
Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, pages 223–226,
Antwerp, September 2007.c©2007 Association for Computational Linguistics

Rapid Development of Dialogue Systems by Grammar Compilation∗

Björn Bringert
Department of Computer Science and Engineering

Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
bringert@cs.chalmers.se

Abstract

We propose a method for rapid develop-
ment of dialogue systems where a Gram-
matical Framework (GF) grammar is com-
piled into a complete VoiceXML applica-
tion. This makes dialogue systems easy
to develop, maintain, localize, and port to
other platforms, and can improve the lin-
guistic quality of generated system output.
We have developed compilers which pro-
duce VoiceXML dialogue managers and EC-
MAScript linearization code from GF gram-
mars. Along with the existing GF speech
recognition grammar compiler, this makes
it possible to produce a complete mixed-
initiative information-seeking dialogue sys-
tem from a single GF grammar.

1 Introduction

In current industrial practice, dialogue systems are
often constructed using VoiceXML for dialogue
management, context-free speech recognition gram-
mars for input, with semantic tags for interpreta-
tion, and concatenation of canned text and output
data for system responses. Developing several com-
ponents which all need to cover the same concepts
increases development costs. Having multiple in-
terdependent components in formalisms with few
automatic correctness and consistency checks also
complicates maintenance, since any change in the
coverage of one component may require changes in

∗This work has been partly funded by the EU TALK
project, IST-507802, and Library-Based Grammar Engineering,
Swedish Research Council project dnr 2005-4211.

the others. Since all the components are language-
specific, much effort is needed to port the system to
a new language, and to keep the implementations for
different languages in sync. The lack of a powerful
method for output realization makes it hard to gen-
erate high-quality output, especially for languages
with a more complex morphology than English.

We address these problems by specifying the sys-
tem in a single high-level formalism, which is then
compiled into the existing lower-level formalisms.
The developer writes a GF abstract syntax module
which defines the user input and system output se-
mantics, and a concrete syntax module which de-
scribes how each construct in the semantics is rep-
resented in natural language. The GF grammar is
then compiled to a complete VoiceXML applica-
tion. The dialogue flow is determined by the ab-
stract syntax (ontology) of the grammar. This is
based on the idea by Ranta and Cooper (2004) that
a proof editor for constructive type theory can be
used to implement the information gathering phase
of information-seeking dialogue systems.

In contrast to earlier rapid dialogue system devel-
opment approaches, such as CSLU’s RAD (McTear,
1999) and the GEMINI AGP (Hamerich et al.,
2004), we use a compiler-like model instead of a
graphical design environment. In addition, our de-
velopment model is focused on the specification and
realization of the inputs and outputs of the system,
rather than on the dialogue flow or the underlying
database. Compared to existing dialogue systems
built with GF (Ericsson et al., 2006), our approach
does not require an external dialogue manager.

223

2 Grammatical Framework

Grammatical Framework (GF) (Ranta, 2004) is a
grammar formalism based on constructive type the-
ory. GF separates grammar into abstract syntax and
concrete syntax.

2.1 Abstract Syntax

The abstract syntax defines the ontology of the ap-
plication, that is, what can be said. An abstract syn-
tax contains category (cat) and function (fun) defini-
tions. This is an example of a small abstract syntax:

cat Order;Size;
fun pizza :Size→ Order;small :Size;

This allows us to construct an abstract syntax term
pizza small of type Order. In addition to functions,
abstract syntax terms can also contain metavari-
ables, written ?. For example, the term pizza? con-
tains a metavariable of type Size.

2.2 Concrete Syntax

A concrete syntax defines how each abstract syntax
construct is realized in a particular language. From a
concrete syntax, the GF system can derive both pars-
ing and realization components. A concrete syntax
contains linearization type (lincat) and linearization
(lin) definitions. The linearization type of a category
is the type of the concrete syntax terms produced for
abstract syntax terms in the given category. A lin-
earization definition is a function from the lineariza-
tions of the arguments of an abstract syntax term to
a concrete syntax term. Terms in concrete syntax
can be records, strings, tables, and parameters. This
is an example of a concrete syntax for the abstract
syntax above:

lincat Order,Size = {s :Str};
lin pizza x = {s = “a”++ x.s++ “pizza”};

small = {s = “small”};

3 An Example Dialogue System

This section shows a GF grammar from which a
complete dialogue system (excluding the domain re-
sources) can be derived automatically. For reasons
of brevity, this system is very small. An extended
version of this system is available online1.

