel domain.  

7.1 Corpus 

The corpus used in all of the experiments was the 
NESPOLE! travel and tourism database. Since 
our goal was to evaluate the SA and concept se-
quence classifiers and not segmentation, we cre-
ated training examples for each SDU in the 
database rather than for each utterance. Table 4 
contains statistics regarding the contents of the 
corpus for our classification tasks. Table 5 shows 
the frequency of the most common domain ac-
tion, speech act, and concept sequence in the 
corpus. These frequencies provide a baseline that 
would be achieved by a simple classifier that al-
ways returned the most common class. 

 
 English German 
SDUs 8289 8719 
Domain Actions 972 1001 
Speech Acts 70 70 
Concept Sequences 615 638 
Vocabulary Size 1946 2815 

Table 4: Corpus Statistics. 
 

 English German 
DA (acknowledge) 19.2% 19.7% 
SA (give-information) 41.4% 40.7% 
Concept Sequence 
(No concepts) 

38.9% 40.3% 

Table 5: Most frequent DAs, SAs, and CSs. 
 

All of the results presented in this paper were 
produced using a 20-fold cross validation setup. 
The corpus was randomly divided into 20 sets of 
equal size. Each of the sets was held out as the 
test set for one fold with the remaining 19 sets 
used as training data. Within each language, the 
same random split was used for all of the classi-
fication experiments. Because the same split of 
the data was used for different classifiers, the 
results of two classifiers on the same test set are 
directly comparable. Thus, we tested for signifi-
cance using two-tailed matched pair t-tests. 

7.2 Machine Learning Approaches 

We evaluated the performance of four different 
machine-learning approaches on the DA classifi-
cation tasks: memory-based learning (k-Nearest-
Neighbor), decision trees, neural networks, and 
naïve Bayes n-gram classifiers. We selected 
these approaches because they vary substantially 
in the their representations of the training data 
and their methods for selecting the best class. 



Our purpose was not to implement each ap-
proach from scratch but to test the approach for 
our particular task. Thus, we chose to use exist-
ing software for each approach “off the shelf.”  
The ease of acquiring and setting up the software 
influenced our choice. Furthermore, the ease of 
incorporating the software into our online trans-
lation system was also a factor. 

Our memory-based classifiers were imple-
mented using TiMBL (Daelemans et al., 2002). 
We used C4.5 (Quinlan, 1993) for our decision 
tree classifiers. Our neural network classifiers 
were implemented using SNNS (Zell et al., 
1998). We used Rainbow (McCallum, 1996) for 
our naïve Bayes n-gram classifiers. 

8 Experiments 

In our first experiment, we compared the per-
formance of the four machine learning ap-
proaches. Each SDU was parsed using the 
argument and pseudo-argument grammars de-
scribed above. The feature set for the DA and SA 
classifiers consisted of binary features indicating 
the presence or absence of labels from the 
grammars in the parse forest for the SDU. The 
feature set included 212 features for English and 
259 features for German. The concept sequence 
classifiers used the same feature set with the ad-
dition of the speech act. 

In the SA classification experiment, the 
TiMBL classifier used the IB1 (k-NN) algorithm 
with 1 neighbor and gain ratio feature weighting. 
The C4.5 classifier required at least one instance 
per branch and used node post-pruning. Both the 
TiMBL and C4.5 classifiers used the binary fea-
tures described above and produced the single 
best class as output. The SNNS classifier used a 
simple feed-forward network with 1 input unit 
for each binary feature, 1 hidden layer containing 
15 units, and 1 output unit for each speech act. 
The network was trained using backpropagation. 
The order of presentation of the training exam-
ples was randomized in each epoch, and the 
weights were updated after each training exam-
ple presentation. In order to simulate the binary 
features used by the other classifiers as closely as 
possible, the Rainbow classifier used a simple 
unigram model whose vocabulary was the set of 
labels included in the binary feature set. The 
setup for the DA classification experiment was 
identical except that the neural network had 50 
hidden units. 

The setup of the classifiers for the concept se-
quence classification experiment was very simi-

lar. The TiMBL and C4.5 classifiers were set up 
exactly as in the DA and SA experiments with 
one extra feature whose value was the speech act. 
The SNNS concept sequence classifier used a 
similar network with 50 hidden units. The SA 
feature was represented as a set of binary input 
units. The Rainbow classifier was set up exactly 
as in the DA and SA experiments. The SA fea-
ture was not included. 

