
Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, pages 235–238,
Antwerp, September 2007.c©2007 Association for Computational Linguistics

ScIML: Model-based Design of Voice User Interfaces

Jörn Kreutel
University of Potsdam,

Applied Computational Linguistics Lab
kreutel@ling.uni-potsdam.de

Abstract

We will introduce ScIML, a domain specific
language for voice user interface (VUI) cre-
ation that is based on the generic expressive
means of the Unified Modelling Language.
In particular, we employ UML statecharts
for interaction flow modelling.

1 Introduction

In the course of the last decade and beyond, signif-
icant research has been carried out in the field of
dialogue management, in general, and spoken dia-
logue systems, in particular (see, e.g., (Traum, 1996;
Seneff et al., 1998; Larsson et al., 1999; Bohus and
Rudnicky, 2003). On the other hand, available ap-
proaches and technology for developing commercial
dialogue systems – which we will term as Voice User
Interfaces (VUIs) throughout this paper – have so far
not advanced beyond the simple form-filling mecha-
nism underlying VoiceXML (Oshry, 2004). The lat-
ter, at the same time, exhibits a severe lack of modu-
larisation as far as a separation of concerns between
dialogue management, on the one hand, and prompt
and grammar creation, on the other, is concerned.

Missing transformation achievements between re-
search and the ‘voice industry’ may partially be due
to the fact that the latter strongly requires a visual
representation format for VUIs that makes transpar-
ent the functionality of a VUI to all stakeholders in
a project, be it technical or business staff. In addi-
tion, industry projects require that any aspect of a
VUI, in particular its interaction flow, be principally
subject to particular design decisions, i.e. it needs to

be hand-craftable. Both requirements, however, are
outside the primary scope of research on dialogue
management. In fact, the concept of a generic di-
alogue management component which implements
a range of domain independent interaction routines
may even be seen as marking a contrary position, as
long as its functionality is not foreseen to be at least
overridable by domain specific implementations.

Given these findings, this paper will outline the
basic ideas underlying the Scene based Interaction
Modelling Language (ScIML),1 which approaches
the issue of voice user interface creation from the
perspective of model based user interface design.
The expressive means of ScIML are a range of VUI-
specific concepts that are formalised as extensions of
the UML meta model (Group, 2004), whose visuali-
sations are well established within the IT industry. In
particular, ScIML employs UML statecharts (Harel,
1987) for dialogue management purposes, i.e. it re-
lies on a generic formalism for describing the be-
haviour of complex event-driven systems.

Methodologically, ScIML adheres to an ac-
count of user interface modelling that is known as
OO&HCI (Object Oriented Modelling and Human
Computer Interaction). It conceives of UI design as
involving a range of different interrelated modelling
activities. ScIML adopts this approach and supports
the respective activities through appropriate expres-
sive means which exploit the current state of the art
in dialogue systems research. In particular it em-
ploys the two basic concepts of dialogue acts (Poe-
sio and Traum, 1998; Bunt and Girard, 2005) and of

1The ScIML notion of scene is based on proposals for GUI
modelling in (de Paula, 2002).

235



2

Figure 1: Integrated representation format for ScIML, depict-
ing, main and event workflows, topicality relations, non-local
response spaces and move formation

grounding (Clark and Brennan, 1991; Matheson et
al., 2000).

2 ScIML Modelling Activities and
Artefacts

ScIML VUI Referent Models provide, for each ac-
tivity of an underlying Task Model2, a structured
description of the entities that are addressed by the
VUI and/or the user in the course of the realisation
of that activity. Referent models, hence, specify the
potential topics of conversation for some VUI. The
ScIML meta model assumes three abstract referent
types: activity, entity and event, which are concre-
tised as domain activity and VUI activity, domain en-
tity and VUI entity and domain event and VUI event,
respectively. Examples for the latter are, e.g., fail-
ures of speech recognition or missing inputs on the
part of the user.

Over the set of referents of a ScIML referent
model, we further assume the relations of occur-
rence between events and activities, and the one of
involvement that specifies associations between en-
tities, on the one hand, and activities or events, on
the other, as well as between two activities. We
further assume that entities may be complex, which
is reflected by a constituency relation between en-

2ScIML Task Models describe, at a coarse-grained level, the
activities that are actually or supposedly – from a user’s per-
spective – supported by the VUI. Activities may be either do-
main activities or VUI activities, and are structured in the sense
that some activity may involve the realisation of a range of sub-
activities.

tity referents. Activities and events, on their part,
will be considered as complex referents by nature.
Methodologically, these relations serve as a starting
point for referent identification on the basis of a task
model. Assuming that each activity of the latter cor-
responds to an activity referent in the referent model,
it is possible to determine both the entities that are
involved in some activity and the events that may
occur in it.

