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Abstract 

In this paper, we describe a telephone dia-
log system for location-based services. In 
such systems, the effectiveness with which 
both the user can input location informa-
tion to the system and the system delivers 
location information to the user is critical. 
We describe strategies for both of these is-
sues in the context of a dialog system for 
real-time information about traffic, gas 
prices, and weather. The strategies em-
ployed by our system were evaluated 
through user studies and a system employ-
ing the best strategies was deployed. The 
system is evaluated through an analysis of 
700 calls over a two month period.  

1 Introduction 

The availability of online maps and mapping soft-
ware has led to a dramatic increase in location-
based services, such as route planning, navigation, 
and locating nearby businesses, e.g. (Gruenstein, et 
al., 2006). While much of the effort has been fo-
cused on bringing these applications and services 
to desktop computer users, there is a demand for 
these services to be available to mobile users. 

A significant portion of the mobile users will 
utilize these services from a vehicle while driving. 
The automotive environment is a particularly chal-
lenging, because operating a vehicle is a hands-
busy and eyes-busy task, making the use of touch 
screens or pointing devices potentially unsafe. In 
contrast, using of speech as both an input and out-
put modality is a natural and safe means of inter-
acting with information  (Tsimhoni, et al., 2004).  

In this paper, we present a telephone dialog sys-
tem called Commute UX (Commute User Experi-
ence) that provides location-based information to 
in-car commuters. The system provides informa-
tion about traffic, gas prices, and weather, based on 

real-time data obtained via web services. It was 
built as a telephone dialog system to enable any 
user with an ordinary cell phone to access these 
services without the need for a data plan or addi-
tional hardware or software installed in the car. An 
example dialog is shown in Figure 1.   

The most critical part of a dialog system for lo-
cation-based services is of course, how well the 
system understands locations spoken by the user.  
In the proposed system, the definition of location is 
varied by a context manager, based on the granu-
larity required for a particular task. For example, 
some tasks may require only knowing the user’s 
current city or neighborhood while others require 
the system to know the user’s precise location.  
The system engages with the user to obtain the re-
quired location information in the most efficient 
way. In addition, the system can be personalized to 
a particular user, so common locations or “personal 
points of interest” are known by the system. 

We have found that reliably conveying spoken 
locations to a user is equally important in dialog 
systems that provide location-sensitive information. 
We present a method for automatically converting 

S: Welcome to Commute UX. Would you like   
traffic, gas prices, or weather? 

U: I need the closest gas station in Redmond. 
S: In that case, I need you to tell me the 

intersection where you are. 
U: I’m on the corner of 148th and 35th. 
S: You are at the corner of 148th Avenue NE 

and NE 35th Street, right? 
U: Yes.  
S: The nearest gas station is at the corner 

of NE 24th Street and 148th Avenue NE.  
S: What else can I help you with? 
U: How’s the traffic to Seattle? 
S: I’ll get the traffic between Redmond and 

Seattle, right?  
U: Yes. 
S: The traffic between Redmond and Seattle, 

via SR-520, is … 
S: What else can I help you with? 
U: Nothing, thanks. 
S: Good-bye. 

Figure 1. An example dialog from Commute UX 
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addresses into more descriptive locations using 
intersections and landmarks, in a manner that more 
closely resembles the way in which humans con-
vey location to each other.  

The Commute UX system was deployed to a li-
mited group of real users and we evaluated the per-
formance of the system based on an analysis of 
approximately 700 calls made to the system over 
an eight-week period. In addition, users of the sys-
tem were surveyed in order to obtain a subjective 
evaluation. 

2 System architecture 

The architecture of Commute UX is depicted in 
Figure 2. In each turn, the system receives a voice 
input from the user, processes the input, and reacts 
to the user accordingly. Six functional modules are 
involved in this process: the speech recognizer, the 
semantic parser, the dialog manager, the context 
manager, the information retriever, and the re-
sponse manager.  

2.1 Speech recognizer 

The task of the speech recognizer is to convert the 
voice input into text, from which semantic infor-
mation will be extracted and processed. Its per-
formance directly affects the task completion rate 
and the user satisfaction. Note that the acoustic 
model used by the speech recognizer is usually 
independent of the task. However the language 
model (LM) is highly task-dependent and its qual-
ity usually determines the recognition accuracy of 
the speech recognizer. 