As mentioned above, both experiments used a 
20-fold cross-validation setup. In each fold, the 
TiMBL, C4.5, and Rainbow classifiers were sim-
ply trained on 19 subsets of the data and tested 
on the remaining set. The SNNS classifiers re-
quired a more complex setup to determine the 
number of epochs to train the neural network for 
each test set. Within each fold, a cross-validation 
setup was used to determine the number of train-
ing epochs. Each of the 19 training subsets for a 
fold was used as a validation set. The network 
was trained on the remaining 18 subsets until the 
accuracy on the validation set did not improve 
for 50 consecutive epochs. The network was then 
trained on all 19 training subsets for the average 
number of epochs from the validation sets. This 
process was used for all 20-folds in the SA clas-
sification experiment. For the DA and concept 
sequence experiments, this process ran for ap-
proximately 1.5 days for each fold. Thus, this 
process was run for the first two folds, and the 
average number of epochs from those folds was 
used for training. 

 
 English German 
TiMBL 49.69% 46.51% 
C4.5 48.90% 46.58% 
SNNS 49.39% 46.21% 
Rainbow 39.74% 38.32% 

Table 6: Domain Action classifier accuracy. 
 

 English German 
TiMBL 69.82% 67.57% 
C4.5 70.41% 67.90% 
SNNS 71.52% 67.61% 
Rainbow 51.39% 46.00% 

Table 7: Speech Act classifier accuracy. 
 

 English German 
TiMBL 69.59% 67.08% 
C4.5 68.47% 66.45% 
SNNS 71.35% 68.67% 
Rainbow 51.64% 51.50% 

Table 8: Concept Sequence classifier accuracy. 



 
Table 6, Table 7, and Table 8 show the aver-

age accuracy of each learning approach on the 
20-fold cross validation experiments for domain 
action, speech act, and concept classification re-
spectively. For DA classification, there were no 
significant differences between the TiMBL, 
C4.5, and SNNS classifiers for English or Ger-
man. In the SA experiment, the difference be-
tween the TiMBL and C4.5 classifiers for 
English was not significant. The SNNS classifier 
was significantly better than both TiMBL and 
C4.5 (at least p=0.0001). For German SA classi-
fication, there were no significant differences 
between the TiMBL, C4.5, and SNNS classifiers. 
For concept sequence classification, SNNS was 
significantly better than TiMBL and C4.5 (at 
least p=0.0001) for both English and German. 
For English only, TiMBL was significantly better 
than C4.5 (p=0.005). 

For both languages, the Rainbow classifier 
performed much worse than the other classifiers. 
However, the unigram model over arguments did 
not exploit the strengths of the n-gram classifica-
tion approach. Thus, we ran another experiment 
in which the Rainbow classifier was trained on 
simple word bigrams. No stemming or stop 
words were used in building the bigram models. 

 
 English German 
Domain Action 48.59% 48.09% 
Speech Act 79.00% 77.46% 
Concept Sequence 56.87% 57.77% 

Table 9: Rainbow accuracy with word bigrams. 
 

Table 9 shows the average accuracy of the 
Rainbow word bigram classifiers using the same 
20-fold cross-validation setup as in the previous 
experiments. As we expected, using word bi-
grams rather than parse label unigrams improved 
the performance of the Rainbow classifiers. For 
German DA classification, the word bigram clas-
sifier was significantly better than all of the pre-
vious German DA classifiers (at least p=0.005). 
Furthermore, the Rainbow word bigram SA clas-
sifiers for both languages outperformed all of the 
SA classifiers that used only the parse labels. 

Although the argument parse labels provide 
an abstraction of the words present in an SDU, 
the words themselves also clearly provided use-
ful information for classification, at least for the 
SA task. Thus, we conducted additional experi-
ments to examine whether combining parse and 

word information could further improve per-
formance. 

We chose to incorporate word information 
into the TiMBL classifiers used in the first ex-
periment. Although the SNNS SA classifier per-
formed significantly better than the TiMBL SA 
classifier for English, there was no significant 
difference for SA classification in German. Fur-
thermore, because of the complexity and time 
required for training with SNNS, we preferred 
working with TiMBL. 