For authoring a VUI referent model, we use UML
class diagrams whose classes and associations are
profiled on the basis of the assumed referent types
and relations between them.

ScIML Interaction Structure Models define the
topical structure of interactions over some given
VUI referent model. For this purpose, an interac-
tion structure model identifies, first of all, a set of
scenes which can be conceived of as topically co-
herent contexts that span over sequences of moves
by the user and the VUI. Moves, on their part, are
modelled as sets of dialogue acts.3 Both for scenes
and for dialogue acts, the referents that serve as their
respective topics are provided by the constituents of
the VUI referent model. For scenes, it is addition-
ally required that their topics be complex referents.
Interaction structure models, further, describe which
domain functions for accessing backend data and ex-
ecuting transactions are required for each scene’s re-
alisation.

Interaction structure models are authored as class
diagrams that define the topicality association be-
tween the members of the referent model and the as-
sumed scenes and dialogue acts. They further spec-
ify the association between dialogue acts and those
scenes in whose realisations the acts are involved.
Note that interaction structure models are structural
models in the sense that they merely define the set of
scenes for some VUI application, as well as, for each
scene, the set of dialogue acts that may be involved
in its realisation. Both the actual dialogue flow by

3ScIML’s notion of dialogue acts is based on the idea that
for the purpose of VUI modelling, dialogue acts can be de-
scribed by a generic dialogue act type and a domain specific ref-
erent that identifies the topic of the act. This proposal withdraws
from thinking of the propositional content of dialogue acts as
rich semantic representations of system and user utterances. In-
stead, it assumes that the illocutionary force of dialogue acts
– or their update effect, in other terms, see e.g. (Poesio and
Traum, 1998) – operates on assignments of referent values.

236



3

Figure 2: Generic Processing Model for a Workflow in
ScIML

means of which a scene is realised and the cluster-
ing of elementary dialogue acts into moves is outside
the scope of this model type.

ScIML interaction flow models define, for each
scene of an interaction structure model, the realisa-
tion of this scene through a set of event-triggered
workflows. A workflow is a sequence of state transi-
tions between VUI dialogue acts, domain functions
and sub scenes. In this approach, dialogue acts per-
formed by the user are conceived of as a particular
type of event that may trigger the initialisation of
a workflow or a state transition within some active
workflow.

The concepts underlying this type of model are
described, in more detail, in the following section.

ScIML presentation models comprise, on the
one hand, a VUI move model that defines patterns
of VUI dialogue acts that constrain the move forma-
tion on the part of the VUI. On the other hand, they
include the definition of a response space model.
The latter assigns, for each occurrence of a VUI dia-
logue act in the interaction flow model, a set of user
moves that are assembled, on their part, from dia-
logue acts. Presentation models are authored within
an integrated representation format for ScIML that
is exemplified by figure 1.

3 Statecharts-based interaction flow
Modelling

Given our notion of scene as the domain with regard
to which interaction flow will be specified, the pur-
pose of an interaction flow model is to determine,
for each realisation of a scene, whether it is in one
of the following activity states:

• the performance of a dialogue act

• the performance of some domain function for
backend data access or transaction execution

• the realisation of some subscene

For dialogue act states, ScIML assumes that the
corresponding dialogue act will only be realised if
its preconditions hold and as long as they do hold.
This way, e.g., a form filling algorithm can be re-
constructed – as in figure 1 – by a sequence of
query wh dialogue acts which will only be realised
if their respective referents have not been specified
before. Thus, ScIML’s notion of dialogue act states
is able to account for dialogue flow phenomena like
Overanswering.

However, rather than specifying the control algo-
rithm for a scene as a single FSM, we propose to
think of it as being described by a set of workflows
that define transitions over the above states and that
are triggered by events of the following types:

• VUI Events, which indicate a failure to recog-
nise a user’s input, the missing of input by the
user, or any other exceptional behaviour partic-
ular to the usage of a VUI.

• Dialogue Act Events, which signal the perfor-
mance of a dialogue act by the user.

• Grounding Events, which express a change of
the grounding status of some referent. Ground-
ing events will be caused, on their part, by the
performance of dialogue acts.4

• Domain Events, which may be thrown during
the execution of some domain function. The
call of a domain function may, on its part,
be triggered by the occurrence of a grounding
event, e.g. a specified event with regard to
some referent or set of referents.

For each scene there will, further, be one main
workflow that will be triggered upon entering the
scene and that describes, e.g., a form-filling flow.