The design of the LM is both a science and an 
art, where a balance needs to be made between the 
accuracy of the keyword recognition and the flexi-
bility of the speaking style it can support. In our 
system, we have used a strategy that trains a statis-
tical LM from the slots (e.g., city name, road name, 
gas type) and information bearing phrases learned 
from sample queries (e.g.  “… the closest gas sta-
tion in <City> …”) and augments it with a filler 
word N-gram (Yu, et al., 2006) to model the insig-
nificant words. The filler part of the LM absorbs 
hesitations, by-talk, and other non-information 
bearing words unseen in the training sentences.  
The filler word N-gram is pruned from a generic 
dictation LM.  

 

2.2 Semantic parser 

Semantic parser extracts the semantic information 
from the recognized text output from the speech 
recognizer. Converting information into its seman-
tic representation has two benefits. First, semantic 
representation is more concise and consistent than 
the phrases. Using semantic representation greatly 
simplifies the subsequent processing in the later 
stages. Second, semantic representation is modality 
independent. By converting information into the 
same semantic representation, we make the rest of 
the system isolated from different input modalities. 
Adding new modalities thus becomes simple and 
cheap. 

Extracting semantic information, however, is not 
trivial, especially since the output from the speech 
recognizer contains errors and users may convey 
multiple semantics in one utterance. The semantic 
information extracted includes the task classifica-
tion, which is a generic call-routing problem, e.g. 
(Kuo, et al., 2002; Carpenter, et al., 1998), and 
task-specific semantic slots (e.g. origin city, desti-
nation city, time of day for weather forecast).  Slot 
labeling is performed using a Maximum Entropy 
classifier (Berger et al., 1996) trained from the 
same LM training sentences. 

2.3 Dialog manager 

The task of the dialog manager is to determine the 
appropriate actions to take, given the current dialog 
context and the newly extracted semantic informa-
tion. Note that both the speech recognizer and the 
semantic parser are not certain about their results. 
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Figure 2. System architecture of Commute UX 
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The confidence from them needs to be taken into 
consideration when decision is to be made. 

The dialog management is based on a two-level 
state machine in our system: the turn level and the 
dialog level. The turn level state machines are pre-
built configurable and reusable dialog components 
such as system-led dialog component and mixed 
initiative dialog component. These state machines 
define the basic behaviors of a turn. For example, 
what to do when the confidence is low, medium, 
and high, and what to do when silence or mumble 
is detected. The dialog level (inter-turn) state ma-
chine defines the flow and strategy of the top level 
dialog. For example, what to do if the system can-
not get what the user has said after trying twice. In 
our system, the top level state machine is designed 
so that it supports both free-form mixed initiative 
and strict system-led dialog. If the system cannot 
decipher some of the semantic slots in users’ free-
form utterances, the system will fall-back to the 
system-led dialog and guide the user step by step 
to achieve the user’s goal. The user can also yield 
to the system-led dialog from the very beginning. 

The dialog manager gets context information 
from the context manager and the information re-
quested by the user through the information re-
triever. The information and prompts are delivered 
to the user through the response manager. 

2.4 Context manager 

The context manager plays a key role in Commute 
UX. Contexts in our system include the user in-
formation (e.g., user registered places, user’s 
name, and past requests), the dialog history, and 
the semantic information confirmed so far. By 
maintaining current and accurate context informa-
tion, the context manager can resolve semantic 
conflicts and make the system synchronous to the 
user’s perceived state. 

One important task of the context manager is to 
update the LM and the semantic model based on 
the context. By choosing the context dependent 
LM and the semantic model, the system can great-
ly reduce the perplexity and achieve higher recog-
nition accuracy and lower number of turns. 

2.5 Information Retriever 

The information retriever provides an interface 
between the dialog manager and the backend in-
formation sources. In our system, the information 
is from three major sources: the relatively stable 

geographical database, which contains information 
such as cities, streets, intersections, and points of 
interest (POI); the rapidly changing real time in-
formation such as gas prices, traffic conditions, 
and weather conditions; and the user’s registered 
information such as telephone numbers and per-
sonal points of interest (see Section 3.2).  

2.6 Response Manager 

The response manager presents information to the 
user or prompts the user for additional information. 
In our current system, the only presentation modal-
ity is voice and so the task of the response manager 
is to utilize the prompt database, synthesize the 
best audio output, and present the audio to the user. 
The system employs several strategies to decide 
the best manner in which to speak information to 
the user, as will be discussed in Section 4.  