We tested two approaches to adding word in-
formation to the TiMBL classifier. In both ap-
proaches, the word-based information for each 
fold was computed only based on the data in the 
training set. In our first approach, we added bi-
nary features for the 250 words that had the 
highest mutual information with the class. Each 
feature indicated the presence or absence of the 
word in the SDU. In this condition, we used the 
TiMBL classifier with gain ratio feature weight-
ing, 3 neighbors, and unweighted voting. The 
second approach we tested combined the Rain-
bow word bigram classifier with the TiMBL 
classifier. We added one input feature for each 
possible speech act to the TiMBL classifier. The 
value of each SA feature was the probability of 
the speech act computed by the Rainbow word 
bigram classifier. In this condition, we used the 
TiMBL classifier with gain ratio feature weight-
ing, 11 neighbors, and inverse linear distance 
weighted voting. 
 

 English German 
TiMBL + words 78.59% 75.98% 
TiMBL + Rainbow 81.25% 78.93% 
Table 10: Word+Parse SA classifier accuracy. 

 
Table 10 shows the average accuracy of the 

SA classifiers that combined parse and word in-
formation using the same 20-fold cross-
validation setup as the previous experiments. 
Although adding binary features for individual 
words improved performance over the classifiers 
with no word information, it did not allow the 
combined classifiers to outperform the Rainbow 
word bigram classifiers. However, for both 
languages, adding the probabilities computed by 
the Rainbow bigram model resulted in a SA clas-
sifier that outperformed all previous classifiers. 
The improvement in accuracy was highly signifi-
cant for both languages. 

We conducted a similar experiment for com-
bining parse and word information in the concept 
sequence classifiers. The first condition was 



analogous to the first condition in the combined 
SA classification experiment. The second condi-
tion was slightly different. A concept sequence 
can be broken down into a set of individual con-
cepts. The set of individual concepts is much 
smaller than the set of concept sequences (110 
for English and 111 for German). Thus, we used 
a Rainbow word bigram classifier to compute the 
probability of each individual concept rather than 
the complete concept sequence. The probabilities 
for the individual concepts were added to the 
parse label features for the combined classifier. 
In both conditions, the performance of the com-
bined classifiers was roughly the same as the 
classifiers that used only parse labels as features. 

 
 English German 
TiMBL + words 56.48% 54.98% 
Table 11: Word+Parse DA classifier accuracy. 

 
Table 11 shows the average accuracy of DA 

classifiers for English and German using a setup 
similar to the first approach in the combined SA 
experiment. In this experiment, we added binary 
features for the 250 words that the highest mu-
tual information with the class. We used a 
TiMBL classifier with gain ratio feature weight-
ing and one neighbor. The improvement in accu-
racy for both languages was highly significant. 

 
 English German 
TiMBL SA 
+ TiMBL CS 

49.63% 46.50% 

TiMBL+Rainbow SA 
+ TiMBL CS 

57.74% 53.93% 

Table 12: DA accuracy of SA+CS classifiers. 
 

Finally, Table 12 shows the results from two 
tests to compare the performance of combining 
the best output of the SA and concept sequence 
classifiers with the performance of the complete 
DA classifiers. In the first test, we combined the 
output from the TiMBL SA and CS classifiers 
shown in Table 7 and Table 8. The performance 
of the combined SA+CS classifiers was almost 
identical to that of the TiMBL DA classifiers 
shown in Table 6. In the second test, we com-
bined our best SA classifier (TiMBL+Rainbow, 
shown in Table 10) with the TiMBL CS classi-
fier. In this case, we had mixed results. The per-
formance of the combined classifiers was better 
than our best DA classifier for English and worse 
for German. 

9 Discussion 

One of our main goals was to determine the fea-
sibility of automatically classifying domain ac-
tions. As the data in Table 4 show, DA 
classification is a challenging problem with ap-
proximately 1000 classes. Even when the task is 
divided into subproblems of identifying the SA 
and concept sequence, the subtasks remain diffi-
cult. The difficulty is compounded by relatively 
sparse training data with unevenly distributed 
classes. Although the most common classes in 
our training corpus had over 1000 training exam-
ples, many of the classes had only 1 or 2 exam-
ples. 

Despite these difficulties, our results indicate 
that domain action classification is feasible. For 
SA classification in particular we were able to 
achieve very strong performance. Although per-
formance on concept sequence and DA classifi-
cation is not as high, it is still quite strong, 
especially given that there are an order of magni-
tude more classes than in SA classification. 
Based on our experiments, it appears that all of 
the learning approaches we tested were able to 
cope with data sparseness at the level found in 
our data, with the possible exception of the naïve 
Bayes n-gram approach (Rainbow) for the con-
cept sequence task. 