4We assume that a referent’s grounding status may be either
unspecified, specified, i-grounded, c-grounded, i-rejected
or c-rejected. The notions of i-grounded and i-rejected, on
the one hand, and c-grounded and c-rejected, on the other,
reflect the two dimensions of reliability with regard to a user’s
intention and validity with regard to the given application do-
main.

237



4Note, however, that triggering of a workflow may
not immediately result in executing it. Instead, there
is, additionally, a generic workflow prioritisation al-
gorithm that determines the ordering in which work-
flows will be executed. E.g., in case a trigger event
for some workflow occurs outside the context of
the corresponding scene, this workflow will, fur-
ther, generically be prioritised over the scene’s main
workflow. Particularly in voice portals that offer a
variety of services under single entrance point, these
processing routines allow that a user may not only
identify a desired service, but may also provide more
information with regard to the latter’s referents.

As a complementary process to workflow trigger-
ing, ScIML allows to discard workflows that have
been made obsolete by events that occurred after
they have been initialised. With regard to workflow
obsoletion, ScIML assumes that obsoletion condi-
tions can be derived from the triggering conditions
of a workflow.5

For authoring, ScIML employs an abbreviation
of the actual statechart representation. Using stat-
echarts in their particular version as UML activity
diagrams, only the particular flow inside the generic
workflow execution model – i.e. the content of the
Executing state – will be explicitly authored. As
figure 1 shows, these workflows will be specified in
the parallel regions of a scene state.

4 Outlook

The ScIML execution model described in the pre-
vious section has been verified on the basis of the
existing Apache reference implementation of an
SCXML interpreter. SCXML is an XML syntax
for statecharts and has recently been proposed by
the W3C (Auburn et al., 2005) as a standard for
UI interaction flow control. It is also meant to en-
hance VoiceXML towards the creation of more flex-
ible ‘advanced’ VUIs. However, statecharts lack ex-
pressive means for this particular purpose. ScIML,
in contrast, shows how statecharts can be intuitively
profiled for VUI modelling and thus means to con-

5For example, if an i-rejected grounding event occurs for
any referent value involved in a workflow trigger, or if a spec-
ified event specifies an alternative value for the latter, the af-
fected workflows will be obsolete. This will not be the case,
however, if the workflow contains a subscene state that, on its
part, specifies a workflow for the respective event.

tribute to the uptake of SCXML in the voice indus-
try.

References
RJ Auburn, Jim Barnett, Michael Bodell, and T.V. Raman.

2005. State Chart XML (SCXML) scate machine notation
for control abstraction. Working draft, W3C.

Dan Bohus and Alex Rudnicky. 2003. Ravenclaw. In Proceed-
ings of the Eighth European Conference on Speech Com-
munication and Technology (Eurospeech 2003), Geneva,
Switzerland.

Harry Bunt and Yann Girard. 2005. Designing and open, mul-
tidimensional dialogue act taxonomy. In Proceedings of Di-
alor 2005, the 9th Workshop on the Semantics and Pragmat-
ics of Dialogue. LORIA, Nancy/France, June 2005.

Herbert H. Clark and Susan E. Brennan. 1991. Grounding
in communication. In L. B. Resnick, J. Levine, and S.D.
Teasley, editors, Pespectives on Socially Shared Cognition.
APA.

Maira Greco de Paula. 2002. Projeto da interação humano-
computador baseado em modelos fundamentados na engen-
haria semiótica: Construção de um modelo de interação.
Msc thesis, Pontificia Universidade Catolica do Rio de
Janeiro.

Object Management Group. 2004. UML 2 Meta Model. Spec-
ification, OMG.

David Harel. 1987. Statecharts: A visual approach to complex
systems. Science of Computer Programming, 8:231–274.

Staffan Larsson, Peter Bohlin, Johan Bos, and David Traum.
1999. Trindikit 1.0 manual. TRINDI Deliverable 2.2, Uni-
versity of Göteborg.

Colin Matheson, Massimo Poesio, and David Traum. 2000.
Modelling grounding and discourse obligations using update
rules. In NAACL.

Matt Oshry. 2004. Voice Extensible Markup Language
(VoiceXML) 2.1. Recommendation 2.1, W3C consortium.

Massimo Poesio and David Traum. 1998. Towards an axioma-
tisation of dialogue acts. In Twente Workshop on Language
Technology.

Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao,
Philipp Schmid, and Victor Zue. 1998. Galaxy-ii: A ref-
erence architecture for conversational system development.
In Proceedings of ICSLP 98.

David Traum. 1996. Conversational agency: The trains-93 dia-
logue manager.

238