1http://www.cs.chalmers.se/∼bringert/xv/pizza/

3.1 Abstract Syntax

The abstract syntax in Figure 1 describes the possi-
ble things that the user can say, in a semantic form.
There is one category for each kind of input. In this
application, the main input object is an Order. A
order can in this small example only be for a num-
ber of pizzas, all of the same size and with the same
topping. A number is “one” or “two”, the sizes are
“small” and “large”, and the toppings are “ham” and
“cheese”. An example abstract syntax term in the
Order category is: pizza two small cheese.

abstract Pizza = {
flags startcat = Order;
cat Order;Number;Size;Topping;
fun pizza :Number→ Size→ Topping→ Order;

one, two :Number;
small, large :Size;
cheese,ham :Topping;

}

Figure 1: Abstract syntax for the example system.

3.2 Concrete Syntax

The concrete syntax in Figure 2 defines how the
terms in the abstract syntax are realized (and in-
versely, how concrete syntax terms can be inter-
preted as representations of abstract syntax terms).
For example, the linearization type of Topping is
{s :Str}, that is, a record with a single field s which
contains a string. The linearization for cheese is the
concrete syntax term {s = “cheese”}.

The linearization type of Number contains a field
n, which is used for agreement. The type of n is
Num, defined by a param definition to be either Sg
or Pl. In the linearization of pizza, the n field of the
Number is used to inflect the noun “pizza”.

An important feature of this grammar is that it al-
lows partially specified input. While the utterance
“two small pizzas with cheese” results in the abstract
syntax term pizza two small cheese, the partial ver-
sions “two pizzas with cheese” (pizza two ? cheese),
“two small pizzas” (pizza two small?), and “two piz-
zas” (pizza two ? ?) are also allowed. The intention
is that the system will ask follow-up questions to re-
place all metavariables with complete terms. This
process is type-directed: the system asks for a sub-
term of the appropriate type. Partial input, imple-

224

concrete PizzaEng of Pizza = {
lincat Number = {s :Str;n :Num};

Order,Size,Topping = {s :Str};
param Num = Sg | Pl;
printname cat

Order = “What would you like to order?”;
Size = “What size pizzas do you want?”;
Topping = “What topping do you want?”;

lin pizza n s ts = {s =
n.s++variants{s.s; []}++pizza N.s ! n.n
++variants{“with”++ ts.s; []}};

one = {s = “one”; n = Sg};
two = {s = “two”;n = Pl};
small = {s = “small”};
large = {s = “large”};
cheese = {s = “cheese”};
ham = {s = “ham”};

oper pizza N = {s = table{Sg⇒ “pizza”;
Pl ⇒ “pizzas”}};

}

Figure 2: Concrete syntax for the example system.

mented with suppression, is thus used to achieve a
mixed-initiative dialogue.

The printname definitions are used as prompts
for each category.

3.3 Example Dialogues

The system generated from the grammar in the pre-
vious section allows dialogues such as the examples
below. After each system action we show the in-
formation state, i.e. the current state of the abstract
syntax term that we are constructing.

S: What would you like to order?
U: two pizzas
pizza two ? ?
S: What size pizzas do you want?
U: small
pizza two small?
S: What topping do you want?
U: ham
pizza two small ham

Here, more information is given in the first answer:
S: What would you like to order?
U: two pizzas with ham
pizza two ? ham

S: What size pizzas do you want?
U: small
pizza two small ham

3.4 Extending the Example System

Recursive structures One possible extension to
the example system is to use a recursive structure
to allow more complex orders:

cat Order; Item; [Item];
fun order : [Item]→ Order;

pizza :Number→ Size→ Topping→ Item;
printname cat [Item] = “Anything else?”;
lin order is = {s = is.s};

ConsItem x xs =
{s = x.s++variants{“and”++ xs.s; []}};

BaseItem = {s = “nothing”++ “else”};

While this can be done with subdialogues and script-
ing in VoiceXML (by essentially writing by hand the
code that we generate), it appears to be beyond the
scope of standard practice. If we also add drinks as a
kind of Item, the system will support dialogues such
as this one:

S: What would you like to order?
U: one large pizza
order [pizza one large?, ?]
S: What topping would you like?
U: cheese
order [pizza one large cheese, ?]
S: Anything else?
U: one beer
order [pizza one large cheese,drink one beer, ?]
S: Anything else?
U: nothing else
order [pizza one large cheese,drink one beer]