3 Understanding locations from the user 

The crux of any dialog system focused on location-
based services, such as Commute UX, is to reliably 
understand the locations spoken by the user. How-
ever, the notion of location and the required granu-
larity of location can vary significantly based on 
the task. For example, for traffic or weather appli-
cations, a broad definition of location, such as 
neighborhood, city, or zip code, can be adequate, 
e.g. “How’s the traffic between Seattle and Belle-
vue”. However, for other tasks such as finding the 
nearest gas station, or route planning, the user 
needs to convey a precise location to the system. 
Finally, there is another distinction between per-
sonal locations that can vary based on the user, e.g. 
home and work, and geographic entities that have 
standard names and meanings.  

3.1 Recognizing: from regions to points 

In order to perform recognition of locations, a geo-
graphic database is crawled and the relevant in-
formation, such as the entity name, entity type and 
geolocation (latitude/longitude) or bounding box, 
is stored in a relational database. The database 
structure enables us to hierarchically categorize 
locations in a given state: zip codes contain cities, 
cities contain neighborhoods and points of interest, 
etc. All of these entities are valid locations in the 
application and are thus added to the grammar.  

When the user makes a query, the parser proc-
esses the recognized text and isolates any locations 
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in the spoken utterance. These locations are then 
passed to the back-end database to find the location 
data for that entity. The database is searched from 
most specific location (personal point of interest) 
to the most general (city or zip code) in order to 
determine the user’s intended location.  

In some cases, the task itself dictates the scope 
of the location grammar. For example, traffic in-
formation is only available on major highways, and 
not local roads. Because we cannot provide a user 
with traffic information on local roads, a traffic 
query does not require the same precision in origin 
and destination as a task such as route planning. As 
a result, we simplify the task and allow users to 
make traffic queries only on the roads themselves 
(“How’s the traffic on I-5 north?”), or between 
cities, neighborhoods, or personal points of interest 
(“How’s the traffic between Bellevue and Seat-
tle?”). This enables the dialog to be much more 
concise (the user does not have to convey two ex-
act addresses) and because the grammar is more 
constrained, the accuracy is higher.  

There are cases where the user’s query can lead 
to ambiguities. For example, suppose the user asks 
for the traffic between two cities, and there are two 
common routes between the origin and destination. 
Our system will choose the most common route, 
and attempt to resolve the ambiguity by informing 
the user of the route it has chosen: 
U: How’s the traffic between Bellevue and 

Seattle? 
S: The traffic between Bellevue and Seat-

tle, via I-90 is light, with an aver-
age speed of … 

In this case, the system informed the user that traf-
fic information provided was for the route taking  
Interstate 90. The user, who presumably knows 
both routes, can then query for the other route, by 
asking, “How about via 520?” The context man-
ager maintains the origin and destination cities 
from the previous query and adds Highway 520 as 
a road to be included in the route between Bellevue 
and Seattle. The routing engine will then determine 
the route between these two cities that takes this 
highway, and then the corresponding traffic infor-
mation can be retrieved and delivered to the user.  

There are many instances where the user needs 
to convey an exact location to the system, not sim-
ply a city or neighborhood region. For example, if 
the user needs to find the closest gas station, or 
would like directions between two places. The 

most obvious way to convey an exact location is 
using an address. However, users often do not 
know a valid address for their current location, es-
pecially while they are driving. Even if an address 
were known, recognition errors make the use of 
addresses inefficient in conveying location. This 
was confirmed in (Venkataraman et al., 2003), 
where an iterative multi-pass approach using a 
class-based language model was proposed to im-
prove the recognition of spoken addresses. The 
difficulty is even more apparent when one consid-
ers that state-of-the-art recognition accuracy for a 
five digit number in noise conditions that are real-
istic for mobile scenarios is about 90%. This 
means that one out of ten house numbers or zip 
codes will be misrecognized.  

In (Seltzer et al., 2007), we proposed the use of 
intersections as a convenient and reliable means of 
conveying location. While the use of intersections 
alleviates some of problems found in address rec-
ognition, it is still a challenging problem. For ex-
ample, there are over 3500 unique street names, 
and over 20,000 intersections in the city of Seattle. 
In addition, streets and intersections are highly 
acoustically confusable and often spoken infor-
mally, with incomplete specifications.  For exam-
ple a user might say “the corner of Third and Den-
ny” rather than “the corner of Northeast Third 
Avenue and Denny Way”. 