One additional point worth noting is that there 
is evidence that domain action classification 
could be performed reasonably well using only 
word-based information. Although our best-
performing classifiers combined word and argu-
ment parse information, the naïve Bayes word 
bigram classifier (Rainbow) performed very well 
on the SA classification task. With additional 
data, the performance of the concept sequence 
and DA word bigram classifiers could be ex-
pected to improve. Cattoni et al. (2001) also ap-
ply statistical language models to DA 
classification. A word bigram model is trained 
for each DA, and the DA with the highest likeli-
hood is assigned to each SDU. Arguments are 
identified using recursive transition networks, 
and interlingua specification constraints are used 
to find the most likely valid interlingua represen-
tation. Although it is clear that argument infor-
mation is useful for the task, it appears that 
words alone can be used to achieve reasonable 
performance. 

Another goal of our experiments was to help 
in the selection of a machine learning approach 
to be used in our hybrid analyzer. Certainly one 
of the most important considerations is how well 



the learning approach performs the task. For SA 
classification, the combination of parse features 
and word bigram probabilities clearly gave the 
best performance. For concept sequence classifi-
cation, no learning approach clearly outper-
formed any other (with the exception that the 
naïve Bayes n-gram approach performed worse 
than other approaches). However, the perform-
ance of the classifiers is not the only considera-
tion to be made in selecting the classifier for our 
hybrid analyzer. 

Several additional factors are also important 
in selecting the particular machine learning ap-
proach to be used. One important attribute of the 
learning approach is the speed of both classifica-
tion and training. Since the classifiers are part of 
a translation system designed for use between 
two humans to facilitate (near) real-time com-
munication, the DA classifiers must classify in-
dividual utterances online very quickly. 
Furthermore, since humans must write and test 
the argument grammars, training and batch 
classification should be fast so that the grammar 
writers can update the grammars, retrain the clas-
sifiers, and test efficiently. 

The machine learning approach should also 
be able to easily accommodate both continuous 
and discrete features from a variety of sources. 
Possible sources for features include words 
and/or phrases in an utterance, the argument 
parse, the interlingua representation of the argu-
ments, and properties of the dialogue (e.g. 
speaker tag). The classifier should be able to eas-
ily combine features from any or all of these 
sources. 

Another desirable attribute for the machine 
learning approach is the ability to produce a 
ranked list of possible classes. Our interlingua 
specification defines how speech acts and con-
cepts are allowed to combine as well as how ar-
guments are licensed by the domain action. 
These constraints can be used to select an alter-
native DA if the best DA violates the specifica-
tion. 

Based on all of these considerations, the 
TiMBL+Rainbow classifier, which combines 
parse label features with word bigram probabili-
ties, seems like an excellent choice for speech act 
classification. It was the most accurate classifier 
that we tested. Furthermore, the main TiMBL 
classifier meets all of the requirements discussed 
above except the ability to produce a complete 
ranked list of the classes for each instance. How-
ever, such a list could be produced as a backup 
from the Rainbow probability features. Adding 

new features to the combined classifier would 
also be very easy because TiMBL was the pri-
mary classifier in the combination. Finally, since 
both TiMBL and Rainbow provide an online 
server mode for classifying single instances, in-
corporating the combined classifier into an 
online translation system would not be difficult. 
Since there were no significant differences in the 
performance of most of the concept sequence 
classifiers, this combined approach is probably 
also a good option for that task. 

10 Conclusion 

We have described a representation of 
speaker intention that includes domain independ-
ent speech acts as well as domain dependent do-
main actions. We have shown that domain 
actions are a useful level of abstraction for ma-
chine translation of task-oriented dialogue, and 
that, in spite of their domain specificity, they are 
scalable to larger domains and portable to new 
domains.  

We have also presented classifiers for domain 
actions that have been comparatively tested and 
used successfully in the NESPOLE speech-to-
speech translation system. We experimentally 
compared the effectiveness of several machine-
learning approaches for classification of domain 
actions, speech acts, and concept sequences on 
two input languages. Despite the difficulty of the 
classification tasks due to a large number of 
classes and relatively sparse data, the classifiers 
exhibited strong performance on all tasks. We 
also demonstrated how the combination of two 
learning approaches could be used to improve 
performance and overcome the weaknesses of 
the individual approaches. 
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