System output At the end of the dialogue, we
would like the system to give a response based on
the output of some domain resource. For example,
the pizza ordering system might return the price of
the order. This could be used to construct a confir-
mation using an addition to the grammar:

cat Output;
fun confirm :Order→ Number→ Output;
lin confirm o p =
{s = o.s++ “costs”++p.s++ “euros”}

225

Multilinguality To port a dialogue system to a
new language, all that needs to be done is to write
a new concrete syntax. For many languages, writing
speech recognition grammars and realization func-
tions is more complicated than for English. For ex-
ample, Swedish adjectives agree with the gender and
number of the noun they modify. GF’s expressive
concrete syntax makes it possible to implement such
features with little effort, and if the GF Resource
Grammar Library is used, it is as easy to write the
Swedish grammar as the English.

Multimodality GF can be used to write multi-
modal grammars (Bringert et al., 2005). The ex-
tended online version of the example system uses
a concrete syntax which linearizes pizza and drink
orders to vector drawings to display graphical repre-
sentations of the completed orders.

4 Implementation

The concrete syntax is compiled (Bringert, 2007) to
an SRGS speech recognition grammar, with SISR
semantic interpretation tags. This grammar has one
category for each GF category.

The abstract syntax and the prompts from the con-
crete syntax are compiled to a VoiceXML applica-
tion with one form for each GF category. Each such
form takes an argument, which the caller sets to the
currently known abstract syntax term. If the given
term is a metavariable, input is requested in the ap-
propriate speech recognition grammar category. For
each subterm of the abstract syntax term returned
by the semantic interpretation, a subdialogue call is
made to the corresponding VoiceXML form.

The concrete syntax is also compiled to an EC-
MAScript program which can be used to linearize
system outputs.

5 Future Work

Currently, the dialogue model is quite limited. For
real-world use, more flexible dialogue management
would be needed. The Trindi tick list (Bohlin et
al., 1999) could be used to guide such work. Other
possibilities could include support for dependently
typed abstract syntax (Ranta and Cooper, 2004), a
help system with automatically generated examples
for each category, and context-sensitive prompt gen-
eration.

6 Conclusions

We have shown that GF grammars can be used to
implement mixed-initiative information-seeking di-
alogue systems. From the declarative and linguisti-
cally powerful specification that a GF grammar is,
we generate the interconnected components needed
to run dialogue systems using industry standard in-
frastructure. Hopefully, this method can reduce
the development and maintenance costs for dialogue
systems, and at the same time improve their linguis-
tic quality. The methods described in this paper are
implemented as part of the open source GF system2.

References
Peter Bohlin, Johan Bos, Staffan Larsson, Ian Lewin,

Colin Matheson, and David Milward. 1999. Survey
of Existing Interactive Systems. D 1.3, TRINDI.

Björn Bringert, Robin Cooper, Peter Ljunglöf, and Aarne
Ranta. 2005. Multimodal Dialogue System Gram-
mars. In Proceedings of DIALOR’05, Ninth Workshop
on the Semantics and Pragmatics of Dialogue.

Björn Bringert. 2007. Speech Recognition Grammar
Compilation in Grammatical Framework. In Proceed-
ings of the Workshop on Grammar-Based Approaches
to Spoken Language Processing.

Stina Ericsson, Gabriel Amores, Björn Bringert, Håkan
Burden, Ann-Charlotte Forslund, David Hjelm, Re-
becca Jonson, Staffan Larsson, Peter Ljunglöf, Pi-
lar Manchón, David Milward, Guillermo Pérez, and
Mikael Sandin. 2006. Software illustrating a unified
approach to multimodality and multilinguality in the
in-home domain. D 1.6, TALK.

Stefan Hamerich, Volker Schubert, Volker Schless, Ri-
cardo de Córdoba, José M. Pardo, Luis F. d’Haro,
Basilis Kladis, Otilia Kocsis, and Stefan Igel. 2004.
Semi-Automatic Generation of Dialogue Applications
in the GEMINI Project. In Proceedings of the 5th SIG-
dial Workshop on Discourse and Dialogue.

Michael F. McTear. 1999. Software to support research
and development of spoken dialogue systems. In Pro-
ceedings of Eurospeech’99.

Aarne Ranta and Robin Cooper. 2004. Dialogue Sys-
tems as Proof Editors. Journal of Logic, Language
and Information, 13(2):225–240.

Aarne Ranta. 2004. Grammatical Framework: A Type-
Theoretical Grammar Formalism. Journal of Func-
tional Programming, 14(2):145–189.

2See http://www.cs.chalmers.se/∼aarne/GF/

226