To reliably recognize intersections, we employ 
an information retrieval approach. We construct a 
database of streets and intersections in a particular 
city. The intersections are treated as documents in 
a database, and phonetic-level features are derived 
from the word stings comprising these “docu-
ments”. When the user utters an intersection, the 
recognized text is parsed into two street names and 
the phonetic level features are extracted each street 
name. Intersection classification is then performed 
using a vector space model with TF-IDF features. 
This approach allows the system to reliably recog-
nize intersections in the presence of recognition 
errors and incomplete street names. Details about 
this method and an evaluation of its performance 
can be found in (Seltzer et al., 2007).  

3.2 Personal Points of Interest as Locations 

One key feature of the Commute UX system is 
an optional website registration for users. Users 
can create an account where they provide their 
phone number and specify any number of personal 
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points of interest (PPOI). These PPOI are specified 
by a friendly name (e.g. “Jane’s school”), an op-
tional formal name (e.g. “Washington Middle 
School”), and an address. A back-end web service 
converts this address to a geolocation and this in-
formation is stored in the database. By default, the 
user is prompted to register home and work as per-
sonal locations. Users can then add additional 
PPOI. Each time a user changes some PPOI, the 
database is updated and the recognition grammars 
are regenerated to reflect the current list of unique 
PPOI friendly names and formal names. When a 
user calls the system, caller ID is performed as 
grammar entries corresponding to that user’s PPOI 
are activated. The caller’s phone number and the 
recognized PPOI are then used to retrieve the cor-
responding location form the database.   

After a limited internal deployment, we have 
276 registered users who created a total of 625 
PPOI, but only 97 unique PPOI friendly names in 
the grammar. The three most popular PPOI were 
“home”, “work”, and “gym”.  

The presence of PPOI also enables the system to 
assume some default behaviors. For example, if a 
registered user calls the system during common 
commuting times, the system will automatically 
fill the semantic slots with the home and work lo-
cations of that user and asks if the user would like  
the traffic information from home to work (or vice 
versa).   

4 Rendering spoken locations to the user 

The ability for the user to understand and remem-
ber the locations spoken by the system is as impor-
tant as the system’s ability to understand the loca-
tions input by the user. Conveying locations to us-
ers in spoken dialog systems is problematic for 
several reasons. First, depending on the quality of 
the TTS voice, understanding a spoken location 
can be quite difficult, even in optimal conditions. 
In a vehicle, the environmental noise can make 
intelligibility even harder. The situation is exacer-
bated by the high cognitive load required by driv-
ing, so the user cannot fully focus on the system’s 
output speech. In addition, because the user’s 
hands and eyes are typically busy, s/he cannot 
write down the location as the system speaks it, 
and therefore must try to remember the location as 
closely as possible.  

4.1 Automatically rendering locations using 
intersections and landmarks 

To enable users to more easily understand loca-
tions, spoken by the system, we modeled the sys-
tem’s output on the manner in which humans con-
vey locations to each other. For example, a user 
calling a business to ask its location will often be 
told by the clerk, “We’re on the corner of 40th and 
148th,” rather than “We’re located at 14803 40th 
Street.” Similarly, humans will often use land-
marks, such as “We’re on Main Street near the 
Shell Station” or “We’re on the corner of Fifth and 
Mercer, near the Space Needle. 

To create a similar capability in our system, we 
crawled a geographic database containing all 
streets and intersections along with their lati-
tude/longitude coordinates in a particular city. In 
addition, we also crawled a database of points of 
interest (POI), also labeled with their geographic 
coordinates. These points of interest included a 
variety of entities, such as schools, libraries, parks, 
and government buildings. The information about 
streets, intersections and POI was stored in a data-
base. 

Using this information, locations that we want to 
convey to users, for example the location of a gas 
stations, are processed as follows. The address of 
the entity is converted to geographic coordinates. 
Using these coordinates, the intersections database 
is queried to find all intersections within 0.05 miles 
(approximately half a block). If multiple intersec-
tions are returned, they are ranked according to an 
intersection importance metric, defined as the sum 
of the total number of other intersections of which 
each constituent street in the given intersection is a 
member. The top ranked intersection is selected. 
Following the intersection search, the POI database 
is queried to identify any POI within 0.1 miles (one 
block) from the entity of interest.  

After this process, each location we can return to 
the user is represented by its original address, as 
well as the nearest intersection and/or landmark, if 
either was found. For those locations that do have a 
nearby intersection and landmark, we have various 
ways to present the location to the user summa-
rized in Table 1.  

4.2 User preferences for spoken locations 

We performed a user study to determine which of 
these four methods of rendering an address was 
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preferred by users of a spoken dialog system. Us-
ers of the study ran a program on their desktop 
PCs. Each trial of the study was as follows. The 
system randomly selected an address from our da-
tabase of gas station locations. This location was 
rendered in one of the four styles described in the 
previous section. The user listened to a TTS engine 
speak the location. Once the location was spoken, 
the user was asked to type in as much of location 
as they could remember. The user could not start 
typing until the TTS output was complete. The sys-
tem then randomly chose another address from the 
database, and rendered it in a style randomly se-
lected from other the three remaining methods. The 
user again listened to the TTS engine speak the 
location and had to type in as much of the location 
as they could remember. After the user completed 
these two locations spoken in different ways, s/he 
was asked which, if any, of the two styles was pre-
ferred. This completed a single trial of the study. 
Each user performed a minimum of three trials.  

Preferences for location rendering were evalu-
ated based on 40 users who completed a total of 
133 trials. The users’ data was hand-scored and 
analyzed in terms of accuracy and user preference. 
Users’ ability to accurately remember spoken loca-
tions in these different styles was scored as fol-
lows. Addresses and intersections both contain two 
critical elements (the number and the street name 
in the former, the two street names in the latter). 
For locations spoken as addresses or intersections, 
each element the user correctly identified (within a 
tolerance of 0.1 miles) is given 0.5 points. Correct 
recognition of both elements therefore received 1 
point. Correct recognition of a spoken POI re-
ceived 1 point regardless of whether the other ele-
ments are correct. Thus, each address transcribed 
by the user was scored from zero to one in the fol-
lowing way: 

 1 2max ,
2 2 POI
r rr r⎛ ⎞= +⎜ ⎟

⎝ ⎠
 (1) 

where 1r , 2r  and POIr  are either 0 or 1 and are the 
recognition of the first element, second element, 
and POI.  

The averaged recognition results for each one of 
the four address representations are shown in Ta-
ble 2. While the first three representations have 
approximately the same recognition rate, it is sub-
stantially lower for “Intersection & POI”. This rep-
resentation was typically the longest and is there-
fore the most difficult to remember.  

The user preferences are evaluated as follow.  
For each trial, the preferred representation receives 
one point. If the user had no preference between 
the two styles, both are assigned 0.5 points. The 
final score is weighted with the recognition rate – 
we weight more these preferences which are prop-
erly recognized: 
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 where ( )k
ip  is the preference score of the i-th ses-

sion, where the address is represented in k-th way; 
( )k

ir  is the recognition result for the same session, 
computed by equation (1). Both the non-weighted 
and weighted average preference scores are shown 
in Figure 3. Rendering a spoken location using the 
intersection is clearly preferred, followed closely 
by the combination of intersection and POI. Be-
cause the combination of intersection & POI re-
sulted in the lowest recognition accuracy, we set 
the system to refer to locations using the nearest 
intersection whenever possible. In feedback solic-
ited from the users after this study, several partici-
pants stated that POI helped only when they were 
familiar with the area. Otherwise, it was not help-
ful and added confusion. This indicates that loca-
tion-based services targeting commuters and resi-
dents may want to use POI in describing locations 

Question type Number  Sum Accuracy (%)
 Address only 67 57.5 85.82 
 Address & POI 65 53.5 82.31 
 Intersection only 65 54.0 83.08 
 Intersection & POI 69 47.7 69.13 

Table 2. Recognition rate for various address  
representations. 

Address only 14803 Northeast 51st Street 
Address & POI 251 Rainier Avenue North, near 

Renton Chamber of Commerce 
Intersection only The corner of East Madison Street 

and 17th Avenue 
Intersection & POI The corner of NE Woodinville Road 

and 131st Avenue, near City Hall 
Table 1. Address representations in Commute UX 
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to users, while those targeting tourists or business 
travelers should not.  

5 Initial Deployment and Evaluation 

The initial version of the Commute UX dialog sys-
tem can process requests for information about 
traffic, cheapest and nearest gas stations, and 
weather in Washington State. The system was 
demonstrated to approximately 800 Microsoft em-
ployees in Redmond, WA campus at the beginning 
of March, 2007. It was made available to all Mi-
crosoft employees but no additional effort was 
made to actively recruit users. The results pre-
sented in this paper are based on an eight week 
period between March 12, 2007 and May 6, 2007. 
During this time, a total of 276 users enrolled at 
the Commute UX website, specifying a phone 
number and PPOI.  

5.1 Analysis of calls 

The system received 698 calls during this time 
period, or 12.5 calls per day. Of these calls, 62.2% 
were from registered users, while 37.8% were from 
non-registered users. There were calls from 214 
unique phone numbers, of which 55% were regis-
tered users. This translates to approximately 3.3 
calls per user. However, the distribution of calls 
per user is not uniform, a 40 users accounted for 
50% of the calls during this time period. 

From these calls, there were total of 927 tasks 
that users tried to perform. A task is defined as the 
user’s attempt to obtain a piece of information 
from the system. In our system, the possible tasks 
are obtaining a traffic report, the location of the 
cheapest or nearest gas station, or a weather report. 
The traffic is the most frequently called with 55% 
of all queries, followed by the gas prices with 27%, 
and weather with 17%.  

Table 3 shows the average number of turns for 
each of the three tasks and across all tasks. The 

results are shown for all users as well as for regis-
tered and non-registered users alone. Non-
registered users use 0.7 more turns than registered 
users. The only difference between registered and 
non-registered users from the system’s point of 
view is the presence of PPOI. We believe that the 
use of PPOI enables users to obtain the information 
they want efficiently with fewer dialog turns.  

This theory is further validated when we exam-
ined the task completion rate. Figure 4 shows the 
task completion rates for the various tasks as a 
function of all users, registered and non-registered 
users. Overall, there is a 65.6% task completion 
rate. It is interesting to note, however, that regis-
tered users obtain a consistent task completion rate 
of about 70% across all tasks, while the task com-
pletion rate of non-registered users varies dramati-
cally from 48% for the traffic task to 64% for the 
weather task. The traffic application is the only 
application that requires multiple locations: both an 
origin and destination. Coincidentally, traffic is 
also the application that is most likely to use PPOI 
as many users query the system for traffic informa-
tion during their commutes between home and 
work. For calls made during these times, the regis-
tered users have only to confirm that they would 
like the traffic report between home and work, 
while non-registered users have to convey two lo-
cations to the system for the same request. Thus, 
the use of PPOI results in fewer turns in the dialog, 
and leads to a significantly higher task-completion 
rate for registered users.  

5.2 User evaluation 

To obtain a more subjective evaluation of the 
Commute UX system, we sent out a web-based 
survey to users of Commute UX who had made at 
least one call to the system and those who partici-
pated in the user study discussed in Section 4.2, 
whether they were registered or not. From this so-
licitation, we received 23 responses.  

The survey asked the users to state their level of 
agreement to a series of statements, using a five-
step scale that ranged from Strongly Agree to 

Task Type All Registered Non-registered
Traffic 3.56 3.33 4.08 

Gas Prices 3.73 3.54 4.14 
Weather 3.80 3.61 4.41 

Total 3.65 3.44 4.14 
Table 3. Averaged number of turns per task type. 0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Non-weighted Weighted

Address only

Addres & POI

Intersection only

Intersection & POI

 
Figure 3. User preferences for address conveying. 
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Strongly Disagree. The questions and the re- 
sponses are shown in Figure 5. As the results show, 
a majority of the respondents find the system use-
ful and believe the system understands their speech. 
It is interesting to note that most users believe they 
are speaking in a natural manner, yet a similar 
number claim to only answer the questions the sys-
tem asks. This contradicts our usual notion that 
system initiated dialog is not perceived as natural.  

 The other interesting conclusions from this data 
concern personalization. We note that several peo-
ple use PPOI but most do not use PPOI other than 
the default “home” or “work” locations. Finally, 
we note that there are a significant number of users 
that always ask for the same information from the 
system. This indicates that there is a large opportu-
nity for further improvement in task completion 
with additional personalization and user-specific 
grammar adaptation in this domain.  

6 Discussion 

In this paper, we presented a telephone dialog 
system for location-based services. It utilizes sev-
eral key technologies for both recognizing and 
rendering spoken locations. We performed a user 
study to evaluate the users’ response to various 
ways of describing a spoken location in terms of 
addresses, intersections, or points of interest, and 
designed our system to operate in the manner that 
both provided the best accuracy and was most pre-
ferred by users. The system also enables users to 
improve their experience with personal points of 
interest. The use of these personal locations re-
sulted in dialogs with a higher task completion rate 
and fewer turns per task. A subjective user evalua-
tion of the system revealed that most users had a 
positive experience with the system, but that there 
were opportunities for additional improvement 
through further personalization and user adaptation. 
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Figure 5. User survey results. 
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Figure 4. Completion ratio (%) per task.
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